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Abstract
This research investigates F -contractions in 2-metric spaces and proves multiple fixed point theo-
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1. Introduction

Fixed point theory offers powerful tools for solving equations and understanding the behavior of vari-
ous mathematical systems. The application of fixed point theory is extensively recognized as a crucial 
method for solving multiple problems in nonlinear and applied mathematical analysis.

In 1922 [1], Banach first investigate a fixed point theorem in metric space and it is well known 
as Banach Fixed Point Theorem. It provides fundamental tools for understanding when and how 
functions have fixed points. It finds broad application in fields such as mathematics, economics, and 
engineering. After that many researchers of this field have generalized that theorem in various ways 
[28, 29]. After Banach, Kannan [27] generarized that theorem. After Kannan, Chaterjea [25] gener-
alized that fixed point theorem. In 1973, Hardy and Rogers [26] have also generalized the fixed point 
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theorem of Reich. Since then, numerous researchers have utilized various types of metric spaces to 
derive new fixed-point results [21, 22, 31–33].

Gahler [3] introduced the idea of a 2-metric space, which generalizes the concept of a metric space. 
In a 2-metric space, the 2-metric function measures the area of a triangle, whereas the standard 
metric function evaluates the length of a line segment. Notably, a 2-metric space differs topologically 
from a metric space. Several researchers have demonstrated the fixed point theorem within the con-
text of 2-metric spaces [4–7, 10, 24].

Definition 1.1: A 2-m.s is defined by a set Ω and a function ζ : � � �� � � R that adheres to the fol-
lowing conditions for any � � �, , ,h �� : 

•	 � � � �( , , ) = 0, 
•	 Non-negativity: � � � �( , , ) 0�  if � � �, ,  are distinct, 
•	 Symmetry: � � � � � � � � � � � �( , , ) = ( , , ) = ( , , ) = ... , 
•	 Rectangular Inequality: � � � � � � � � � � � � �( , , ) ( , , ) ( , , ) ( , , )� � �h h h . 

2. Main Results

The F - contraction idea was first presented by Wardowski [8], and it generalizes the Banach fixed 
point theorem. Additionally, Wardowski and Dung [9] further extended this notion to an F -weak 
contraction, leading to fixed point results. In 2020, Dinanath Barman [2] demonstrated common fixed 
point theorems on a complete 2-metric space by using the T-Hardy Rogers Type Contraction condition 
and F-Contraction.

Konrawut Khammahawong [12] established fixed point theorems and provided instances for a 
generalized Roger Hardy-type F -contraction in metric-like spaces in 2017. Additionally, applica-
tions involving second-order differential equations and fractional differential equations have been 
demonstrated.

In 2016 [13], Hossein Piri established fixed point theorems concerning generalized F -Suzuki-
contraction mappings within the entirety of b-metric spaces. Building on this topic, Ovidiu Popescu 
further advanced the subject by presenting two fixed-point theorems related to F -contractions within 
complete metric spaces [11]. In 2014, Minak et al. [34] obtained result for generalized F -contractions 
including Ciric type generalized F -contraction and almost F -contraction on complete metric space.

Furthermore, several writers [14–20, 30] used F -contraction mapping in different metric spaces as 
an example of the fixed point theorem in their respective works.

Definition 2.1: [2] Consider a 2-m.s denoted by ( , )� �  and let Γ be a self-mapping within this m.s. We 
define Γ to be an F -contraction if there exists a constant τ > 0  such that for all � � �, , ��: 

� � � � � � � � � � � � �( , , ) > 0 ( ( , , )) ( , , )� � � �� � �F F (1)

where F  satisfies the following properties: 
•	 F  is increasing strictly; 
•	 n n��lim � = 0 iff n nF�� ��lim ( ) =�  for each sequence { }�n R� � ; 
•	 for 0 < <1, ( ) = 0.0k Fk� � ��lim  

Theorem 2.2: Consider ( , )� �  be a complete 2-m.s and let � � �: �  as an F -contraction. Suppose 
there exists a positive constant τ > 0  such that 

� � � � � � � � � � � � �( , , ) > 0 ( ( , , )) ( ( ( , , )))� � � �� � �F F L



Hemavathy K and Thalapathiraj S Results in Nonlinear Anal. 8 (2024), 1–12� 3

where,

L( ( , , )) = ( , , ), ( , , ), ( , , ), ( , , ) ( ,
� � � � � � � � � � � � � � � �

� � � � � �max � �
� � ��� �, )

2
�
�
�

�
�
�

for all � � �, , ��. 
Then Γ possesses a unique fixed point �* ��  and the sequence { }(= { })� �n

n�  converges to ϕ* for 
each � �� .

