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Abstract
In this article, we introduce an efficient method using Bell wavelets to solve fractional-order con-
vection-diffusion equations with variable coefficients and initial-boundary conditions. We begin by 
integrating block pulse functions with the Bell wavelet matrix to construct the fractional-order oper-
ational matrix of integration (OMI). This method simplifies fractional models by converting them 
into a set of algebraic equations via the collocation technique. The Bell wavelet collocation technique 
results in an efficient computational approach characterised by low costs and rapid convergence. 
Four numerical examples are presented, and the results are compared with exact solutions and other 
existing methods to validate the method and demonstrate its effectiveness and applicability. Graph-
ical results highlight significant variations between fractional and integer orders, while our method 
adeptly handles both initial and boundary conditions, enhancing overall accuracy and simple appli-
cability. 
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1. Introduction

Fractional calculus expands traditional calculus to encompass non-integer orders. The fact that frac-
tional integrals and derivatives are quasi-differential operators gives them the ability to possess 
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nonlocal features. As a result, they serve as useful instruments for characterising the memory and 
genetic features of many materials and processes. These operators are typically used to generalise 
differential equations, allowing for more flexibility in modelling various physical phenomena or math-
ematical problems. Dynamic processes in complex systems are regulated by anomalous diffusion [1, 
2]. Fractional calculus has a long and illustrious history that has been distinguished through rapid 
progress and extensive application across various fields [1, 2, 3, 4]. It finds relevance in modeling non-
linear oscillations in hydrodynamic systems [7], colored noise analysis [9], earthquakes [6], physical 
phenomena , solid mechanics [10], economics [11], anomalous transport phenomena [13], bioengineer-
ing [12] continuous statistical mechanics [8],, and numerous other domains. Fractional partial differ-
ential equations (FPDEs) employ noninteger-order derivatives, enabling effective representation of 
memory and genetic properties within matter. The concept of fractional derivatives is significant in a 
wide variety of fields, including fluid mechanics, mathematical biology, engineering, physics, and as 
many other fields as possible. When viewed in a fractional perspective, the fractional convection-diffu-
sion equation (FCDE) appears as a significant model for the simulation of various anomulus diffusion 
processes. By including fractional-order time derivatives, this equation enhances the conventional 
convection-diffusion model, which in turn provides a more realistic representation of complex tem-
poral dynamics. These equations are essential for modelling anomalous diffusion processes, which 
exhibit non-standard behaviours, especially in heterogeneous or disordered media. They are particu-
larly important for modelling. For the purpose of this paper, we will concentrate on FCDEs that have 
variable coefficients as follows:
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x r x p x h( , ) ( ) ( , ) ( ) ( , ) = ( , ), 0 < <1,0 <

2

2 ��1 (1)

with initial and boundary conditions 

x f( ,0) = ( ),ρ ρ (2)

x h x h(0, ) = ( ), (1, ) = ( ),0 1θ θ θ θ (3)

where 0 < <1α  and r( )ρ , p( ) 0� �  are continuous function f h h(.), (.), ( )0 1 ⋅  are function in L2[0,1)  and 
h(.,.)  is a given function in L2([0,1) [0,1))× . For the purpose of defining the time fractional derivative, 
the Caputo fractional derivatives are used in this particular circumstance.

Practical applications such as modelling oil reservoirs, analysing mass and energy movement, and 
studying dispersion in chemical reactors may benefit from the fractional derivative in time because it 
provides a more detailed portrayal of memory effects and long-range interactions. When confronted 
with situations displaying anomalous diffusion features, where conventional differential equations 
may not be enough, this improved modelling capacity becomes very useful. Using the time-fractional 
convection-diffusion equation in simulations allows scientists and engineers to better understand 
how systems controlled by non-local temporal interactions behave. Many researchers have attempted 
to solve the aforementioned equation using various methods. For instance, the Chebyshev wavelet 
collocation method was proposed in [14]. Another approach by radial basis function method with 
a modified finite integration method [15]. The sinc-Galerkin method was introduced in [16], while 
the Sinc-Legendre collocation method was proposed in [16]. Additionally, the Chebyshev collocation 
method was developed in a separate study [17]. When the equation involves constant coefficients, a 
collocation method based on RBF was developed [18]. Finite difference and finite element methods 
were used to solve FCDEs [19, 20]. The numerical approaches that are based on wavelets provide a 
powerful alternative to the techniques that are already in use. Wavelet-based numerical approaches 
are used for solving FCDEs because they provide multi-resolution analysis, allowing for effective 
treatment of both global trends and local details. Their adaptive mesh refinement focuses computing 
resources on areas with steep gradients, increasing accuracy without incurring major computational 
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costs. Wavelets’ localised character successfully deals with singularities and irregularities, and its 
sparse representation saves the computation cost. Furthermore, wavelet algorithms excel in com-
puting fractional derivatives and managing variable coefficients, with high-order accuracy and con-
vergence rates. These benefits make wavelet-based approaches especially resilient and efficient for 
the complicated nature of FCDEs. Different types of wavelet based methods have been used to solved 
fractional order integral and differential equations such as Haar wavelets [27], Euler wavelets [25], 
Fibonacci wavelets [13], Legendre wavelets [24], Laguerre wavelets [24], harmonic wavelets [22] and 
Gegenbour wavelets [23], are only a few of wavelet families that may be used to many physical, tech-
nical, and biological problems.

