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Abstract
We consider the initial boundary value problem for a system of strongly damped wave equations with 
homogeneous Dirichlet boundary conditions and a nonlinear source term. By applying a modification 
of the concavity method, we demonstrate that the solutions blow up for p < 3 with arbitrary positive 
initial data. Furthermore, we show that the global solvability of the problem for p ≥ 3. 
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1. Introduction

In this note, we consider the initial boundary value problem for the following system 

u u a u m u k u u v u x t Ttt t
p� � � � ���� � �1

2
1
2 1 2| | = , , 0 < < , (1)

v v a v m v k v v u v x t Ttt t
p� � � � ���� � �2

2
2
2 1 2| | = , , 0 < < , (2)

under the following initial and boundary conditions 

u x u x u x u x v x v x v x v xt t( ,0) = ( ), ( ,0) = ( ), ( ,0) = ( ), ( ,0) = ( ),0 1 0 1 (3)
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u x t v x t for x t in T( , ) = ( , ) = 0, ( , ) [0, ),� �� (4)

where α > 0 , the positive numbers m1 and m2  represent the masses of the scalar fields u  and v , 
respectively. The functions u v u0 0 1, ,  and v1  are given, Ω is an open bounded connected domain in n  
with a Lipschitz boundary. We also assume that 

1 <
2
, 3

>1, 2.

p n
n

for n

p for n

�
�

�

�

�
�
�

��

Our goal is to investigate the existence of blow-up solutions for the problem (1)-(4). The research 
on global nonexistence or blow-up solutions is a longstanding topic, extensively explored by numerous 
researchers in the context of wave equations. Among them, we refer to [4, 10, 12, 15, 16, 19, 20, 26, 
28, 34].

The first result on the global nonexistence of the solutions for the strongly damped nonlinear 
abstract wave equation 

Pu Au Au G utt t� �� = ( ),

in a Hilbert space H  is established by Levine in [20]. Here both P and A  are positive self-adjoint 
operators in a Hilbert space,and G u( ) is a nonlinear operator that satisfies the condition 

( , ( )) 2(2 1) ( ),1u G u H u� �� (5)

where α1 > 0 and H u( ) is the Fretchèt anti-derivative of G  and (.,.) denotes the Euclidean inner prod-
uct. The main result of blow up solution is obtained here assuming the initial energy of the system is 
non-positive.

It is obvious that the vector field F u v v u k u u u v k v vp p( , ) = ( | | , | | )2 1 2 1− −− −  of the system (1)-(2) does 
not satisfy this condition (5).

In their work, Bilgin and Kalantarov [3] studied the problem of nonexistence of global solutions of 
a Cauchy problem for the following nonlinear abstract equation 

Av Bv Cv G vtt t+ + = ( ), (6)

under the initial condition 

v v v vt(0) = , (0) = .0 1 (7)

where A and B are densely defined self-adjoint positive definite operators in a Hilbert space, and C is 
a selfadjoint densely defined non-negative operator such that 

D B D C D A( ) ( ) ( ),⊆ ⊆

and the nonlinear operator G v( ) meets the condition 

( ( , ),( , )) 2(2 1) ( , ) , > 0, 0.1 0 1 0G u v u v H u v D D� � � � �� �

Here the authors showed that there is a class of initial data with arbitrary large initial energy for 
which the solutions of the Cauchy problem (6) blow up in a finite time. M.O. Korpusov in [15], exam-
ined homogeneous Dirichlet problem for the nonlinear system of equations of the Klein-Gordon-Fock 
type 

u u a u m u v u u
v v b u m v u v v
tt t

tt t

� � �

� � �
�

�

�

�

2
1
2 2

2
2
2 2

= , | = 0,
= , | = 0,

�

�
�

�

uu x u x u x u x v x v x v x v xt t( ,0) = ( ), ( ,0) = ( ), ( ,0) = ( ), ( ,0) = ( ),0 1 0 1
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where � � 0, , , 1a b m  and m2  are positive numbers and the datum are given functions u u v v0 1 0 1, , , and  
and Ω is a subset in 3  with the regular boundary � �� belongs to for2, (0,1]� � . Using the Faedo-
Galerkin approximation he proved the existence-uniqueness of the local weak solutions and the exis-
tence of blow-up solutions by using a modification of Levine’s concavity method developed in [17].

