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Abstract

In this research, we use integral type contraction requirements to learning the existence of fixed
points for multivalued mappings in the context of cone metric spaces. Cone metric spaces are a gen-
eralization of conventional metric spaces that provide a more comprehensive framework for solving
challenging issues in fixed point theory by exchanging an ordered Banach space aimed at the real
number set. Multivalued mappings pose special difficulties in locating fixed points since they provide
each input several outputs. In order to tackle this, we present integral type contraction conditions,
which offer a broadened contractive structure that encompasses a variety of non-linear behaviors.
This study’s main contribution is the construction of novel fixed point theorems over multivalued
mappings given these integral type conditions of use, which broadens the application of previously
published fixed point results.
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1. Introduction and Preliminaries

Many writers have investigated the strong convergence toward a fixed point (FP) of contractive con-
stant over cone metric spaces (CMS) in the last few years. Multivalued mapping has been used by
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Seong Hoon Cho with Mi sun Kim [2] to demonstrate a number of fixed point (FP) theorems in the
context of contractive constants in metric spaces. First, we review the terms and established findings
that are required for the continuation. Zhang Xian and Huang Gaung introduced the cone metric
space. Given a Banach space and a subset P, P is considered to belong to a cone if and only if it meets
the subsequent criteria.

(i) P#0 & Pis closed;
i) 69+6,0c PV, oc Pwhere the real numbers 0,0, are non-ve;
@) PNEP)=0;
Regarding the cone, the partial ordering<byd<w< w—-19 € P

When o — ¢ € interior of P, it is represented by ¥ < .

If a value x > 0 such that for any ¥, o€ E, 0 <9 < 0 =||9| < x ||o|, then it is though that the cone
P is normal.

If each decreasing sequence that is bounded below and every ascending sequence that is bounded
above converges, cone P is therefore considered to be regular.

Definition 1.1:[4] Let X be a non-empty set, and let us assume that the mapping d: XxX - E isa
cone metric space if and only if it fulfills

1A 0<d@W, Vi, weXandd@W,w)=0< ifdI=w
(i) d@,m)=d(®,9) foralld, e X
(i) d(@®,0)=d(¥,z)+d(z,0) for all ¥,w,ze X

Example 1.2: Let E=R*,P={(¥,w)e E;0,0>0},X =R and d: XxX — E as specified by
d,0)=(1%-ol,xld-wl)
When a constant o> 0 is present. Then the metric space (X, d) is a cone.

Definition 1.3: Let {0 } a sequence in X,%e X and (X, d) be cone metric space. Then

(1) {V } converges to ¥ whenever and for every o € E with 0 < o, a natural number exists N such that
d@,9) <o foralln >N

(i) {v }isa Cauchy sequence (CS) whenever and for every o € E with 0 < o, a natural number exists
N such that d(3,,9,) < o for all n,m > N.

Definition 1.4: Let (X, d) be a metric space. If every CS is convergent in X, then (X, d) be a CCMS.
The family of nonempty closed bounded subsets of X is denoted as CB(X). The Hausdorff distance on
CB(X) is denoted by H(.,.).

= A,Be CB(X)

H(A,B) =max {sup d(6,,B), sup d(A,OQ)}

6,cA 6,eB

The distance between the point 6, and the subset Bis given by (6,, B) = inf {d(6,,6,);6, € B}. If 9 T(X),
then an element ¥ € X is considered a FP in the MV mapping T: X — 2%,

Definition 1.5: Iff the sets {¢, ,ﬁlt}tn_l are pairwise disjoint and [6,,6,] ={U},[8,_,,8,) u{6,}}, then the
set {6, =9,,8,,9,,....0, =6,} is referred to as a partition for [6,,6,].

172

Definition 1.6: Cone lower summation and cone upper summation are defined as follows for each
partition Q of [0, 6,] and each rising function ¢ :[6,,0,] » P
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L (¢,Q) = 2(:(19)”19 O,
U™(¢,Q) = 24( Do -]

Correspondingly.

Definition 1.7: Assume that P in E is a normal cone (NC). { :[6,,6,] > P is called with respect

to cone P or simplicity on an integrable function on [6, 6,]. Cone integrable function iff
lim L (£,Q) =S*" =limU,;”"({,Q), where S“" necessity be unique, for any partition @ of [6,,6,]. By

1 . . . . 91
using J: {(x)d,(x), we demonstrate the common value S*", simplifying it to LI ¢d,.

