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In this work, we examine a variety of regimes of dynamicitygenerated using means of a single par-
tial differential equation of sixth order nonlinearity), the NEP equationand equation (a single linear 
partial differential equation of sixth order) making use of the integrated radial basis function net-
work method, a more sophisticated numerical technique (IRBFN). Previously, we used the Galerkin 
approach to generate NEP equation spinning solutions in one step.  Firstly, we use the approach to 
replicate the previously found spinning regimes by solving the NEP equation. In the most recent 
round of numerical tests, we discover regimes that resemble whirling sequences of bends with one 
kink, two, or threeeach. Analysis is done on the changes in the distance between the kinks. Boundary 
conditions of two types are taken into consideration: periodic and homogenous. It is investigated how 
the dynamics rely on the domain’s size and how bigger domains can support more spinning fronts. The 
kinks’ direction of motion is determined by the initial state, but not their sizes or velocities. Secondly, 
We solve the Nikolaevskiy equation as an example for linear single partial differential equationusing 
IRBFN approach.
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1. Introduction

Because of the vast range of nonlinear effects, the development of super-adiabatic structures in reac-
tion fronts that are propagating, like spinning detonation and solid-phase combustion, piqued the 
curiosityof theorists and practitioners in mathematics. However, the first focus was on useful applica-
tions, such as the production of sophisticated materials through self-replicating at high temperatures 
(SHS). We refer to [1, 2, 3] for current experimental research in the field. A simple single-equation 
model that could replicate the spinning reaction fronts on a cylinder that were observed in experi-
ments was created by Strunin in [4].
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It was also demonstrated later on [5] that Eq. (1.1) might characterize Certain non-local reaction- 
diffusion systems: nonlinear instabilities. For the sake of clarity, we shall refer to Eq. (1.1) as the 
equation for the nonlinearly energized phase (NEP)inrelation to those systems. The term “u” refers to 
the distance travelled by the combustion front (roughly a line dividing hot burned products from cold 
unburned mixture) along a hollow cylinder’s axis in the context of the combustion fronts discussed in 
this study (Fig.1). Among the most remarkable experimentally observed regimes is the spinning front, 
which is one of the rich dynamics arising from the model (1.1). The solution in kink form (1.1) is shown 
in Fig. 1. In trials, the nearly vertical, steep portions in Figure 1.1 correspond to luminous hot areas. 
Spots with extremely high temperatures are frequently referred to as hyper adiabatic in combus-
tion literature. Infiltration combustion experiments have also yielded similar hot-spot formations [3]. 
Lately, the compositions of combustion fronts in reactive compositions that vary have received par-
ticular attention. The impulsivedevelopment of regular structures, whose proportionalityis different 
from the original circumstances’ symmetry, can occur alongside the combustion process regardless of 
the impact of early perturbations. In systems where the reaction products are blown through by the 
reactive gas towards the propagation front, it wasdemonstrated in 6 that the process of combustion 
could become unstable in systems where the explosive gasis blasted via the results of the reaction 
toward the  spreadingahead, resulting in the creation of finger-shaped structures.

Fig. 1: Afront of reaction moving along a cylinder that is hollow.