Among the wavelet families, the Bell wavelet is a more recent addition. However, they have already 
garnered considerable interest from researchers in numerous pure and applied mathematics disci-
plines. Combinatorial applications of bell polynomials have extended to theoretical physics, stochastic 
processes, and differential equations. In [28] Bell wavelet methods have been used to solve fractional 
integrodifferential equations and Bell polynomials are used to find superposition wave solutions of 
Hirota–Satsuma coupled KdV equations [29]. The Bell collocation method, utilizing Bell polynomi-
als, has been developed to solve various mathematical problems, including linear integro- differential 
equations [34], fractional differential equations [35], and Fredholm integro-differential equations 
with variable coefficients. Additionally, the operational matrix method, based on Bell polynomials, 
has been extended to solve Fredholm-Volterra integro-differential equations [37]. Taylor operational 
method for the solutions of pantograph equations [38], and the operational matrix method for solv-
ing the Lotka-Volterra predator-prey model with discrete delays [39]. In this study, we developed 
a new approach for solving FCDEs by developing operational matrices based on Bell wavelet. This 
method transforms FCDEs into an algebraic system of equations. The accuracy and effectiveness of 
the approach that we have presented have been validated by numerical examples. The structure of 
this work is as follows: Following a survey of the existing research on time FCDEs and their solu-
tions, Section 2 provides an overview of Bell polynomials and a fundamental introduction to fractional 
derivatives. In Section 3, Bell wavelet and operational matrix of integration of Bell wavelets are 
discussed and also the function approximations. In section 4, Fractional OMI of Bell wavelet is pre-
sented. In section 5 the method of description of proposed technique is given. In Section 6, In addition 
to numerical illustrations, convergence and error analysis are also covered. Lastly, a brief conclusion 
was drawn in section 7.

2. Preliminaries

Here, we provide definitions related to fractional calculus, Bell polynomials

Fractional calculus

Definition 2.1: For any function y C( )� ��  with � � �1 , the Riemann-Liouville (R-L) fractional inte-
gration operator Iα  (for α > 0 ) is defined as: 

I y
y

x x dx
� � ��

� �

�
� � �

( ) =
( ), = 0,

1
( )

( ) ( ) , > 0.
0

1

� � �

�
�
�

��
� (4)

The properties of the R-L fractional integration operator Iα  for � �, > 0  include: 
 • I I y I I y� � � �� �( ) = ( ) , 
 • I I y I y� � � �� �( ) = ( )� , 

 • I v
a v

vv v� �� �= (1 )
(1 )

, > 1�
�

�
� �

�� . 
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Definition 2.2: For any function y Cn( ) 1� � � , the Liouville-Caputo fractional derivative operator α  is 
defined as follows: 

D y
a n
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dx n n
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From (4) and (5), we get 

 • D I y y� � � �( ) = ( ) , 
 • D I y I y� � � �� � � �( ) = ( ), >� , 

 • I D y y
k

n n
k

n k
k

� � � � �
�

� �( ) = ( ) 0
!
, > 0, 1 <

=0

1
� � � � �

� �� . 

