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Abstract
This study examines the Fekete-Szegö inequality in relation to the classes of holomorphic functions, 
particularly starlike and convex functions of complex order. We obtain significant inequality for star-
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1. Introduction

In recent years, the study of geometric properties of holomorphic functions has gained significant 
attention due to its applications in geometric function theory and univalent function classes. One key 
inequality in this field is the Fekete-Szegö inequality, which provides sharp bounds for coefficients 
in certain classes of analytic functions. This paper focuses on extending these inequalities to more 
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generalized domains using the Hohlov operator, which has shown promise in preserving univalent 
functions across complex order starlike and convex classes. Moreover, we explore the implications of 
these findings on leaf-like domains, a special class of conformal maps with unique geometric prop-
erties. The development of subclasses of analytic functions associated with the Hohlov operator and 
leaf-like domains is an exciting and emerging area of study in complex analysis. The research con-
ducted by Srivastava et al. (2022) [6], Murugusundaramoorthy (2021)[10], Orhan and Cotîrlă (2022) 
[14], Al-Sadi (2024) [3], and Panigrahi et al. (2024) [22] advances the theoretical foundations of these 
subclasses. Several scholars, including Al-Sadi and Srivastava et al., focused on deriving constraints 
for the initial coefficients, which are crucial for understanding the evolution and structure of these 
functions. The Fekete-Szegö functional was the focus of several investigations, including those by 
Srivastava et al. (2022) [6] and Panigrahi et al. (2024) [22], which provided upper estimates and 
inequalities for these specialized subclasses. And the Geometric structures like leaf-shaped domains 
(Panigrahi et al., 2024 [22]) and crescent-shaped areas (Murugusundaramoorthy, 2021 [10]) demon-
strate how these functions can be connected to specific geometric curves and figures, impacting their 
analytical behavior. According to Srivastava et al. and Panigrahi et al., the intersection of the Hohlov 
operator and leaf-like domains presents a viable approach to learn more about starlike functions and 
their geometric characteristics. Our knowledge of univalent and bi-univalent functions, which are 
crucial in complex and geometric function theory, could be substantially enhanced by this research. 
We may extend these conclusions to higher-order coefficients and other functionals by improving 
inequalities associated with the Fekete-Szegö functional for specific subclasses and operators. This 
advancement might result in a more thorough theory of these functions, which would pave the way 
for new uses and advancements in the area.
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Let S  be the subclass of   which consists of schilit functions. The sufficient conditions mentioned 
for a function f ∈  to belong to the classes S* (starlike functions) and Sc  (convex functions) are 
classical results in geometric function theory, and they can be traced back to the foundational work 
of Włodzimierz Żerański, Robertson, and Hummel in the mid-20th century. Alexander [1] introduced 
the necessary and sufficient condition for a function f ∈  to be in S* is that 
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As an generalization of class of starlike and convex functions, Robertson [12] introduced the classes 
of starlike function and convex function of complex orders in 1964. Later, Miller and Mocanu [19] 
introduced such conditions in their studies to generalize the classical results of convex and starlike 
functions. These conditions were developed using differential subordinations, a powerful tool to study 
functional inequalities in geometric function theory.

These classes have been studied extensively and several properties have been established includ-
ing coefficient bounds, Growth and Distortion theorems, Radius of starlikeness and convexity, con-
volution and Hadamard product properties and subordination results. These functions enable us to 
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construct new function class, helps in modelling complex geometric shapes, providing comprehensive 
understanding of geometric properties.