Recently Y. Ye and L. Li, using the potential well method studied the existence of global solutions 
and the existence of blow-up solutions for a class of strongly damped wave equations in the system 

u u u u g u v x t
v v v v g
tt t t

tt t t

� � � � �

� � �

�� � �

� �

� �

� �
1 1 1

2 2 2

= ( , ), ( , ) ,
= (



uu v x t, ), ( , ) ,� � �� 

under the initial boundary value conditions 

u x u x u x u x v x v x v x v x x in( ,0) = ( ), ( ,0) = ( ), ( ,0) = ( ), ( ,0) = ( ),0 1 0 1� � �

uu x t v x t for x t in( , ) = ( , ) = 0, ( , ) .� � �� 

Although the system worked by Y. Ye and L. Li reminiscents our system is different from theirs 
because it includes a nonlinear damping term | | 1u up−  on the left-hand side while their damping 
terms are ut  and ��ut .

2. Preliminaries

Definition 2.1: [35] Let � � n be an open connected domain and q > 0  be a real number. Lq ( )Ω  
denotes the class of all measurable functions h defined on Ω with 

�� �| ( )| <h x dxq

The functional . q  defined by 

h h x dxq
q q= | ( )|

1

��� �
is a norm on Lq ( )Ω  provided 1 <� �q . 

Definition 2.2: [35] Let Y  be a Banach Space and 1 � � �q  the space L T Yq (0, ; )  denotes the Banach 
space of vectors of Y  valued measurable functions f T Y:]0, [→  such that  f t L TY

q( ) (0, )∈  with 

 

 



f f t dt for q

esssup f t
Lq T Y

T
Y
q q

T

(0, ; ) 0

1

[0, ]

= ( ) 1 < ,

(
����

�
�
� � �

)) = .Y for q �

�

�
��

�
�
�

Lemma 2.3: [35] (Hölder’s Inequality)
Let 1 < <� � and β  denote the conjugate exponent defined by 

�
�

� � �
=

1
1 1 =1,

�
�that is

which also satisfies 1 < <� � . If g L� � ( )�  and h L� � ( )� , then gh L� 1( ),�  and 

�� �| ( ) ( )| .g x h x dx g h
� �
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Lemma 2.4: [36] (Young’s Inequality)

If 1 < , < , 1 1 =1p q
p q

� �  and a b a b then ab a
p

b
q

p q
, > 0, , , .� � �

Now we borrow the Korpusov theorem [15]:

Theorem 2.5: Assume that a functional Ψ( )t  satisfies the following conditions: 

�� � � � ��� � � � � � � � �� � � � � �1
2

1 1 1 1 10, >1, 0, 0, (8)

where � � �( ) ([0, ]) , ( ) 0 , (0) > 02t C T t� � .
If 

�
�

� �(0) >
1

(0),1

1

�
�

(9)

� �
�

�

�
�

�

�
� �

� � �(0)
1

(0) > 2
2 1

(0),1

1

2
1

1

�
�

�
�

(10)

�( ) 0t � , and Ψ(0) > 0 , then the time T > 0  can not be arbitrarily large the inequality 

T T T A� �
� �* * 1 1 1(0)where �
�

where T *  is the maximal existence time interval for Ψ( )t  and 

A2
1

2 2 1 1

1

2 1

1
= ( 1) (0) ( (0)

1
(0)) 2

2 1
(0) .�

�
�

�
�

�
� � �

�
�

�
�

�
�

�

�
�

�
� � � � (11)

such that t T t� ��* ( ) =lim sup� .

Definition 2.6: Assume that u v0 0,  belong to H0
1( )Ω  and u v1 1,  belong to L2( )Ω . The functions u x t( , )  

and v x t( , )  satisfying the conditions,  

 1. u v L T H H, (0, ; ( ) ( ))0
1

0
1� �� � � ,

 2. � �� ��u v L T L L, (0, ; ( ) ( ))2 2� � ,
 3. �� ��� �� � �u v L T H H, (0, ; ( ) ( ))1 1� � , 

( ) ( ), = 0, ( , ) (0, ; ( ) ( )),
0

1
0
1

0
1iv L w g dt g x t L T H H

T

� � � � �� � (12)

 is called a weak generalized solution of (1)-(4), where the bracket � �.,.  denotes the duality between 
the Hilbert Space H H0

1
0
1( ) ( )� ��  and its dual space H H� ��1 1( ) ( )� �  and L w L u v L v u( ) = ( ( , ), ( , ))1 2  are 

as below 

L u v u u a u m u k u u v u

L u v v v
tt t

p

tt t

1 1
2

1
2 1 2

2

( , ) = | | ,

( , ) =

� � � � �

� �

��

�

� �

� aa v m v k v v vup
2
2

2
2 1 2| | .� � � ��

(13)

Now we state the existence-uniqueness result. Local solvability of the problem (1)-(4) can be proved 
by the Faedo-Galerkin Approximation method. For the local existence of the solution to this type of 
problems, we refer to [1, 5, 6, 7, 13, 15, 22, 24, 25, 26].

