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Delays naturally appear in chemical reactions and they are often responsible for presence of com-
plex behaviours, we will be take delay effects in Beulosuv-Zhabotonksiy reaction this mechanism 
is represented by a simple model, called the Oregonator model. Chemical kinetics of the considered 
Oregonator model will be taken by use of delay mass-action law and study the stabilizability and solv-
ability by backstepping method after formally introduce the chain approximation  for kinetic scheme 
of delayed Oregonator model. We will compar stabilizability results output   between backstepping 
with method of steps and backstepping with chain method
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1. Introduction

Dynamical systems’ behavior may be fundamentally affected by time delay, for instance, it might 
have a stabilizing or destabilizing influence [2]. Consequently, state is directly represented mathe-
matically.  In many applications, Delay in actuation or measurement may be required to provide a 
suitable a model mathematics  for a particular objective, for instance control, prediction, or simula-
tion. Additional well-known instances include delayed reactions of the drivers when simulating traffic 
jams [13], models for delayed epidemics [10], or the impact of delays on the vibrations of machine tools. 
Delays are not part of the basic physical framework underlying networks of deterministic reactions 
with mass action kinetics. Yet, in biological models, the existence of delay may be a crucial component 
in explaining of complex dynamical actions (such as particular types of oscillatory) [12]. Additionally, 
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the addition of delay can help a simpler explanation for chemical systems have fewer concentra-
tion  variables than intricate mass action mechanisms [14]. Chemistry and chemical engineering 
use mass-action kinetics to represent the dynamics of networks of chemical reactions or systems of 
chemical processes. These models, which contain mass- and energy-balancing modeling relations, are 
a particular type of compartmental system [1].

Another crucial finding is that nonlinear nonnegative models frequently belong to the category 
of reaction network-architected kinetic systems. This implies that numerous procedures that aren’t 
directly connected to chemistry  and may have delayed effects, such certain traffic networks, compart-
mental systems, epidemic processes, and population models, can be officially classified as chemical 
reaction networks. [1,9]

There are various reasons why we would want to add delayed variable formulations to models that 
are accessible to chemists in this category. While building a DDE model of a chemical system, the 
focus is now on characterizing the dynamic interactions among the concentrations of important spe-
cies rather than listing intermediates and their reactions. Hence, less concentration-related variables 
will often manifest than in a traditional mass action mechanism. 

Since delay-differential equations (DDEs) have richer mathematical framework compared to ordi-
nary differential equations (ODE), modeling systems in the field biology and chemistry by using DDEs 
may introduce certain benefits from the numerical point of view, DDEs may lead to describe chemical 
reactions by a fewer concentration variables than the classical mass-action law [15].

2. Delayed Mass – Action System

The concentrations are the dependent variables in models of othermal chemical kinetics. Both the ini-
tial functions and the permitted types of DDEs must be restricted in order to ensure that the solutions 
of the DDEs stay nonnegative. Let the chemical concentrations in the system being studied at time t 
be represented by the vector x t Rn( )∈ ; xi is a symbol for an elements of x. The evolution equation has 
the following form: x t f x t( ) ( ( ), )� �  where f is a vector-valued functional with elements fi. An initial 
vector-valued function ∅(t)  with elements ∅i(t) defined in the interval � �� ��� ��max ,0  is part of the 
whole model [6].

When delays occur, as they inevitably do in the kinetics of chemical reactions because of propa-
gation phenomena, mass-action laws might not be adequate. Chemical reaction delays can be dis-
regarded since they are frequently minor enough. However, delay presence in system’s dynamics 
is often responsible for unexpected behaviours [15]. In addition, as mentioned in [5] delays induced 
behaviours in complex chemical reactions should be considered to better understand the dynamics of 
such reactions. Belousov-Zhabotinsky reaction, called BZ reaction, is a very complex chemical reac-
tion involving dozens of elementary steps and exhibiting various type of behaviours such as steady-
state, periodic, and chaotic. In summary, the reaction is comprised of two distinct processes, denoted 
as Process A and Process B, within a single system. The dominance of one process over the other is 
contingent upon the concentration of bromide ions within the reaction at any given time. Process A 
dominates the reaction when the Bromide ion concentration is sufficiently high, and the Bromide ion 
is consumed monotonically during this process. Then, whenever the concentration  reduces below 
some certain level, Process B starts to dominate the reaction. The oscillatory mechanism origins that 
Bromide ion is indirectly produced in Process B, hence, control of the reaction is returned to Process A. 
It should be noted that despite the advantages of use of DDEs in the field of bioscience, mathematical 
solution of a DDE is more difficult compared to ODE. Solution of a DDE requires an infinite set of 
initial history function, therefore, it is not trivial to ensure positivity of the solution, which is required 
for DDEs describing the chemical reactions [15]. Non-linear dynamical systems are controlled and 
stabilized using a technique from control theory known as the “backstepping method”. Stabilizing the 
system origin iteratively is necessary to do this, as this is where the control process finishes once the 
last external control is assessed [5,11]. Additionally, employing a Lyapunov function and virtually 
error variables to guarantee system stability, creating control rules for each subsystem of the original 
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system of ordinary differential equations (ODEs) is a common task that is accomplished through the 
backstepping approach, Details are available at [4].