Definition 1.8: If and only if, for any 6,,6, € P, the function { : P — E is referred to be a sub additive
cone integrable function.

[, <[ cd, +["¢a,

Example 1.9: Let E=X=R,d(¥,0)=[v-w|,P=(0,) and {(¢t)=- for all ¢ > 0. Then for all
0,0,€ P

j"”"zi—zn(e +, +1)j )j —_In(e +1)

o (t+1)
Since 6,b>0, then 6, +6,+1<6,+6,+1+6,0, =(6, + 1)(02 +1). Therefore
In(6, +6, +1) < In(6, +1) < In(6, +1)

This demonstrates that { is an illustration of a subadditive cone inegrable function.

2. Main Results

Theorem 2.1: Consider a CCMS (complete cone metric space) (X d) and a MV (multivalued) map
T: X — CB(X) that is satisfied for every 9, ® € X. For any ¢>0 I {(t)dt >0 is the definition of the

function ¢ : P u{0} - P u{0}.
0 J‘([d(l?,T(D)+d(T19,a))])

H(TY,Tw)
[ ¢wadr< £ (t)dt +6, ¢ (t)dt
for all¥, € Xand 6, +6, <1.6,,0,€[0,3). Afterwards 7" has a unique FP in X

[d(8,TY)+d(w,Tw)]
6],

Proof: for all ¥, e X,n21,0 e T9, &9,,, €TV,
[ ewdrs [T wde <6,

<0 j[d(ﬂ” Dni1)+d (D, .8,

[d(@, T8, )+d(, 1, T0, ;)] [d(, T, )+d(TD, 9, ;)]

L)t +6,] - C®at
(B, 8,)+d(D,.1.,5,,)] Z()dt
[d(By41,8,)+d(D, 8,_1)]

E@)dt+6 j " g(t)dt<ej
{()di+6,] e @yt

[d(®,,8,,1)+d(D,_;,9,)]
qOEaN e dt < & j . e @)dt

(1 (])

[d(D,,0,,1)+d(D,_;,8,)]

P J[dwm 0, 1)]§(t)dt <OI

[d(®, 0y 1)+d (D, 1.0,)]

<(6,+6,)],

wheres — 0, +0, Id(ﬂ”ﬂ,ﬂ")g (t)dt < 5" j

1-(6,+6,)°° ¢t
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For n > m we have
(s, d(B, 0, )+d(@B, 1,0, g )++d (D, 1 ,0,) d(8,,9,1)
[ " (tdt < [ Cdes< [ dt
+ j WD ()t +- j e () d

O™ rd® )
<[5+ 8" 48" [" e ()dt < T @dt
[ O e 0
Let 0 is an interior of o be given, there exist N, € N such that 2% Z“’”"”{(t)dt <a for all m > N,

this gives [ "¢ ()dt <o For n>m, ¥ }is a CS in (X, d) is a CCMS, there exists A, € X such that
U —=A.

d(v,,A

There exist N, € N such that j (t)dt < &= a(l 3 for all n > N,. Hence for n > N, we have
J-d(ﬁ JAp) é’(t)dt < oc(l K) where k = e + e

[d(9, T9,)+d(A, TA,)]

[ ewar< [ e+ [T c@wde<a, ||
o, [ e de+ [ de <6, ! ¢(t)dt
o J~[d(19 TSN 1 j S (hdt < 0 j OIS (1l
2 ji}d(ﬁn,TAl)+d(A1,TA1)+d(79n+1 e (0dt + J( et 1>§(t)dt<9 j £ (t)dt
e
[ i - k)j( Pewde<kf M cwdt k[ 0d
[ Mear< [T @+ [T ”C(t)dt+J THewa [

d(®,,TA;) 1A 10A)
cyde+ [V ewar+ [TV e wydt
<D I J }d(TAI,A)<<g+a+ad(TA1,A)<<c
(1-k) 3 3

C@t)dt

[d(®, D41)+d (A, TA)]

d(9, ,0n+1)

d(TA,,A,) d(TA,,A) ¢

For all n> N, j {(t)dt <% forall Y > 1, weget——j
{(tdte P but |7 A

{(t)dt=0 and so A, e TA,.

(t)dte P and Y — o we get $—0

d(TA,,A,)

and P is closed _[
) J-d(TA1 A

C(dte P

Corollary 2.2: Let (X, d) be a CCMS and the mapping 7 : X — CB(X) be MV map sufficient
for each ¥,ye X. The function {:PuU{0} > PuU{0} is defined as for each e>0,.|:C(t)dt >0

[0 e (tydt < 6 J! IO (t)dt for all ¥, @ € X and 6, € [0,1). Then T has a unique FP in X

Proof: The corollary’s proof can be obtained by simply setting 6, = 0 in the preceding theorem.