Bell polynomial

Bell polynomials n( )θ  of order n, are defined by [28] 

n
k

n
kS n k( ) = ( , ) ,

=0
� ��

here S n k( , ) represents the second kind Stirling number and define as: 

S n k
k

k
i

k i
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k i
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Utilizing the characteristics of Bell polynomials, the vector   ( ) = ( ), , ( )0� � � n�� �� , which com-
prise the Bell polynomials  j ( )θ  for j n= 0,1, , , is expressed as: 

( ) = ( ),θ θSY (6)

where 

Y( ) = 1, , ,� � �

n T
�� ��

and 

S =

(0,0) 0 0
(1,0) (1,1) 0

( ,0) ( ,1) ( , )

S
S S
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Since the matrix S  is nonsingular and lower triangular with nonzero diagonal elements, its inverse 
S−1  exists. Consequently, equation (6) can be rewritten as: 

Y ( ) = ( ).1� �S� 
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Starting Bell polynomials are 
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3. Bell Wavelet and Operational Matrices of Integration

The Bell wavelets � � � �mn k m n( ) = ( , , , )  have four arguments: k  ∈ + , m k=1, ,2 ,1

−  the θ  is the nor-
malized time and degree of the Bell polynomials is given by n. On the interval [0,1), Bell wavelets are 
given by 
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(7)

The Bell wavelets basis for k=2, M=3 are
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The matrix will be for k=2, M=3

� 6 6 =

1.4142 1.4142 1.4142 0 0 0
0.2357 0.7071 1.1785 0 0 0
0.2750 1.060

�

77 2.1606 0 0 0
0 0 0 1.4142 1.4142 1.4142
0 0 0 0.2357 0.7071 1.1785
0 0 0 0.22750 1.0607 2.1606

.
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The integrals that will be used to solve fractional telegraph equations are as follows: 

q z dz p p z dzm n mn m n mn, 0 , 0
( ) = ( ) , ( ) = ( )� � �

� �

� � (8)

 and the elements of the matrices for (8) are given by 
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3.1. Function Approximations

A function x L( ) [0,1]2� �  could be represented in form of Bell wavelets as: 

x c
m n Z

mn mn( ) = ( ).
=0

� � �
�

� �
� �
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By truncating above equation, we get 

x c
m

k

n

M

mn mn( ) ( ),
=1

2 1

=0

1
� � �

� �

�� (9)

where 

c x dm n m n, 0

1
,= ( ) ( ) ,� � � � �

are the coefficients of Bell wavelet. The equation (9) can be expressed as a matrix: 

x CT( ) = ( ),� �� (10)

here we define the row vector C  as: 

C c c c c c c c cM M M M k k= , , , , , , , , , ,1,0 1, 2 1, 1 2,0 2, 2 2, 1 2 1,0 2
… � …� � � � � �11,1 2 1, 1

, , .… c k M

T

� �
�
��

�
��

(11)

The matrix �( )�  in (10) is 1 2 1� �k M  order Bell wavelet matrix is as 

�( ) = , , , , , , ,, , , ,1,0 1, 2 1, 1 2,0 2, 2 2, 1 2 1,0
� � � � � � � �� … …M M M M k� � � � � �� �

2 1,1 2 1, 1
, , .k k M

T

� � �
�
��

�
��

… (12)

Finally, taking the collocation points: 
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� � …= 2 1
2

, =1,2, ,2 .1� �
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(13)

From (7), the Bell wavelets in two dimension can be defined as: 

� � �

�

m n m n

n nm

1, 1, 2 , 2

1 1 /2 2 1 /2

1
1 1

1 2
2

( , )

=

2 2 2 1 2k k k k�� � �� � �
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� � � �
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(14)

where m n m n1 1 2 2 1, , , ,k  and k2  have the usual meanings and � � �m n m n1, 1, 2 , 2
( , )  constitutes a basis for 

L2([0,1) [0,1))× . 
So, equation (14) can be expressed by any arbitrary function x L( , ) ([0,1) [0,1))2� � � �  as 

x c
k M k M

( , ) =
1=1

2 1
1

1=0

1 1

2=1

2 2 1

2=0

2 1

1, 1, 2 , 2
� � �
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� � � �
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= ( ) ( ),
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� � � �T

(15)

here, C is the matrix of order 2 21 1
1

2 1
2

k kM M� �
�  composed of Bell wavelet coefficients 
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� � � � � � � �
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Finally, taking collocation point: 
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4. Fractional OMI of Bell Wavelet 

 On [0,1) interval, the BPFs are given by 

b
otherwise.� �

� � �( ) = 1 < ( 1) ,
0

q q� ��
�
�

(18)

where q
N

= 1  and for N  ∈ + , � = 0,1, , 1 N �  . 