In Section 2 chain method will be given, in addition introduce for kinetic formal of delayed 
Oregonator model, by use chain method to approximate his. while Section 3 contains 4 application 
backstepping method for stabilizing and solving for kinetic scheme of delayed Oregonator

3. Chain method

The theory of delayed differential equations in mathematics and mathematical modeling in chemical 
engineering both independently introduced the chain method as an approximation technique for tem-
poral delays [10]. The chain technique is important because it may be used to extend the results of 
control theory of ordinary differential equations to delay differential equations. [7] Because the phase-
space has infinite dimensions, nonlinear delayed differential equations are often difficult to analyze. 
In order to solve this problem, delayed terms were approximated using a series of first-order differen-
tial equations, which led to the approximate  of delayed differential equations by a set of ODEs [10].

In order to generalize the approximation of the chain method for kinetic scheme of delayed 
Oregonator model, we can introduce

 
x t Af y t g x t y t Au x t Hh x t t( ) ( ( )) ( ( ) ( )) ( ( )) ( ( )),� � � � � � �� 0  (1)

where x t Rn( )∈  is the state vector, τ > 0, f: Rn  → Rn, h: Rn → Rn are continuous functions, A, H ∈ Rn is 
a constant vector, and x(t) = θ(t) for –τ ≤ t ≤ 0 is the continuous initial function. The approximating set 
of ODEs with a chain containing N new state variables (‘compartments’) denoted by vi for  i = 1,...,N 
is the following for each n ∈ N , n ≥ 2, is the following:
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On compact subintervals of [−τ, ∞) the approximation is always uniform. Furthermore, the bounded 
solutions of (1) are uniformly approximated over the entire unbounded interval [0, ∞] with certain 
limitations on the parameters.

4.  Application Backstepping Method for Stabilizing and Solving for kinetic scheme of de-
layed Oregonator 

The reaction steps of the irreversible Oregonator model is as given below
 A y x ok� � �� �1  (R1)

 x y ok� � ��2 2  (R2)

 B y x hka� � �� �2  (R3)

 2 4x A ok� �� �  (R4)

 h fyk5� ��  (R5)
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where A, B are assumed to be constant chemical species, y (Bromide ion), x (Bromous acid), and h 
(Cerium (IV)) are chemical variables, o is some chemical product, ki ,i = 1,…,5, is the positive rate 
constant, and, f is a stoichiometric factor

The reactants in a chemical reaction are not necessarily to react whenever the activation energy is 
provided. In addition to such a time lag, it is not physically possible to maintain the required activa-
tion energy instantaneously. In order to take into account these type of delays in the BZ reaction, the 
Oregonator model can be expressed, by replacing (R1) with

A y x t o t dRk� � �� � � �1 1( ) ( ), ( )� �        
which implies that x and o appear after τ units. The recent mechanism, which corresponds to replac-
ing reaction step R1 by dR1, is more realistic compared to the Oregonator model from the physical 
point of view. since the reaction starts whenever the present Bromide ion starts to decrease, taking 
into account the existing time lag in R1 is more meaningful compared to elementary steps, for more 
details  the reaction mechanism which five elementary steps see [15] .

By delayed mass-action laws, the kinetic scheme of delayed Oregonator model, which consists of 
the steps (dR1), R2 − R5, can be described by the following DDEs
 x t k Ay t k x t y t k Ax t k x t( ) ( ) ( ) ( ) ( ) ( )� � � � �1 2 3 4

22�

 y t k Ay t k x t y t k fh t( ) ( ) ( ) ( ) ( )� � � �1 2 5

 h t k Bx t k h t( ) ( ) ( )� �3 5  (3)

where k1 = 1.34M−1 sec−1, k2 = 1.6 × 109M−1 sec−1, k3 = 8 × 103M−1 sec−1, k4 = 4 × 107M−1 sec−1, k5 = 1 sec−1, 
f = 1, and A = B = 0.06. [15]