Since the solution w u v= ( , ) is not a C2 -function in t  to establish our blow-up result we will use a 
finite-dimensional approximation of solutions w C T H Hm � �2

0
1

0
1([0, ]; ( ) ( ))� �  as in the Faedo-Galerkin 

Method. For this sake, we ponder the ordinary differential equations system 

� �L w g for j mm j( ), = 0, =1,2..., , (14)
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where w u vm m m= ( , ) , g g g gj j j j= ( , ), { }1 2  are functions in the the basis set of the Hilbert space 
H H0
1

0
1( ) ( )� �� , which we select as the ortho-normalized basis in space L L2 2( ) ( )� �� , and 

w c t gm j

m
mj j= ( )

=1∑  in equations (14), L w L u v L v um m m m m( ) = ( ( , ),( ( , ))1 2  and the differential operators L1 

and L2  are given in (13). We assume the initial conditions satisfy 

w x c g w u v as mm
j

m

mj j( ,0) = (0) = ( , ) ,
=1

0 0 0� � �� (15)

strongly in H H0
1

0
1( ) ( )� ��  and, 

� � � ���w x c g w u v as mm
j

m

mj j( ,0) = (0) = ( , ) ,
=1

1 1 1 (16)

strongly in L L2 2( ) ( )� �� .

3. Finite time blow-up solution

Our method of proving the existence of blow-up solutions is based on the Korpusov Lemma given by 
Theorem 2.5. In this section, we denote by 

�m m m
t

m m mt u v u v ds u v( ) =
22

2
2
2

0 2
2

2
2

0 2
2

          � � � � �� � � � � ���
�

00 2
2

2
2

2
2

0 2
2

2
2

,

( ) =

m

m m m
t

m mI t u v u v ds



       

� �
� � � � � � � � �� ���

and 

E t u v a u a v m u

m

m m m m m m( ) = 2
2

2
2

1
2

2
2

2
2

2
2

1
2

2
2

2
2

         



� � � � � � � � �

vv k
p

u v u v dxm m p
p

m p
p

m m    2
2

1
1

1
1 2 22

1
.�

�
�� � ��

�
�
� ��

The following theorem express the main theorem of this study:

Theorem 3.1: For any initial profiles ( , ) ( ) ( )0 0 0
1

0
1u v H H� �� �  and for any ( , ) ( ) ( ))1 1

2 2u v L L� �� �  there 
exist a weak generalized solution w u v= ( , ) of problem (1)-(4) that meets the following conditions: 

w u v L T H H
w u v L T L L
= ( , ) (0, ; ( ) ( )),
= ( , ) (0, ; ( ) (

0
1

0
1

2 2
� �

� � � � �

�

�

� �
� �))),

= ( , ) (0, ; ( ) ( )),1 1�� �� �� � �� � �w u v L T H H� �

 for some T0 > 0  and all T T∈ (0, )0 . Here, either T0 = ��  or T0 < .��  Moreover,   (I)  For any nonzero 
initial profiles  ( , )0 0u v  with sufficiently large initial velocities ( , )1 1u v  and 1 < < 3p , k <1 there exists 
0 < (0)0

1/2 1T A� � ��  such that 

�
�

�( ) 1
( (0) )

( ) = ,1/2 2
0

t
At

t
t T

�
�

��
�

�
and lim sup (17)

where 

A E u v= 1
4

(0) (0) 4 (0) 3 ( )) (0)3 2
0 2

2
0 2

2� � �� � � � � � ��� ��
�
�
�

�
�
�

( �    

11/2

> 0. (18)
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(II) For n k= 3, 1≥  and p ≥ 3 or n ≤ 2 for any p >1 the systems have global solutions.
We will give a proof of this theorem for n = 3 .

Proof. Now we proceed by multiplying equation (14) by c tmk ( )  and adding from k =1  to k m= , we 
arrive at 

1
2

( ) ( )
2

2 2
2

2
2

1
2

2
2

2
2

2
2

1
2d t

dt
u v a u a v m um
m m m m

�
� � � � � � � � �         mm

m m p
p

m p
p

m mm v k u v u v dx



     

2
2

2
2

2
2

1
1

1
1 2 2( ) = 2 .� � ��

�
�
� ��

(19)

Similarly, multiplying equality (14) by c tmk'( ) and adding up over k m=1,2,.., , we have 

1
2

2

2
2

2
2

2
2

2
2

1
2

2
2

d
dt

u v u v

d
dt

a u

m m m m

m

       

 

� � �� � � � � � � �� �

� �

�

�� � � �
�

�

�
�

�

�

�
�

�
� �

a v m u m v

k
p

d
dt

u

m m m

m p

2
2

2
2 1

2

2
2 2

2

2
2

1

2 2 2

1

     

 

pp
m p

p
m mv d

dt
u v dx�

�
��� � �1
1
1 2 2= 1

2
. 