The function y L( ) [0,1)2� �  estimated via of BPFs. 

y y b g B GN

N
T

N( ) ( ) = ( ) = ,
=1

1
� � �

�
� �

�

� (19)

where G G G G GN N
T= [ , , ,..., ]0 1 2  and B b b b bN= [ , , ,..., 1].0 1 2 −  Integrating the vector GN ( )θ , we get 

0
( ) ( ),

�
�� G y dy GN N � (20)

so the OMI for BPFs is defined as follow: 

� =
2

1 2 2 2
0 1 2 2

0 0 0 1

q
…
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� � � � �
�
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�
�
�
�

�

�

�
�
�
�

(21)

Then, by using BPFs to describes the OMI of fractional order Hα  as 

I G H GN N
� �� �� �( ) ( ), (22)

where 

H
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� � � �
� � �

� �
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� � � � … �
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where, the ��  ’s in (23) have been defined as: 

� � � ��
� � �= ( 1) 2 ( 1)1 1 1� � � �� � � . (24)
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4.1. OMI of Bell Wavelet

Here, we utilize Block Pulse Functions (BPFs) to construct fractional order integration matrices asso-
ciated with Bell wavelets by performing integration on equation (12) as: 

0
( ) ( ),

�
�� �� �y dy O (25)

where O  represents the OMI for 2 21 1k kM M� ��  order of Bell wavelet. It is worth mentioning that 
BPFs (18) are used to represent the Bell wavelets (12) as 

� � � �( ) = ( ),m nGN (26)

To get the OMI for order α  of Bell wavelet, we define 

I O� �� � � �( ) = ( ),,m n (27)

where the Om n,
α  matrix define the Bell wavelet’s OMI of fractional order, by taking the relationships 

(22), (26) and (27) we get 

I I G I G H GN N N
� � � �� � � � � � � �� � � � � � � �( ) ( ) = ( ) ( )., , ,m n m n m n (28)

Since, from (27) and (28), we obtain: 

O O G H GN Nm n m n m n m n, , , ,( ) = ( ) = ( ),� � �� � � � � � (29)

which yields in the necessary OMI of general order for the Bell wavelets: 

O Hm n m n m n, , ,
1= .� �� ��� ��
� (30)

For instance, at α = 0.6, k M= 2, = 3, the corresponding fractional OMI O6 6
0.6
×  corresponding with 

the Bell wavelets is given by: 

O6 6
0.6 =

0.0892 1.2664 0.3166 0.6498 0.7848 0.2653
0.0059 0.165

�

� �
� 88 0.3166 0.3712 0.5411 0.1895

0.0222 0.7797 0.7927 0.6306 0.955
�

� � 00 0.3368
0 0 0 0.0892 1.2664 0.3166
0 0 0 0.0059 0.1658 0.3166
0 0 0 0.0

�
�

2222 0.7797 0.7927

.

�

�

�

�
�
�
�
�
�
��

�

�

�
�
�
�
�
�
��

(31)

5. Description of Method

This section aims to illustrate how OMI can be applied to construct solutions using Bell wavelets to 
solve FCDEs having initial and boundary conditions
Let us take FCDEs with variable coefficient and 0 < <1, 0 < 1, 0 < <1� � ��  

�
�

�
�
�

�
�
�

�

�

� �
�

�
� �
�

�
� �
�

� �
x r x p x h( , ) ( ) ( , ) ( ) ( , ) = ( , )

2

2 (32)

with initial condition 

x f( ,0) = ( ), 0 < <1,ρ ρ ρ (33)

and boundary conditions 
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x h
x h
(0, ) = ( ),
(1, ) = ( ).