Theorem 2.3: Let (X, d) be a CCMS The function {:P u{0} - P u{0} is defined as for each
€> O,J‘Oe {(t)dt > 0 and the mapping 7: X — CB(X) be MV map satisfy the condition

J-H(TlS‘ T w) max{d(9,0),d(8,T9),d(w,Tw)}

{wdi<r| {(dt
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For all 9, ® € X and r € [0,1). Afterwards 7 has a unique FP in X
Proof: for all ¥, e X,n21,9 € T, and ¢ ,, € TV,

d(B,1,8,) max{d(3,,9,,),d(, T3,).d (S, ,T9, )}
[ e war< [ wdr < £ (bdt
max{d(d,,8,_,),d(¥,,9,,,),d(®,_.,9,)
< rJ' { }

codesrf " i<y [)

o °)§ (t)dt

0
For n > m we have

d(®,,8,,) d(®, 9, _+d (D1 0o )+ +d(D1,0,,) (,,0,.1) d(0,1.,0,_5) Uyi1500)
j E(t)dt j E(b)dt sj g(t)dtd+j0 E@dt+-+ j E(t)dt

< e 0 de < "¢ (t)dt

(1-r)

d(8,,%)

Let Ois an 1nter10r of o be given, there exist N, € N such that i r) {(@t)dt < c for all m > N, this
implies j ; "eydt <.
For n>m, {0 } is a CS in (X, d) is a CCMS, there exists A, € X such that ¥, = A,. There exist IV, and

[ (tydt < ¢, for alln > N, Hence for n> N, we have [ "¢ ())dt < ¢

max{d(¥, A, ),d(3,,T3,),d(A,,TA,)}

J-d(TAl A C( )dt <J~H(T TA I)C( )d J' Dy s I)C(t)dt< j

(d(V,,1,41) max{d(ﬁ WA, d(D, 0,1 ),d (A TA )}
+J'0 11§(t)dt<-l' 1 1 1

noYn+l
max{d(ﬁn A, A(8, A1)+ (A8, 10),d (A TA )}
< rf

£ (@)dt
Ctdt+ | W Se (4)dt

cwde+ [ e @ar [ wdt < o

d(TA;,A1) d(TA; A1)

Foralln>N,, I @)dt << for all m > 1, we get %—IO

d(TA;,A,)

{(@)dte P and m — o we get £ —0

and P 1is closed _[0 {(t)dte PbuJ‘ At

J?MI’AI)C (t)dt =0 and so A € TA,.

C(t)dte P

Corollary 2.4: Let (X, d) be a CCMS, The function {:P u{0}—> P {0} is defined as for each
€> O,J; {(t)dt >0 and the mapping 7": X — CB(X) be MV map satisfy the condition
[ e war <k @t

For all 9, ® € X and k € [0,1). Then T has a fixed point in X
Proof: The corollary’s proof can be obtained by taking the maximum value of d(J, ®) from the prior
theorem.

Theorem 2.5: Let (X, d) be a CCMS and P a NC with normal constant k. The function
{ : Pu{0} - Pu{0} is defined as for each € > O,J; {(@t)dt>0

Suppose the mapping 7' : X — CB(X) be MV map satisfy the condition

H(Ty,Tw)
[ twadrsr|
For all ¥, w € Xand r € [0,1). Then T"has a FPin X

max{d(9,0),d(9,T9),d(0,Tw),d(d,Tw),d(Td0)}

C@)dt

Proof: for all ¥,e X,n21,9, € T9,,9

n+l

e Tv,
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max{d(, ,8,_1),d(8, T9,),d(®, 1, T, 1),d(®, T9, ),d(T, 5, )}

J-d(ﬂﬂl?)g( )dt<J.H(T T, é’(t)dt< J- é'(t)dt

< max{d(B, 0, 1).d(0, 0, 11):d(B, 1 0,),d(0,.8,).d (D10, 1)}
<7

0
max{d(ﬁn,z?n,l),d(z? i1 )0, 41,0, 1)}
< rj

¢ @t)dt

max{d(®,,0,_),d(0,,1.9,,)}

{disr| {(0)dt

0

Ad(0,,1.9,)

Case () If c@ydt <r["""¢(t)dt then we get,
0

(%)

[ ewdr< [ @t
forn>m
J‘d(ﬁ1 C(t)dt < J‘d(ﬂ Oy )+ (D1 Do)+ +d (D1 O )é, (t)dt < J‘Z(ﬂn !ﬂnfl)C (t)dt + J‘Z(ﬂnmﬂnfz)g(t)dt T J‘Z(ﬂmﬂ :ﬂm)é,(t)dt
<[ e 0 “)g(t)dt_( V@t

We get ||d( ¥, )|| < K(1 5
Hence {¢ } is a CS. Given X’s completeness, A, € X exists. such that ¥, > A asn —

code< [ owdt+ [ s wdt <!