Proof. If there exists an n ≥1 such that

� � � �( , , ) = 0n n�  
Thus, ϕn  represents a fixed point of Γ. So, we can assume

� � � � � � � �( , , ) = ( , , ) > 0 11� � �n n n n for all n� � .
To begin, we aim to prove that,

n n n

n n n nF F
��

� �� �
lim � � � �

� � � � � � � � �

( , , ) = 0
( ( , , )) ( ( ( , , )))1 1

�

� � L
(2)

where 

L( ( , , )) =
( , , ), ( , , ), ( , ,

1

1 1 1
� � � �

� � � � � � � � � � � �

n n

n n n n n n
max�

� � �� � )),
( , , ) ( , , )

2
= { ( , , )

1 1

1

� � � � � � � �

� � � �

n n n n

n nmax

� �

�

�

�
�
�

��

�
�
�

��
� �

,, ( , , )}.� � � �n n�

If L( ( , , )) = ( , , )1� � � � � � � �n n n n� � , then the inequality (2) implies that

� � � � � � � � �

� � � � � �

� �

�
�

�

F F
F F

n n n n

n n n

( ( , , )) ( ( , , ))
( ( , , )) ( (

1

1

� � �

� � ,, , )) .�� � �n �

However, this contradict τ > 0 . Therefore, we have

L( , , ) = ( , , )1 1� � � � � � �n n n n� �

and the inequality (2) yields

F Fn n n n( ( , , )) ( ( , , ))1 1� � � � � � � � �� �� �� �

continuing this process, we get 

F F
F

n n n n

n n

( ( , , )) ( ( , , ))
( ( , , )) 2 ..

1 1

2 1

� � � � � � � � �

� � � � �

� �� �

� �

� �

� � ..
( ( , , )) .1� �F n� � � � �

Thus, 

n n nF�� � ��lim ( ( , , )) =1� � � �� �

This, along with F ∈  and Lemma 3.2 in [23], gives 

n
n n

��
lim� � � �( , , ) = 0� (3)
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We’ll prove that the sequence { }ϕn  satisfies the Cauchy sequence. If this is not the case, then ∃ ε > 0 
and the sequence { ( )}α n  and { ( )}β n  of   such that for all � �( ) > ( ) >n n n , 

� � � � � � � � � �

� � �
� � � �

�

( , , ) , ( , , ) < 1
( ,

( ) ( ) ( ) 1 ( )

( )

n n n n

n

for all n� �

�
�

�� �

� � � � � � � � � �
�

� � � � � �

( )

( ) ( ) ( ) 1 ( ) ( ) 1 (

, )
( , , ) ( , , ) (

n

n n n n n n� � �� � )) 1 ( )

( ) 1 ( ) 1

, , )
= ( , , )

�

� � �

� �

� � � � �
�

� �

n

n n�

(4)

Now, combining this with equation (4), we have

n
n n

��
lim� � � � �� �( , , ) =( ) ( ) (5)

However, according to equation (4), there exists n0  (n n≤ 0  )such that 

� � � �
�

� � � �
�

� � � �( , , ) <
4

( , , ) <
4( ) ( ) ( ) ( )n n n nand� � (6)

Next, to prove that, 

� � � � � � � �� � � �( , , ) = ( , , ) > 0( ) ( ) ( ) 1 ( ) 1n n n n� � (7)

for all n n≥ 0 . If not, there exists m n( )0≥  so that 

� � � �� �( , , ) = 0( ) 1 ( ) 1m m� � (8)

Equation (4), (5), and (8) imply that 

� � � � �

� � � � � � �
� �

� � � � �

�

� �� �

( , , )
( , , ) ( , ,

( ) ( )

( ) ( ) ( ) 1 ( ) ( ) 1

m m

n n m n m �� � � � �

� � �
� �) ( , , )

4 4
=
2

( ) 1 ( )�

� �

�m m

However, this leads to a contradiction, confirming the validity of inequality (7). Consequently, 
based on (7) and the theorem’s assumption, it can be deduced that for all n n≥ 0 , 