0

1

θ θ
θ θ (34)

To solve equation (32) assume that 

�
� �

�
�

�
2

2
( , ) ( ) ( )

�

�

� �
� �

� �
x G� � (35)

Incorporating an unknown Bell wavelet coefficient G , we utilize the R-L fractional integral of order 
α  to integrate (35) w.r.t θ , then: 

�
�

�
�
�

� � ��
2

2

2

2
=0

( , ) ( , ) ( ) ( )x x G U� �
�

� �
�

� �
�

�� �
(36)

where U U k M k M
� �=

2 1 2 1� � �  Using initial condition (33), enable to put in (36) 

�
�

� � �
2

2
( , ) ( ) ( ) ( )x f GU''� �
�

� � ��� � (37)

By integrating (37) two times w.r.t ρ , we obtain

x x x f f f U G U'( , ) (0, ) ( , ) ( ) (0) (0) ( )
=0

2� � � �
� �
�

� � �
�

�� �
�
�

� � � � � ��� �(( )�� � (38)

Taking ρ =1  in (38) and employing the conditions given in (34), we have 

x t x
x

f f f U G U'(1, ) (0, )
, )

(0) (0) (1) (1) (
=0

2� �
� �

�
� � � � � ���

� �
�

�
�

�� � ))� � (39)

So, it become 

�
�

� �� � � � � � � � �
�x U G U f f f h h'( , ) (1) ( ) (0) (0) (1) ( ) (

=0

2
1 1

� �
�

� �
�

�� � �� �) = ( )R (40)

Substitute (40) in (38), we obtain 

x x R f f f U G U'( , ) (0, ) ( ) ( ) (0) (0) ( ) ( )2� � � � � � � � ��� � � � � � � � � ��
� � (41)

Differentiating equation (41) w.r.t ρ  the following equation obtained, 

�
�

� � � � �x R f f U G U' ' T( , ) ( ) ( ) (0) ( ( )) ( )� �
�

� � � ��� � (42)

Utilizing Caputo fractional derivative with respect to θ  to equation (41), the following equation is 
derived: 

�
�

� � � � �

�

��

�
� �

�

� �
�

� � � � �

�

x U G D R D h

D R U

( , ) ( ) ( ) ( ) ( )

( ) =

2
1

2

� �

�where ((1) ( ) ( )

( ) = (1 ) ( )

1

1
1

� � �
�
�

�
�
�

�
G h

D h h

� �
�

�

� �
�

�

�

�

�
�

�

(43)
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By inserting the equations(37),(42),(43) in (32) and applying the given collocation points (13).
By substituting ≈  with =, we obtain the following system of algebraic equations: 

U G D R D h r R f f

U

' '2
1( ) ( ) ( ) ( ) ( )( ( ) ( ) (0)

( (

� �

�

� � � � � � � �

�

� �� � � � � � �

�

�

))) ( ) ( )( ( ) ( ) ( )) = ( , )T ''G U p f GU h� �� � � � � � �� � �� � � � �
(44)

We determine the unknown Bell coefficient G  in (44) by solving the system using Newton iterative 
approach. Subsequently, by substituting G  into (41), we derive an approximate solution to (32).

6. Numerical Simulation and Error Analysis

Here, we solve and compare four distinct problems to demonstrate the proposed technique’s effective-
ness and precision. The fundamental findings regarding the approximation of Bell polynomials serve 
as the foundation for exploring the convergence of Bell wavelets approximations as:

For any function  ( )λ  ∈ L2[0,1], and let ( ) = ( ), ( ) , ( )0 1� � � �B B B n�� ��  can be expressed as 

� � B( ) ( ) = ( ).
=0

� � �� �n
i

n

ic (45)

Lemma 6.1 provides an outline for proving the convergence of Bell polynomials. 

Lemma 6.1 [27] Consider  ( )λ  ∈L2[0,1], where � �n( )  defined in (45), shows best approximation of the 
real function  ( )λ  by the Bell polynomials. Therefore, ∃ a constant R as 

 ( ) ( )
( 1)!2

.2 2 1� �� �
� �n n
R

n

here R n= ( )[0,1]
1

� ��
�max  . 

Proof. One can see the proof in [27].

Remark 6.2: From Lemma 6.1, if n �� , then 1
( 1)!2

02 1n n�
�

�
, which means  n( ) ( )� �� . 

Theorem 6.3: [26] Suppose the Bell wavelets expansion 
− −

Ψ∑ ∑ ∑
1 ˆ2 1 T

=1 =0 =0
( ) = ( ) = ( )

k M m
mn mn j jm n j

c c Cψ λ ψ λ λ  
of the smooth function  ( )λ , therefore 

→∞
−∑

ˆ

ˆ =0
( ) ( ) = 0,lim

m

i i
m i

cλ ψ λ

where −1ˆ = 2km M . 