Creation of structures resembling fingers. These mechanisms in order to spread a smolderingwave in 
a sawdust-filled channel shaped like a slit were experimentally investigated in [7]. Examining how 
scale parameters affect the instability that has occurred in the burningof very permeable media was 
the main goal. In [1, 2, 3], the structure of the metal powder combustion front exposed to the intru-
sion of natural gas was examined both experimentally and theoretically. The authors examined the 
dynamics of cellular wave structure initiation and propagation as well as the combustion of porous 
media through infiltration. They investigated how the quantity and form of cells were affected by 
the heterogeneous medium’s controlling thermophysical parameters, the geometry pertaining to heat 
loss, the porous nature, etc.According to these findings, planar fronts can potentiallysplit into sepa-
rate cells that travel through the layer of condensed material in a pulsating manner, leaving behind 
a belt of periodic-looking condensed combustion products in their wake.It is possible to replicate the 
qualitative nature of these regimes by applying Eq. (1.1). Based on principles of phenomenology, the 
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equation replicates the evolution of the front’s shape while excluding concentration and temperature 
from its analysis.The fact that internal combustion enginesare frequently incredibly complicated and 
couldcontain a chain involving chemicalsprocesses involving multiple reactants that are compounded 
by a mechanical deformation, melting, etc., is evidence in favor of the phenomenological approach. 
Because of this, modeling the combustion systems with the use of the fundamental heat and concen-
tration equations might become unfeasible. We can refer to [8, 9] which examined the granular gases’ 
long-term cluster evolution, as an illustration of applying a phenological technique. Aldushin et al. 
in [10] made the initial effort to build a phenomenologically based model to describe the combustion 
waves rotating.  Nonetheless, the front shape is more accurately described by the model (1.1). The 
shape is kink-like in [4], as seen in experimental observations, and sinusoidal in [10]. Furthermore, 
consistent with the experiments, the kink’s motion decays completely if there is a significant enough 
heat loss into the external liquid. With respect to the formula, v = ∂u/∂x, the curveresembles a soli-
ton. More specifically, it’s an auto-soliton, which is a kind of solitons found in living things. [11, 12]. 
This kind of solitons is distinguished from those in conservative systems by the prefix auto-. When 
energy release and dissipation are balanced, it results inthe auto-solitons, whereas how nonlinearity 
and dispersion are balanced produces the conservative solitons. A system with active-dissipative, in 
which energy is generated by chemical processes and dissipated by thermos conductivity, is commonly 
exemplified by the combustion front. The energy balance determines the distinct amplitude and veloc-
ity of an auto-soliton. The expression (∂u/∂x)2∂2u/∂x2 denotes the energy release in Eq. (1.1), while the 
term ∂6u/∂x6 denotes the dissipation. The release and dissipation are linked by the phrase (∂u/∂x)4  
[5, 13, 16].
To make computations easier, we rewrite Eq. (1.1) as
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where B is conveniently assumed to be positive (the situation of B ispositive, changed to the situa-
tionof B negative by converting u to −u and B to −B). A and C are assumed to be positive. We can 
attain good accuracy and a somewhat short experiment time by varying the A, B, and C values. We 
do remark, however, that by rescaling u, x, and t, Eq. (I.2) can be changed to the canonical form (I.1). 
As a result, in rescaled coordinates, the outcomes of every experiment we do will also represent the 
answers to the classical Eq. (1.1). Equation (1.1) was previously resolved by applying the spectral 
Galerkinapproach [4], finite difference scheme, and 1D-IRBFN ethodology. In [14], a few first results 
were presented and talked upon. The more accurate IRBFN methodology, a collocation technique 
builton integrated radial basis function networks, is what we use in the current work [15, 16]. In 
section II, we apply the technique to acquire and examine a range of dynamics produced by the NEP 
formula (1.2), with various starting and boundary conditions. We also apply this method to solve 
Nikolaevskiyequation in section III. Conclusions are given in Section V.

II Numerical results for NEP equation

II. I. Regimes of Spinning Waves

For this section’s experiments, we select the spatial domain’s length to achieve spinning regimens. 
We select the spatial domain length that is compared to the bifurcation length, or, more specifically, 
the canonical the domain’s lengthis greater compared to thebifurcation canonical extended. We stress 
such as the particularthe coefficients’ valuesin the equation B, C, and Ahave no bearing on the form 
or motion of the front because each of the u(x, t) graphs that are shown could be regarded jointly that 
corresponds to the standard version of Equation (I.2), albeit only using scaled coordinates.
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A : One-Step Regime

Three numerical experiments are carried out in this paragraph using various initial conditions and 
periodic boundary conditions. A single-step spinning front is the resultant of the experiments.

1. First Experiment

The coefficients in the equation are: A = 7, B = 4, C = 3. Since u(x, 0) = 3sinx is periodic, the initial 
condition is in line with the requirements for the boundaries.  It appears that the dynamics persist 
because L is greater compared tothe bifurcation length. Following a period of transition (Fig. 2 right), 
the wave dynamic settles into the single-step structure depicted in (Fig. 2 left). Despite the initial 
condition’s symmetry, the wave ultimately moves left rather than right. Since an optimally symmet-
ric regime seems to be inherently unstable, It ultimately transforms entering either between the two 
conceivable regimes that are imbalanced (in this example, left-handed).

Fig. 2: First Experiment: (Right) The settled stage; (Left) The solution u versus x 
at various times in the interim phase.

2. Second Experiment

The values A = 5, B = 4, and C = 3 are employed. The initial state is given by
u(x,0) = 1.3 [sin(5x) + 1.5 sin6x + x/6

Because the function’s values on the right and left ends within the domain differ at t = 0, the initial 
condition in this experiment does not satisfy the boundary criteria. But as soon as the trial begins, 
the resolution u(x, t) is compelled to meet the condition at the border, which results in that leftward 
huge move. As the original short-wavelength wave is rapidly smoothed down by the dissipation incon-
sistency (Fig. 3 left). After some time, the motion toward the right causes the one-step structure, or 
settled spinning regime, to establish (Fig. 3 right).

Fig. 3: Second Experiment: The relationship between the solution (u) and (x) at various points in the 
stage of transition (left) and the established phase (right).
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3. Third Experiment

We have selected A = 5, B = 2, and C = 3 as the equation coefficients. While Fig. 4 (right) depicts the 
resolution in the established state, Fig. 4 (left) depicts the dynamics at early stages. After some time, 
the front endures and advances to the right. With the x coordinate directed around the cylinder’s 
perimeter, the regime observed here could be linked to the reaction front advancing in a rotating 
manner on a surface that is cylinder-shaped.