� � � � � � � �� � � �� �F Fn n n n( ( , , )) ( ( , , ))( ) ( ) ( ) ( )� � L (9)

where 

L( , , ) =
( , , ), ( , , ), (

( ) ( )

( ) ( ) ( ) ( )

� � �
� � � � � � � � � �

� �

� � � �

n n

n n n n

max
� �� �

� � � �

� �

� � � � � � �
( ) ( )

( ) ( ) ( ) ( )

, , ),
( , , ) ( , , )

2

n n

n n n n

�

� ��

�

�
�

�
�

�

f ��
�

�
�

=
( , , ), ( , , ), ( ,( ) ( ) ( ) ( ) ( ) (

max
n n n n n� � � � � � � � � � �� � � � � �� � � � nn

n n n n

)

( ) ( ) ( ) ( )

, ),
( , , ) ( , , )

2

�

� � � � � � � �� � � �� ��

�

�
�

�
�

�

�
�

�
�

(10)

Substituting (10) into (9) and letting n �� , we have 

� � � � � � � � �� � � �� �
�� ��n

n n
n

n nF Flim lim( ( , , )) ( ( , , ))( ) ( ) ( ) ( )� � � �

This is a contraction. Hence the sequence { }ϕn  is a Cauchy sequence.
The completeness of Ω ensure that there exist �* ��  such that { }ϕn  converges to ϕ* .
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We demonstrate that ϕ* is the fixed point of Γ. If not, we can assume that
� � � �( , , ) > 0* *� . By applying the hypothesis of the theorem, we acquire 

� � � � � � � �� �F Fn n( ( , , )) ( ( , , ))* *� � L (11)

where 

L( , , ) =
( , , ), ( , , ), ( , , ),
( , ,

*

* * *

*� � �
� � � � � � � � � � � �

� � �n

n n n

n
max

� �

� �� � � � �) ( , , )
2

*�

�

�
�

�
�

�

�
�

�
�

� n

Letting n �� , then L( , , ) ( , , )* * *� � � � � � �n � � . Hence, from (11), 

� � � � � � � � �� �F F( ( , , )) ( ( , , ))* * * *� �

This represents a contraction for τ > 0 . Thus ϕ* is a fixed point of Γ.
Next, we aim to demonstrate the uniqueness of the fixed point of Γ.
Let ϕ ϕ1

*
2
*,  are fixed points of Γ. Suppose � �1

*
2
*�  then � �� �1

*
2
*� .

� � � � � � � �

� � �
� � �

� �F F

max

( ( , , )) ( ( , , ))

( , , ) =
( ,

1
*

2
*

1
*

2
*

1
*

2
*

1
*

� � L

L
22
*

1
*

1
*

2
*

2
*

1
*

2
*

2
*

1

, ), ( , , ), ( , , ),
( , , ) ( ,

� � � � � � � � �

� � � � � � �

� �

� �� ** , )
2

�

�

�
�

�
�

�

�
�

�
�

(12)

Letting n �� , 
then L� � � � � � � �( , , )) ( , , )1

*
2
*

1
*

2
*� .

Hence from equation (12), 

� � � � � � � � �� �F F( ( , , )) ( ( , , ))1
*

2
*

1
*

2
*

This leads to a contradiction, thus establishing the uniqueness of the fixed point.

Example 2.3: Let Ω = [0,1)  and ζ : � � �� � � [0,1)  be given � � � � � � � � � �( , , ) = {| |,| |,| |}min � � �  
then ( , )� �  is a 2-m.s. Let Γ defined by �� �=

2
 for all � ��. Then for all � � �, , [0,1)�  where 

� � � � � � � � � � � � � � �< < , ( , , ) = {| |,| |,| |} =| |min � � � � .
Then 

| || | | || |� � � � � � � �� � � � � �and

implies, | || 2 | | || 2 |� � � � � � � �� � � � � �and  since � � � �< < < 2

1
2
| | 1

2
| 2 | 1

2
| | 1

2
| 2 |� � � � � � � �� � � � � �and

Now,

� � � � �
� �

�
� � �

� �
�

�( , , ) =
2
,
2
, =

2 2
,
2
, ,

2
= 1

2
|� � �

�
�

�

�
� � �

�
�
�

�
�
�

min min �� � ��
�
�

�
�
�

� � � � �|,1
2
| 2 |,1

2
| 2 |

Therefore,

F F( ( , , )) = 1
2
| | = 1

2
| |.� � � � � � � �� � ��

�
�

�

�
� �
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Then there exists � � �= 1
2
| |> 0�  such that