Problem 6.4 Consider the following FCDE as 

�
�

�
�
�

�
�
�

�

�

� �
�

�
� �
�

� �
�

� �
x x x h( , ) ( , ) ( , ) = ( , )

2

2 (46)

0 < <1,0 < <1, 0 < 1.� � � �

with conditions as 

x( ,0) = ,2 3� � ��

x x(0, ) = (1, ) = 0,θ θ (47)
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where 

h( , ) = 2
(3 )

1 2 3 6 2
2

2 3 2 2 3� �
�

�
� � � � � �

��

�
�� � � �� � � � �� �

�
(48)

The given problem has an exact solution provided below. 

x( , ) = 1 .2 2 3� � � � ��� � �� � (49)

In Figure 1A, we present a comparison between the solutions obtained using the Bell wavelet 
method and the exact solution for α = 0.5 in two dimensions. The comparison is extended to three 
dimensions in Figures 1B,C, where the results clearly demonstrate the accuracy of the Bell wavelet 
approach. Additionally, Figure 1D graphically illustrates the absolute error, showcasing the method’s 
precision. Furthermore, Table 1 provides a detailed comparison of the absolute error (AE) at different 
α  against existing methods, highlighting the performance of our technique.

Problem 6.5: 
Next, let us take the following TFCDE 

�
�

�
�
�

�
�
�

� �
�

�
�� �

�
�

� �
�

� �
�

� �
x x x( , ) ( , ) ( , ) = 2 2 2,

2

2
2 (50)
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x
(
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 )

=0.5

Present solution

Exact solution

Figure 1: (A) 2D plot, (B,C) 3D Exact and approximate solutions respectively and (D) AE at α  = 0.2  
of Problem 6.4.
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0 < <1, 0 < <1, 0 < 1.� � � �

with conditions as 

x

x x

( ,0) = ,0 < <1,

(0, ) = 2 ( 1)
(2 1)

, (1, ) =1 2 ( 1)

2

2

� � �

�
�
�

� �
���

�
�
�

�
�

�
�

((2 1)
,0 1.2

�
� ��

�
� �

(51)

Exact solution of (50) is 

x t( , ) = 2 ( 1)
(2 1)

2 2� � �
�
�

��
�
�

�
�

(52)

In Figure 2A, we present a comparison between the solutions obtained using the Bell wavelet 
method and the exact solution for α = 0.5 in two dimensions. The comparison is extended to three 
dimensions in Figures 2B,C, the outcomes conclusively demonstrate the precision of the Bell wavelet 
method. Additionally, Figure 2D graphically illustrates the absolute error, showcasing the method’s 
precision. Furthermore, Table 2 provides a detailed comparison of the AE at different α  against exist-
ing methods, highlighting the superior performance of our technique.

Problem 6.6: Consider the following TFCDE (0 < <1α ) 

�
�

�
�
�

�
�
�

�

�

� �
�

�
� �
�

� �
�

� � � �
x x x h( , ) ( , ) ( , ) = ( , ),0 < <1,0 < 1,

2

2  (53)

with conditions given below as: 

x
x x
( ,0) = ,
(0, ) = (1, ) = 0,

3� � �
� �

�
(54)

where 

h( , ) = (1 2 )
(1 )

1 7 3 .3 2 3� �
�
�

� � � � � �� ��
�

�
�

�� � � �� � �� � (55)

Table 1: AE of Problem 6.4 at different values of α  and ρ , with truncated sample sizes: Fibonacci 
wavelet (k M= 2, = 3) and Present method (k M= 2, = 3)

ρ Fibonacci wavelet [30] Present method
 α =0.7  α =0.5  α =0.7  α =0.5 

.1 1.2085e-07 8.1341e-08 6.9595e-10 2.3851e-09

.2 7.6121e-07 1.7563e-07 4.0399e-09 1.3966e-09

.3 1.5390e-07 1.4571e-07 4.1779e-08 1.4507e-08

.4 3.4718e-06 8.6468e-07 9.7434e-08 3.4106e-08

.5 1.9165e-06 5.5723e-07 4.5805e-08 1.6554e-08
,6 1.0258e-07 1.2482e-07 3.0614e-08 1.0851e-08
.7 6.1842e-07 2.2037e-07 2.3966e-08 8.6611e-08
.8 6.5283e-07 2.2150e-07 4.0649e-09 1.5260e-08
.9 9.2498e-07 3.4541e-07 1.7608e-08 6.3425e-09
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Figure 2: (A) 2D plot, (B,C) 3D Exact and approximate solutions respectively and (D) AE at α  = 0.5  
of Problem 6.5.