Let v∈C� , a function f ∈  is in the class of starlike functions of complex order v  and denoted by 
S*( )v , [13] if and only if 
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A function f ∈ , is in the class of close-to-convex functions of complex order v  and denoted by ( )v ,  
if and only if 

Re f1 1 ( ( ) 1) > 0, ( ).� � ��

�
�

�

�
� �

v
z z U (4)

Let   denote the class of analytic functions p∈ U  of the form p c
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Hypergeometric functions was first introduced by Gauss in 1886. For the non-negative real values 
� �,  and ς  with � � � � �0, 1, 2, 3,.... by using the

Gaussian Hypergeometric function 2 1( , , ; )T � � � z , Hohlov [24], [23] introduced the familiar 
Convolution operator �� � �, ,  as 
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The Pochhammer symbol (or the shifted factorial)( )λ n  is defined as 
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which was first introduced and widely used by Pochhammer [15] in 1890.
Hohlov operator helps in characterize univalent functions and to construct univalent functions 

with specific properties. In geometric analysis, the Hohlov operator is mostly employed to examine 
the curvature and behavior of geometric structures, particularly in relation to Riemannian geometry. 
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Understanding the Laplace operator and its generalizations or adaptations for higher-dimensional 
geometric contexts is what led to its development. When more geometric or topological information 
about a manifold is required, the Hohlov operator, generalization of traditional differential operators 
like the Laplacian, becomes especially helpful. This involves investigating how curvature affects the 
global properties of the manifold, analyzing spectral qualities, or creating unique solutions to geo-
metric partial differential equations (PDEs). The Hohlov operator is particularly useful when more 
straightforward operators, like as Laplacians or gradients, are unable to offer enough information, 
particularly when dealing with manifolds that have intricate curvature or topology.

The Fekete-Szegö inequality was first proposed by Hungarian Mathematicians Michael Fekete 
and Gaber Szegö in 1933 [11]. Since then, the various authors were investigated and obtained the 
Fekete-Szego inequalities for differrent subclasses [25, 2, 21, 20, 18, 4, 5, 8] and [7]. This inequality 
is a mathematical statement that provides a bound on the coefficients of univalent functions, so that 
its behaviour is understood, also helps in determining the radius of univalence, that is which is the 
largest radius for which a function is univalent in a unit disk.

2. Definitions and Lemma

Let us define the bounded turning function with Hohlov operator as Rℑ , which contains all the func-
tions f ∈  and satisfying 
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Let us define starlike function of complex order with Hohlov operator Sℑ
* ( )v , which maps | |<1U  

conformally onto starlike domain of complex order and satisfying 
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Let us define convex function of complex order with Hohlov operator Scℑ( )v , which maps | |<1U  
conformally onto convex domain of complex order and satisfying 
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Let us define close to convex function with Hohlov operator Kℑ( )v , which maps | |<1U  conformally 
onto closed convex domain of complex order and satisfying 
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Raina and Sokol [17] and Haripriya [16] explored the function l( ) = (1 )3
1
3z z z+ + , which has symme-

try with respect to the real axis. Real part of this function is positive with conditions l l(0) = (0) =1′ , and 
it maps the unit disc onto analytic and univalent region which has the shape of leaf-like domain.This 
leaf-like domain can model complex shapes with smooth boundaries. In general, a "leaf" is a smooth 
submanifold or region of a manifold that resembles "sheets" within a system with layers. Particular 
subsets, or "leaves," inside a manifold are referred to as leaf-like domains when discussing foliations 
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or decompositions of the manifold into simpler structures. In certain geometric contexts, such as the 
study of dynamical systems or the theory of foliations, examining the behavior of the manifold within 
these leaves can provide crucial insights into the general topology and geometry of the space.

The result of following Lemmas are applied in our main theorems.

Lemma 2.1: let p c c c( ) =1 ...1 2
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3. Main Results

Theorem 3.1: If f ∈  is of the form given by (1) belongs S L* ℑ  and δ  is a real number, then 
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Also the LHS of equation (14) we get, 
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Now from (14), (15) and (16) we have, 
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Applying the lemma (2.2),we get that 
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Thus we obtained our required proof.
This result generalizes the classical Fekete-Szegö inequality by considering the Hohlov operator 

and leaf-like domains offering a broader range of application in complex analysis. The Fekete-Szegö 
inequality demonstrates the deep interplay between geometric and analytic properties of holomor-
phic functions, influencing modern mathematical analysis and applications where controlling series 
coefficients is vital. The insights from such inequalities have indirect applications in fields like fluid 
dynamics and signal processing, where analytic functions model waveforms or fluid flows.