� � � � � � � � � � �� � �F F F( ( , , )) | |= ( ( , , )).� �  

Theorem 2.4: Let Γ be a self-mapping of a 2-m.s ( , )� �  and F :  � �  be an increasing function. If 
there exists a value τ > 0  such that for all � � �, , ��, the following condition is satisfied: 

� � � � � � � � � � � �( , , ) 0 ( ( , , )) ( ( , , ))� � � �� � � �F F I

where 

I( , , ) = ( , , ) ( , , ) ( , , ) 1
2
[ ( , , ) ( ,1� � � � � � � � � � � � � � � � � � � � � �� � � �� � � ��� �

� � � � � � � � � � � � � � � � � �

, )]

[ ( , , ) ( , , )] [ ( , , ) ( , ,2 3

�

��
�

��

� � � �� � � � ))]

then ρ ρ ρ1 2 3, ,  be non-negative real numbers satisfying 2 <11 2 3� � �� �  and � � �1 2 3, , 0� . Under these 
conditions, Γ has an unique fixed point of �* �� , and for any � �� , the sequence { }�n

n� �  converges 
to ϕ* . 

Proof. Assume �0 �� and consider { }�n n N� �� by 

� � � � � � � �1 0 2 1
2
0 1 0= , = = ,..., = = .� � � � �n n

n for all n N� � (13)

If there is an element � � �N 0 such that � � � �( , , = 0)n n�  then ϕn  is a fixed point of Γ.
Let’s assume that 

0 < ( , , ) = ( ) .1,� � � � � � �n n n n
for all n N� � �� � (14)

Let �n n n= ( , , )1� � � ��  

� � � � � � � � � � � � � �� � � �� �F F F Fn n n n n( ) = ( ( , , )) = ( ( , , )) ( ( , , ))1 1� � � I

where 

� � �

�

� � � �( , , ) = [ ( , , ) ( , , ) ( , , )
1

1 1 1 1 1� � � � � � � � � � � � � � � �n n n n n n n n� �

22
[ ( , , ) ( , , )]]

[ ( , , ) ( ,
1 1

2 1 1

� � � � � � � �

� � � � � � �

n n n n

n n n

� �

� �

�

� �

� �

� ��� �

� � � � � � � � �

� � � � � �

n

n n n n

n n

, )]
[ ( , , ) ( , , )]

= [ ( , , ) (
3 1 1

1 1

� �

�
� �

�

� �

�� � � � � � �

� � � � � � � �

n n n n

n n n n

� �

� � �

�

� �

1 1

1 1 2 1

, , ) ( , , )
1
2
[ ( , , )]] [ ( , ,�� � � � �

� � � � �

) ( , , )]

[ ( , , )]

= 5
2

1

3 1 1

1 2 3 1

�

�

� ��

��
�

��
�

�

� �

�

n n

n n

n   �
33
2

( ) 5
2

3
2

1 2 3

1 2 3 1 1 2

  

     

� ��

��
�

��

� � � ��

��
�

��
� � ��

�

� �

n

n nF F� 33

1 2 3 1 1 2 3( ) 5
2

3
2

�

��
�

��
�

�
�

�

�
�

� � ��

��
�

��
� � ��

��
�

�

�

� �

n

n nF F      
���

�

�
�

�

�
� ��n �

(15)
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1 3
2

5
2

5
2

2

1 3

1 2 3 1 2 3 1

1 3

� � ��

��
�

��
� � ��

��
�

��

�
� � �

�

�     

  

� �

�

n n

n

22 1 2 3

1

1

  � �

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�

� �

n

n n

Thus, the sequence { }�n n N�  is strictly decreasing, which means that n n��lim � �=  exists.
Assume Π > 0.
Since F  is increasing 

f n
F

� �
�

�
� �lim ( ) = ( 0)�

In inequality (15), taking the limit n tends to ∞ , 

F F( 0) ( 0)� �� � � ��

which is a contradiction. Therefore, it must be that 

n
n

���
lim� = 0 (16)

To establish the sequence { }�n n�  is a Cauchy sequence, Consider the sequences { ( )}� n n�  and 
{ ( )}� n n� where � �( ) > ( ) >n n n  for every n∈ , and let ε > 0. 