To stabilize and find the solution for the time-step interval [0,5], apply the approximate chain, then 
the first equation of  system (3) will be approximated by the following the system ODE with non-con-
stant coefficients up to the first order:
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where v h s ds i Ni i
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The resulting differential equations system (4) will now be analyzed using the backstepping method 
as shown in the following steps:

Step (1): Consider about the system (4) first equation’s stability. and let z1(t) = x(t). Therefore, z1(t)   
derivative is:
 z t x t

k Az t k z t k z t y t N v t u t
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Where the term “virtual controller” refers to x2(t), and the quadratic form of the Lyapunov function is 
as follows:
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Assume the controller x2(t) = α1(z1).
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if α1(z1) = 0, then 
V z k Az t1 1 3 1

2( ) ( )� �  for all t ∈ [0, 4], which is a definite negative function.
The first equation of system (4) is asymptotically stable given the recursive feedback control u1(t) 

and α1(z1), where α1(z1) is an estimating function when x2(t) is regarded as a controller.

Step (2):  from step (1) it is necessary to determine the error between v1(t) and α1(z1) where  z2(t) = 
v1(t) – α1(z1) and α1(z1) = 0. Following that
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for all t ∈ [0,4], which is a definite negative function. The second  equation of system (4) is asymptot-
ically stable, according to the recursive feedback control u2(t) with α1(z1, z2) = 0.
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Step (3): from step (2) it is necessary to determine the error between v2(t) and α2(z1, z2) where z3(t) = 
v2(t)–α2(z1, z2) and α2(z1, z2) = 0. Following that
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Also for all t ∈ [0,4], which is a definite negative function. Due to the recursive feedback control u3(t), 
the third equation of system (4) is asymptotically stable.

Step (4): from step (3) it is necessary to determine the error between v3(t) and α3(z1, z2, z3) where  
z4(t) = v3(t)–α3(z1, z2, z3) and α3(z1, z2, z3) = 0. Following that
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Also for all t ∈ [0,4], which is a definite negative function. Due to the recursive feedback control u4(t), 
the four equation of system (4) is asymptotically stable. 

Step (5): from step (4) it is necessary to determine the error between v4(t) and α3(z1, z2, z3, z4) where  
z4(t) = v4(t) – α3(z1, z2, z3, z4) and α3(z1, z2, z3, z4) = 0. Following that
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Consider the control Lyapunov function 
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Also for all t ∈ [0,4], which is a definite negative function. Due to the recursive feedback control u5(t), 
the five equation of system (4) is asymptotically stable.

Step (6): from step (5) it is necessary to determine the error between y(t) and α3(z1, z2, z3, z4, z5) where  
z4(t) = y(t) – α4 (z1, z2, z3, z4) and α5(z1, z2, z3, z4, z5) =0. Following that 
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Also for all t ∈ [0,4], which is a definite negative function. Due to the recursive feedback control u6(t), 
the sixth equation of system (4) is asymptotically stable.

Step (7): from step (6) it is necessary to determine the error between h(t)  and α6(z1, z2, z3, z4, z5, z6) 
where  z7(t) = h(t)–α6(z1, z2, z3, z4, z5, z6) and α6(z1, z2, z3, z4, z5, z6) = 0. Following that
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Consider the control Lyapunov function 
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Also for all t ∈ [0,5], which is a definite negative function. Due to the recursive feedback control u7(t), 
the seventh equation of system (4) is asymptotically stable. 

hence, the following result of the feedback controls are obtained:
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In system (8), by substituting u1(t), u2(t) and u3(t), we obtain an ODE system with a nonconstant coef-
ficient that has the following form:
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With initial conditions:
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Figure (1) shows the solution of the  siven equations of  x1(t), x2(t), x3(t), x4(t), x5(t), x7(t) and x1(t) 
throughout the time step interval [0,4] using the control functions u1(t), u2(t), and u3(t) in Figure (2).

Figure 1: A first-time step [0,10] sketch of the solution to System (8).
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Figure 2: Sketch of control.

Conclusion

In this work, we were able approximation  of the delayed-Oregonator model to ODEs  by chain approx-
imation, demonstrated its efficacy when applied  this approach with examine the stability and solv-
ability using backstepping method  on chemical kinetics of the  irreversible Oregonator model. For 
time constant DDEs, it is seen that the backstepping method based on Chain method stabilize the 
system faster than the backstepping method based on method of steps and also it does not require 
that the stabilization to be breaked down into subintervals.
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