Once more, the initial condition in this experiment does not match the periodic boundary require-
ments. However, the big step on the left is caused by the instantaneous forcing of the solution u(x, 
t) to fulfill boundary requirements. The intermediate step inside the computational domainthat is a
component of the starting state has the opposite orientation (u increases in opposition to x) to this step 
(u decreases in opposition to x). The outcome is that the front is pushed to the right as a strong energy 
dischargebegins to take action in the vicinity of the sizable lately produced move. The new step is able 
in order to ascend above the first take a step in the centerand keep moving additionally to it since this 
action is strong enough. The spinning regime eventually settles rightward (Fig. 4 right).

Fig. 4: Third Experiment the solution u versus x at various points in the transitional period 
(left)  and the settled stage (right).

B. A two-Step Regimes 

In this part, we carry out experiments with periodic and homogeneous boundary conditions using a 
larger computational domain.

1. Fourth Experiment: Homogeneous boundary conditions

The values of the coefficients in the equation are A = 3.5, B = 2.5, and C = 2. An elevated summit close 
to the left edge within the domain is selected as the first requirement. The peak can only travel to the 
right due to the left boundary’s close closeness. When the initial peak’s amplitude grows to a certain 
point, it becomes not one, but two kinks. The configuration is led by the lower kink, which is followed 
by the higher kink. The structure with two kinks settles as seen in Fig. 5 (left) after a brief period of 
transition (Fig. 5 right).
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Fig. 5: Fourth Experiment:  The solution u versus x at various points in the transitional period 
(left); Settled stage (right).

Fifth Experiment: Boundaries that are periodic

A = 7, B = 2, and C = 1 are the selected equation coefficients. The initial state exhibits many oscilla-
tions each period in a sinusoidal shape. 

The one-step regime’s spatial domain is smaller than this one.  Trial 1. Around t = 21, the struc-
tures develop after a period of transitional dynamics (Fig. 6 left). A helical path is shown by a linked 
configuration of two kinks that travel from upper right to left when the cylinder-shaped figure plane 
is rolled (Fig. 6 right). 

Fig. 6: The solution u versus x at various points in the stage of transition(left) as well as the 
established state (right).

C. A Three-PhaseRegimes

Sixth Experiment: Boundaries that are homogenous 

The domain size and the original condition’s amplitudein Experiment 6 are greater than all of thoseof 
the earlier experiments. The coefficients in the formulas are A = 3, B = 2, and C is equal to 2. The 
beginning amplitude is increased from 7.8 to 8.2 in comparison to the fourth Experiment. This aids in 
creating the third phase, as seen in Figs. 7 (left), along with the larger do main available. Fig. 7 (right) 
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shows the progressive appearance of the three-step structure following a time of transition Fig. 7 
(left). The third step is still in the stage of formation, but the first two completely developed lead-
ing steps with separate horizontal plateaus are served. Observe that the first step’s highest point is 
directly on top of the tiny sub-peak before the following phase. 

Fig. 7: The solution (right) settled stage; (left) the relationship between u and x 
at various points in the transitional period. 

III Numerical solution for Nikolaevskiy equation

The Nikolaevskiy equation was first presented as a model for seismic waves. It can also be used to 
simulate a wide range of systems, such as electro convection and reaction-diffusion systems, that 
contain a neutral “Goldstone” mode. At least when the dispersive elements in the equation are sup-
pressed, it is known to display chaotic dynamics at the beginning of pattern generation. Comparing 
with NEP equation, Nikolaevskiy equation has linear excitation in relation to reaction diffusion sys-
tems while NEP equation has nonlinear one.
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Seventh experiment with homogenous conditions  

We solve Nikolaevskiy equation as a = 1, b = 1, and C = 1 and d = 1 are the selected equation coef-
ficients. The starting pointis u(x, 0) = 5*Exp – (x–2)2. Fig. 8 (left) shows the initial state and Fig. 8 
(right) represent the steady state.
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Fig. 8: The initial state(left) and  the steady state(right).

Conclusion

We combined the IRBFN approach using the Picard iteration method in one step to solve 
NEPandNikolaeviskii equations. For NEP equation, the spinning regimes that were previously 
achieved in [4] using the Galerkin numerical approach were successfully recreated by the method. In 
this work, a much greater range of the dynamics are examined. Different initial conditions and two 
distinct kind of boundary conditions: periodic and homogenous—were employed. Regimes with only 
one stage areproduced by the first three experiments; two-step regimens areproduced by experiments 
4 and 5; and Experiment 6 yields three-phaseregimes. For Nikolaevskiy equation, we run one experi-
ment using homogenous conditions. 
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