< max{d(B, A ), d(D, By 1 ),d (A TA A, TA A, 1,00 +d(Dy 11,0,
<rf

d(®,,9,)|. d(®,,9,) >0 as n, m — .

Jad(TA A H(T®,,TA,) max{d(3, A, ),d(8, ,T9,),d(A, , TA, ),d(®, ,TA),d(TS, A N+d(B,,1 A

Ve ()dt
Codesr " e @dt] T C@dt=0

0

Hence A, e TA,

d(0,,1.9,) A(V,41:00-1)
Case (i1) f@)dt<r £(t)dt then we get
0 0

[d(®, .0, 1)] [d(®,,9,1)]

J-d(zB ()t < I[d(ﬂm PO o _I C)dt<§ j ¢@)dt

where 6, =<1, Forn>m

d( ) (A0, 0y )4 (B By )+ (D11 050 d(0,,0,1) A0y 0-2) Os1:0n)
[ g @ar < [ S e gy < [T @ydes [T @de v+ [0 @t

d(®,,9,) 5 m

C()dt<(1 510

We get ||d(19n,19m)|| <KA— (1 D ||d( ). d(@,,0,,) = 0 asn, m — . Hence {¢ }is a CS. Given X’s completeness,
A, € Xexists. such that ¥, > A asn — o

<[6 +8" 2 445" [ @

J~d(TA A C(tydt < J~H(T9 TA, )C(t)dt +Jd(T19n,A, )C(t)dt

J~max{d(19 AN, T, ),d (A TA),d(B, TA)d(TS, A}

¢yt | Z(ﬂ"“ e )dt

J ax{d(3, ,A,),d(3,,9,,1),d(A , TA),A(S, , TA),d(D,,1,4))}

I/\

I/\

Cwde+ [ @t

d(A,,TA,) d(TA, ,A,)

I/\

{odt] ¢ @yde=0

Hence A, e TA,
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max[d(3,0),d(A,,TA;),d(Ay , TA,),d(A;, TA,),d(TA; A,

e @
e <r[" M e

| YA i = | TSI e de < r |

0 0 0
< J‘max[d(Al D) d(A1,A),d(Ag,A5),d(A,A7),d(A Ay
sr

0

Because of the contradiction, 7'has a unique FP in X

Corollary 2.6: Let (X, d) be a CCMS and P a NC with normal constant k. The function
{:Pu{0} - Pu{0} is defined as for each > O,L(C(t)dt >0

Suppose the mapping 7': X — CB(X) be MV map satisfy the condition
J-H(TL?,T(U) J-max{d(ﬂ,w),d(ﬁ,Tﬂ),d(a},T{o)}

. f(tydt<r C(t)dt

0

For all ¥, ® € X and r € [0,1). Then T"has a FP in X

Proof: The corollary’s proof is as follows right away, since

max{d(9,0),d(8,79).d(0,T),d(8,To),d(T9,0)}

¢ @t)dt

J-max{d(ﬂ,w),d(ﬂ,Tﬂ),d(m,Tw)}

C(@ydt < j

0 0

3. Applications

Mathematical Biology: In biological systems, like population models or ecosystems, interactions
between different species can be intricate and multifaceted. The study of species stability and per-
sistence in dynamic ecosystems, where growth rates and interactions are controlled by various fac-
tors, is aided by fixed point results in CMS. Integral type contractions are useful in modeling how
populations stable in the face of varying environmental conditions throughout time.

Optimization Problems: Many real-world optimization issues involve maximizing or decreasing a
function, and they frequently have several workable solutions. Such systems, in which a single input
(parameter set) corresponds to numerous outputs (best solutions), can be modelled using multivalued
mappings. Cone metric spaces make it possible to extend vector space optimization, and integral type
contractions aid in the establishment of convergence criteria, guaranteeing that algorithms for opti-
mization provide solutions that meet practical limitations.
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