� � � � � � � � � �� � � �( , , ) , ( , , ) .( ) ( ) ( ) 1 ( )n n n n for all n� � ��  (17)

By rectangular inequality 

� � � � � � � � � � � �� � � � � � �� � �� �( , , ) ( , , ) ( , ,( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) 1n n n n n n n �� � � � � � � � � �� � � �) ( , , ) = ( , , )( ) 1 ( ) ( ) 1 ( ) 1� �� � �n n n n�

Relation (16) and the preceding inequality imply that 

n
n n

��
lim� � � � �� �( , , ) =( ) ( ) (18)

since � � � �� �( , ) > > 0,( ) ( )n n  by property of F  we get 

� � � � � � � � � �

�
� � � �

�

� �

�
� �

�

F F
F

n n n n

n

( , , ) = ( , , )
( ( ,

( ) ( ) ( ) 1 ( ) 1

( ) 1

� �

I �� �� ( ) 1 , ))n �

I( , , )
= [ ( , , ) ( ,

( ) 1 ( ) 1

1 ( ) 1 ( ) 1 ( ) 1

� � �

� � � � � � � �
� �

� � � �

n n

n n n

� �

� � �� � (( ) 1 ( ) 1 ( ) 1

( ) 1 ( ) 1

, ) ( , , )
1
2
[ ( , , )

n n n

n n

� � �

� �

�

� �

� � � � �

� � � � �

� �

� �

�

� (( , , )]]

[ ( , , ) (
( ) 1 ( ) 1

2 ( ) 1 ( ) 1 ( ) 1

� � �

� � � � � � �

� �

� � �

n n

n n n

� �

� � �� �

�

� ,, , )]
[ ( , , ) ( ,

( ) 1

3 ( ) 1 ( ) 1 ( ) 1 ( ) 1

�

� �

� �

� � � � � � � �
�

� � � �

n

n n n n

�

� � � �� � ,, )]
= [2 ( , , ) ( , , )1 ( ) 1 ( ) ( ) ( ) ( ) 1 ( )

�

� � � � � � � � �� � � � � �� n n n n n n� �� �

��� � � �� � � � � �( , , ) 2 1
2
[( ) 1 ( ) 1 ( ) ( ) 1 ( ) 1 ( ) 1n n n n n n� � � � �� � �� � �
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� � �� �2 ( , , ) ( , , ) ( , ,( ) ( ) ( ) ( ) 1 ( ) ( ) 1 ( )� � � � � � � � � � �� � � � � � �n n n n n n n ��

� � � � � �
�

� � � � �

( )

2 ( ) 1 ( ) 1 3 ( ) 1 ( ) ( )

)]]
[ ] [ 2 ( , , )

n

n n n n n� � � �� � �� � �

�� � �� � ��� � � � � � �� � � � � � � �( ) 1 ( ) 1 ( ) ( ) ( ) ( ) 1 ( )( , , ) ( , , )]n n n n n n n

� � � � � � � �

� �

� � �� � � ��

�
�

�

�
�

�

�
�

� � �


F Fn n n( ( , , )) 5
2

5
2

( ) ( ) 1 2 3 ( ) 1

1 2

�

�� � � � � � �

� � �

� � �3 ( ) 1 1 3 ( ) ( )

1 3

(2 2 ) ( , , )

3
2

(

�

�
�

�

�
� � �

� ��

�
�

�

�
�


� n n n

�� � � � � � � � � � �� � � � �( ) ( ) 1 ( ) 1 3 ( ) ( ) 1 ( ) 1, , ) ( ) ( , , )n beta n n n n n
 
� � � (( , , )( ) ( ) 1 ( ) 1f n n n� � �� �
 

�



	

Limit as n �� , 

� � �� � � �F F( 0) ( 0)  
This is a contradiction. Hence the sequence { }�n n�  is a Cauchy sequence.Since ( , )� �  is a complete 

m.s then the sequence { }ϕn  for n∈  converges to a certain limit ϕ* within Ω. If � �{ ( )}� n n N  of natural 
number such that

� � �� �( ) 1 ( )
*= =n n� � �  then n n�� �lim � �� ( ) 1

*= . Thus �� �* *= . Assume that �� �* *� , we obtained 

� � � � � � � �� �F Fn n( ( , , )) ( ( , , ))* *� � I

where 

I( , , ) = [ ( , , ) ( , , ) ( , , )
1
2

( ,

*
1

* * *� � � � � � � � � � � � � � � �

� � �

n n n n

n

� �

�

� �

� ** *
2

* *

3

, ) ( , , ) [ ( , , ) ( , , )]