Table 2: AE of Problem 6.5 at α = 0.5, ρ = 0.5.

ρ Present Haar wavelet [3] B-Spline Sinc [33] Sinc-Legendre [17]
Chebyshev 

[18]
m=16 m=32 m=64 m=20 m=5 m=5 m=15 m=25

.1 2.7574e-10 6.093e-3 1.210e-3 1.369e-09 6.481e-04 6.994e-5 6.462e-6 7.964e-06

.2 1.1523e-10 4.843e-3 1.259e-3 7.591e-10 4.109e-04 1.721e-4 1.578e-5 3.912e-06

.3 1.0499e-10 2.750e-2 1.865e-3 1.184e-09 5.493e-04 2.472e-4 2.272e-5 6.162e-06

.4 4.4687e-09 1.937e-2 7.412e-3 1.068e-09 5.198e-04 2.912e-4 2.674e-5 5.953e-06

.5 1.4132e-09 1.000e-6 1.000e-6 9.819e-10 4.912e-04 3.004e-4 2.759e-5 2.103e-06

.6 1.0483e-09 4.359e-2 7.460e-3 1.039e-09 5.063e-04 2.760e-4 2.534e-5 7.639e-06

.7 1.1720e-09 1.734e-2 1.724e-3 1.031e-09 5.045e-04 2.213e-4 2.035e-5 1.967e-06

.8 2.8697e-09 7.750e-2 4.990-3 1.030e-09 5.040e-04 1.440e-4 1.320e-5 8.103e-06

.9 1.6423e-09 4.443e-2 1.678e-2 1.031e-09 5.037e-04 5.026e-5 4.653e-6 6.019e-06

The given problem has an exact solution provided below as: 

x( , ) = 1 .2 3� � � � ���� � �� � (56)
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In Figure 3A, we illustrate a comparison of the exact solution with the one derived using the Bell 
wavelet method. Figures 3B–D showcase approximate solutions behavior for various values of α . 
Additionally, Figure 3E graphically presents the absolute error. Tables 3, 4, and 5 compare the AE of 
our method with Chebyshev method for α = 0.7, α = 0.9, and α = 0.95, respectively. These compari-
sons clearly demonstrate that the Bell wavelet method yields more accurate and precise results than 
those reported in [23].
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0.1
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x
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Figure 3: (A) 2D plot, (B,C) 3D Exact and approximate solutions respectively, (D) Approximate 
 solution at different α =0.8 and (E) AE at α  = 0.5 of Problem 6.6.
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Table 3: AE of Problem 6.6 at α = 0.7, ρ = 0.1.
ρ Present method Fibonacci method [30] Chebyshev method [18]

k=2, M=3 k=3, M=4 m=6 m=16 m=5 m=6
.1 5.3268e-07 1.0658e-09 1.1756e-05 4.427e-05 3.0250e-03 3.0250e-03
.2 1.0790e-07 2.1588e-09 1.6749e-05 2.3162e-04 5.8161e-03 5.8222e-03
.3 9.0677e-07 1.8142e-09 2.2330e-05 1.1326e-04 8.1562e-03 8.1614e-03
.4 1.9498e-07 3.9011e-08 2.6343e-05 8.7111e-04 9.8378e-03  9.8394e-03
.5 2.3547e-07 4.7112e-08 3.0453e-04 5.0590e-05  1.0675e-02  1.0675e-02
.6 8.3519e-07 1.6710e-08 2.9697e-04 9.8069e-04 1.0492e-02 1.0492e-02
.7 4.1810e-07 8.3652e-09 1.8168e-04 2.9411e-04  9.3664e-03 9.3727e-03
.8 4.9919e-07 9.9884e-09 5.2042e-04 3.7305e-04 7.1335e-03  7.1396e-03
.9 1.3817e-07 2.7651e-08 3.2069e-04 1.2340e-04 3.9448e-03 3.9436e-03