Theorem 3.2: If f ∈  is of the form given by (1) belongs to RLℑ  and δ  is a real number, then 
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Proof. If f RL� � , then for the schwarz function s  with s(0) = 0  and | ( )| 1s z ≤
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From equations (15) and (20)
we have, 
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This completes the proof.

Theorem 3.3: If f ∈  is of the form given by (1) belongs to S L* ( )ℑ v and δ  is a real number, then 
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From equations (15), (23) and (22), 
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On simplyfing and by lemma (2.2),we get that, 
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Thus we obtained our required proof.

Theorem 3.5: If f ∈  is of the form given by (1) belongs to S Lc ℑ( )v  and δ  is a real number, then 
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Proof. If f S Lc� �( )v , then for the schwarz function s  with s(0) = 0  and | ( )| 1s z ≤  we have 
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From equations (15), (26) and (27) , we have 
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This completes the proof.

Remark 3.6: Case(1): If p( ) = 1
1

2

2z
z

z

�
�

, then in this case c c c c c c1 3 5 2 4 6= = = ... = 0 = = = ... = 2and .

case(2): If p( ) = 1
1

z
z

z

�
�

, then in this case c c c c1 2 3 4= = = = ... = 2.

On taking account of these above cases we get the results of above theorems.
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4. Special Cases

Remark 4.1: If we take � � �= =1, = 2 then φ2 =
1
2

 and φ3 =
1
3

, so that in theorems (3.1), (3.2), (3.3), 

(3.4), (3.5) we find the corresponding results of Alexander operator ℑ1,1,2 . 

Corollary 4.2: Let � � �= =1, = 2. If f S L� �
* ,then 
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Corollary 4.3: Let � � �= =1, = 2. If f RL� � , then 
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Corollary 4.4: Let � � �= =1, = 2. If f S L� �
* ( )v , then 
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Corollary 4.5: Let � � �= =1, = 2. If f KL� �( )v , then 
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Corollary 4.6: Let � � �= =1, = 2. If f S Lc� �( )v , then 
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Remark 4.7: If we take � � �=1, = 2, = 3 then φ2 =
2
3

 and φ3 =
1
2

, so that in theorems (3.1), (3.2), (3.3), 

(3.4), (3.5) we find the corresponding results of Bernardi- Libera-Livingston operator ℑ1,2,3 . 
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Corollary 4.8: Let � � �=1, = 2, = 3. If f S L� �
* , then 
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Corollary 4.9: Let � � �=1, = 2, = 3. If f RL� � , then 
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Corollary 4.10: Let � � �=1, = 2, = 3. If f S L� �
* ( )v , then 
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Corollary 4.11: Let � � �=1, = 2, = 3. If f KL� �( )v , then 
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Corollary 4.12: Let � � �=1, = 2, = 3. If f S Lc� �( )v , then 
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5. Conclusion

In conclusion, by extending the Fekete-Szegö inequality to a wider class of holomorphic functions 
namely, starlike, bounded turning, and close-to-convex functions of complex order, this work advances 
our knowledge of the inequality. We have developed new inequalities that generalize classical conclu-
sions by taking into account leaf-like domains and the Hohlov operator. Our comprehension of how 
these functions behave in complex analysis and geometric function theory is enhanced by these dis-
coveries. Moreover, our work analyzes particular examples, such the Gaussian Hypergeometric func-
tion, and gives tight limitations on the coefficients, providing useful information for further study. 



Kavitha P et al., Results in Nonlinear Anal. 8 (2025), 172–183 183

This study provides additional avenues for future research by applying the Fekete-Szegö inequality 
to these broader groups of functions. The applications of these findings in other branches of mathe-
matics, such conformal mapping and geometric function theory, may be examined in future studies. 
Furthermore, it may be possible to investigate whether similar disparities apply to even more general-
ized operators or domains in future research, which could increase the study’s reach and significance. 
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