[ ( ,

� � � � � � � � � � � � � �

� � �

��� �� � �

�

� � �n n n

n �� �� � � � � �* *, ) ( , , )]� n

� � � � � � � � � � � � � � � � � �� � � ��F Fn n n n( ( , , )) [ [ ( , , ) ( , , ) ( , , )*
1

*
1

* *� � �

�� ��� ��
�

��

� �

�

�

1
2

( , , ) ( , , )

[ ( , , ) ( ,

* *
1

2 1
*

� � � � � � � �

� � � � � � �

n n

n n

�

��� �
� � � � � � � � �

*

3
* *

1

, )]
[ ( , , ) ( , , )]]� � �n n�

taking n ��  we get 

� � � � � � � � � � � � � �
� � � � � �

( , , ) ( , , ) ( , , )
( ) ( , , )

* *
1

* *
2

* *

1 2
* *

� � �
�

� �
� �
�� � � � �( , , )* *�

which is contraction and therefore, � �* *= � . Let ϕ*  and π *  be two distinct fixed points of Γ in Ω. Then 
� � � � � � � �( , , ) = ( , , ) > 0,* * * *� �  we have 

� � � � � � � � � � � � �� � �F F F( ( , , )) = ( ( , , )) ( ( , , ))* * * * * *� � I
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where, 

� � �

�

( , , ) = [ ( , , ) ( , , ) ( , , )
1
2

( ,

* *
1

* * * * * *

*

� � � � � � � � � � � � � � � �

� � �

� �

� ** * *
2

* * * *

3

, ) ( , , ) [ ( , , ) ( , , )]

[ (

� � � � � � � � � � � � �

� �

��� ��
�

��
� �

�

� � �f

�� � � � � � �

� � � � � � � � � �

�

* * * *

1
* *

3
* *

, , ) ( , , )]
= [2 ( , , )] [2 ( , , )]

(

� ��

�

I ** *
1 2

* * * *

1 2

, , ) = (2 2 ) ( , , ) ( ( , , ))
((2 2 ) (

� � � � � � � � � � � � �

� � � �

� �

� �

F
F ** * * *, , )) ( , , )� � � � � ��

Indeed, this leads to a contradiction, thus proving that the fixed point is unique.

3. Applications

Fixed point theory is a notable approach for addressing integral equations. It is frequently utilized 
in complex-valued b-metric spaces to identify unique common solutions for systems of integral equa-
tions. Throughout the paper, we denote the following: 

•	 We write Ω as a 2-m.s. 
•	 Θ : is defined as the set of functions ϑ  where each � :  � ��  is Lebesgue integrable , summable 

on each a compact subset of + , satisfying the following conditions: 
1.	

0
( ) > 0

�
�� j j  for each ε  and 

2.	
0 0 0

( ) ( ) ( )
a b a b

j j j j j j
�

� � �� �� � �    

Theorem 3.1: Let ( , )� �  be a complete 2-m.s and � � �: �  be a self mappings satisfying the relation

0

( ( , , ))

0

( ( , , ))
( ) ( )

� � � � � � � � �
� �

�

� ��
F F

j j j j
� �

 
L

where � ��  and 

L( , , ) = ( , , ), ( , , ), ( , , ), ( , , ) ( , ,
� � � � � � � � � � � � � � �

� � � � � � �max � �
� �� ��)

2
�
�
�

�
�
�

for all � � �, , ��, then Γ have unique fixed point in Ω. 

Proof. Let ϕn  be a sequence in Ω such that � �n n�1 = �  for n� � 0 where �0 �� is an initial 
approximation.