Table 4: AE of Problem 6.6 at α = 0.9, ρ = 0.1.
ρ Present method Fibonacci method [30] Chebyshev method [18]

k=2, M=3 k=3, M=4 m=6 m=16 m=5 m=6
.1 1.5994e-07 2.1334e-08 1.9579e-05 2.3215e-05 2.4568e-03 2.4473e-03
.2 3.2394e-07 4.3208e-08 1.8181e-05 3.6568e-05 4.7198e-03 4.7146e-03
.3 2.7223e-07 3.6311e-08 2.1976e-05 2.0309e-05 6.6174e-03 6.6114e-03
.4 5.8537e-07 7.8078e-08 2.5772e-05 4.6186e-05 7.9816e-03  7.9728e-03
.5 7.0694e-07 9.4292e-08 6.3649e-05 8.7586e-05  8.6666e-03  8.6566e-03
.6 2.5074e-07 3.3445e-08 5.3649e-05 9.2855e-05 8.5616e-03 8.5537e-03
.7 1.2552e-07 1.6742e-08 4.3685e-05 2.9346e-05  7.6045e-03 7.5997e-03
.8 1.4989e-07 1.9994e-08 4.3685e-05 9.9165e-06 5.7951e-03  5.7900e-03
.9 4.1503e-07 5.5373e-08 6.7125e-05 2.4445e-06 3.2082e-03 3.1971e-03

Table 5: AE of Problem 6.6 at α = 0.95, ρ = 0.1.
ρ Present method Fibonacci method [30] Chebyshev method [18]

k=2, M=3 k=3, M=4 m=6 m=16 m=5 m=6
.1 2.6680e-07 3.2029e-09 1.6506e-05 9.9082e-05 2.3392e-03  2.3521e-03
.2 5.4030e-07 6.4860e-09 1.5170e-05 8.4734e-05 4.5017e-03  4.5138e-03
.3 4.5406e-07 5.4507e-08 1.5170e-05 9.9616e-05 6.3151e-03  6.3227e-03
.4 9.7633e-07 1.1720e-08 2.2340e-05 9.5819e-05 7.6190e-03  7.6213e-03
.5 1.1790e-07 1.4154e-08 4.3081e-05 8.4703e-05 8.2740e-03  8.2740e-03
.6 4.1822e-07 5.0205e-08 3.8961e-05 5.4591e-05 8.1741e-03  8.1765e-03
.7 2.0935e-07 2.5132e-08 3.0239e-05 7.3382e-06 7.2598e-03  7.2674e-03
.8 2.5004e-07 3.0018e-08 4.1836e-05 7.0254e-06 5.5306e-03  5.5422e-03
.9 6.9260e-07 8.3164e-08 4.4536e-05 8.3595e-07 03.0577e-03  3.0699e-03
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Problem 6.7 Consider the following α th order (0 < <1α ) TFCDE 

�
�

�
�
� �

�
�

�
�

�

�
� ��

�

�
�� �

�
� �
� �

� � �
x x( , ) ( , ) = 2 1

(3 )
1 , 0 < <1, 0 < 1,

2

2
2

�
(57)

with conditions given below as: 

x x x(0, ) = , (1, ) =1 , ( ,0) = ,2 2 2� � � � � �� (58)

Exact solution of (57) is 

x( , ) = .2 2� � � �� (59)

Figures 4A–C depict the comparison between the Bell wavelet solution and exact solution. The AE 
for α = 0.75 is shown in Figure 4D. Table 6 provides a comparison of the absolute error at α = 0.5 and 
ρ = 0.25 between our approximated solution with BFM method [20], and the Fibonacci wavelet [32]. 
This comparison highlights the enhanced accuracy of our approach.
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Figure 4: (A) 2D plot, (B,C) 3D Exact and approximate solutions respectively and (D) AE at α  = 0.5 
of Problem 6.7.
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7. Conclusion

In this study, we successfully utilized the Bell wavelet collocation method to address TFCDEs. By 
constructing the OMI order using BPFs, we have converted the TFCDE to a system of algebraic 
equations, thereby enhancing convergence speed and reducing computational complexities compared 
to existing methods. Our comparative analysis against Fibonacci wavelet methods [30], BFM [32], 
Chebyshev method [18], Haar wavelet [31], and B-spline method [33] underscores the effectiveness 
and accuracy of proposed methodolgy. Moreover, our method demonstrates versatility in addressing 
both linear and nonlinear problems. The calculation of AEs for varying numbers of collocation points 
further solidifies the reliability of the Bell wavelet method. Overall, our approach stands out for its 
accuracy, flexibility, convenience, and computational efficiency, making it a highly effective solution 
for tackling complex problems in various fields.
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