If � � � �n n n n� �1 = =�  then ϕn  is a fixed point of Γ and this complete the proof.
Assume � �n n� �1 First to prove � � � �( , , ) = 01n n�

0

( ( 1 , , ))

0

( ( , 1 , ))

0

(
( ) = ( )

� � � � � � � � � �
� �

� � � �� � �
F n n F n n F

j j j j 
� � L(( ( , 1 , ))) ( )

� � � �
�n n j j�� 

where 

L( ( , , )) = { ( , , ), ( , , ), ( , ,1 1 1 1� � � � � � � � � � � � � � �n n n n n n n nmax� � � �� � ��

� � � � � � � �

� � � � � � �

),
( , , ) ( , , )

2
}

= ( , , ), ( ,

1 1

1

n n n n

n n n nmax

� �� �

� �

�

11, )�� �
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If L( ( , , )) = ( , , )1 1� � � � � � � �n n n n� �  

0

( ( , 1 , ))

0

( ( , 1 , ))( ) ( )

( ( ,

� � � � � � � � �
� �

� � �

� � �� ��
�

F n n F n n

n

j j j j

F

 

�� � � � � �

� � � � � � � � �
n n n

n n n n

F
F F

� �

� �

�

� �
1 1

1 1

, )) ( ( , , ))
( ( , , )) ( ( , , ))

�� � � � � � � � �( , , ) ( , , ))1 1n n n n� �� �

which is contradiction, since τ > 0.
Therefore L( ( , , )) = ( , , )1 1� � � � � � � �n n n n� �  

F Fn n n n

n n n n

( ( , , )) ( ( , , ))
( , , ) ( , , )

1 1

1 1

� � � � � � � �

� � � � � � � �
� �

� �

�

�

Therefore, � � �( , )1n n�  is a monotonically decreasing sequence of real numbers that is bounded 
below, and consequently, it converges. since, 

� � � � � � � � � � � � � �� � �� � �F Fn n n n n n( ( , , )) = ( , , ) ( ( , , ))1 1 1� � L

we have, 

0

( ( , 1 , ))

0

( ( , 1 , ))

0

( (

( ) ( )
F n n F n n

F n

j j j j
� � � � � � � � �

� �

� �� � �

�

� ��
�

 

11, 2 , )) 2

0

( ( 1 , 0 , ))

1

( )

( )

( ( ,

� � �

� � � � �

�

�

� � �

n

F n

n n

j j

j j

F

� �

�

�

�

��







,, )) ( ( , , ))1 0� � � � � �� �F n

Taking limit as n ��  we obtain from the above that

n n n n n nF�� � �� ����lim lim( ( , , )) = ( , , ) = 0.1 1� � � � � � � �

since ( , )� �  be complete 2-m.s. we have n m n m, , > .∈

n m

F n m

n m

F n mj j
, 0

( ( , , ))

, 0

( ( 1 , 1 , ))( ) =
�� ��

� ��lim lim
� � � � � � � �

� 
� �

��

��

�

��

� � �

��

�

�

�
� � � � �

� �

( )

( )
, 0

( 1 , 1 , )

, 0

(

j j

j j
n m

n m

n m

n m



lim

lim



�� � �

�� �� �

�
�

1, 0 , ) ( 1)

, ,

( )

( ( , , )) (

� � �
�

� � � � � �

m

n m n m n m n

j j

F



lim lim mm n mm� � � ��1 0, , ) ( 1) = ( , , ) = 0� � � � � � �

Thus, ϕn  is a Cauchy sequence. Given that ( , )� �  is a complete m.s, there exists an � ��  such that

n n

n

F n

n

F nj j

�

� ��

��
lim

lim lim

� � � �

�
� � � � � �

( , , ) = 0

( ) =
0

( ( , , ))

0

( (� �
 11, , ))

0

( ( 1 , , ))

0

(
( ) ( )

�� � � � � � � �
� �� �� �

��

� �

��
j j j j

n

F n

n

F
 lim lim

(( 1, , ))

1

( )

( ( , , )) ( ( , , )

� � �
�

� � � � � � � �

n

n
n

n
n

j j

F F

�

�� ��
�

�
�



lim lim� ))

( , , ) ( , , ) = 0

( , , ) = 0(
1

n
n

n
n

n
n i

� ��
�

��

� �lim lim

lim

� � � � � � � �

� � � �

�

� .. )., = =e
n

n�� � �
��
lim



Hemavathy K and Thalapathiraj S Results in Nonlinear Anal. 8 (2024), 1–12� 11

Thus ϕ  is a fixed point of { } 1�n n�
�

Suppose � ��  is another fixed point.
Then

0

( ( , , ))

0

( ( , , ))

0

( ( , , ))
( ) ( ) =

F F F
j j j j

� � � � � � � � � � � � � �
� �� ��

� �
 

� �

�� ��� �
� � � �

( ) ( )
0

( ( , , ))
j j j j

F
 

a contradiction.
Therefore, � �= .
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