�

(20)

Integrating this equality over [0, ]t  we get 

I t u v ds a u a v mm
t

m m m m( )
0 2

2
2
2

1
2

2
2

2
2

2
2

1
2

� � � � � �� � � � � � ���         uu

m v k
p

u v E u v

m

m m p
p

m p
p

m m



     

2
2

2
2

2
2

1
1

1
1 22

1
(0) =� �

�
�� � ��

�
�
� ��

22 .dx
(21)

Plugging the left hand side of (21) for 
�� u v dxm m

2 2  into (19) we find the inequality ; 

1
2

( ) 2
2

2
2

1
2

2
2

2
2

2
2

1
2

2

�� � � � �� � � � � �

�

�m m m m m

m

t u v a u a v

m u

       

 

22
2
2

2
2

1
1

1
1

0 22 ( ) 2

� � �

� � � �

�
�

�
�

�

m v k u k v

I t u

m m Lp
p

m Lp
p

m
t

m

     

 � 22
2
2

1
2

2
2

2
2

2
2

1
2

2
2

2
2

2 2

2 2

� � �� � � � � �

� �

     

  

v ds a u a v

m u m v

m m m

m m     2
2

1
1

1
14

1
2 (0).�

�
�� � ��

�
�
�k

p
u v Em p

p
m p

p
m

(22)

Using the definition of Im again we rewrite above inequality as 

1
2

( ) 3 2 (0) ( )
0 2

2
2
2

1
2

2
2�� � � � � � � � � � � ���m m m

t
m m mt I E u v ds a u�       aa v

m u m v k p
p

u v

m

m m m p
p

m p

2
2

2
2

1
2

2
2

2
2

2
2

1
1(3 )

1
(

 

       

�

� � �
�
�

��
�

��
�
1
1 ).p

(23)

For 1 < < 3p  and k <1, the right-hand side of this inequality is non-negative and hence we have 

�� � � ��m m mt I t E( ) 6 ( ) 4 (0) 0. (24)

Now we establish the inequality: 

( ) 4 2 ( ).2
0 2

2
0 2

2� � � � � �� � �m m m m m mI u v�     (25)
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Differentiating Ψm t( )  and applying Hölder’s inequality we get 

� � � � � � � �

� �

� ��
� �m m m m m m m

m m

t u u dx v v dx u v

u u

( ) = 2 2

2
2
2

2
2

2

� �   

   22 2 2 2
2

2
22 .� � � � � �       v v u vm m m m� �

(26)

and

� � � �     � � � � � � �� � �u d
ds

u s ds u u u dxm
t

m m
t

m m2
2

0 2
2

0 2
2

0
= ( ) = 2 ( , )

�
dds u m� ��  0 2

2 . (27)

Applying Hölder’s inequality to the right-hand side of (27) we obtain that 

� � �      � � � ��
�
�

�
�
� ��
�
�

�
�
� � �� �u u ds u ds um

t
m

t
m2

2
0 2

2
1
2

0 2
2

1
2

02 mm 2
2 , (28)

and similarly,

� � �      � � � ��
�
�

�
�
� ��
�
�

�
�
� � �� �v v ds v ds vm

t
m

t
m2

2
0 2

2
1
2

0 2
2

1
2

02 mm 2
2 . (29)

Using (26), (28) and (29), we prove (25). Now, multiplying the (24) Ψ( )t  using (25) gives 

�� � � � � � � �� �� � �� � � �m m m m m m mE u v3
2
( ) 4 (0) 3 0.2

0 2
2

0 2
2�     (30)

Now, the axioms of the Theorem 2.5 are satisfied for 

� � � �1 1 0 2
2

0 2
2

1= 3
2
, = 4 (0) 3 , = 0 (0) > 0

(

E u v andm m m m

m

� � � �� � �

�

    �

�

,

00) > 4 (0) 3 (0), (0) > 0.2
0 2

2
0 2

2E u v Em m m m m� � � �� �� ��     �

Therefore the blow-up time is T Am m0
1/2 1(0)� � ��  , where 

A E u vm m m m m
2 3 2

0 2
2

0 2
2= 1

4
(0) (0) (4 (0) 3 (0) ,� � �� � � � � � �� ��

�
�
��    

and 

�
�m
m m

t
A t

( ) 1
( (0) )

.1/2 2�
�� (31)

Now we proceed by taking the limit as m ��  for a subsequence { ( )}Ψm t :
Essentially, considering the limit properties (15)-(16), 

� �
�m u v dx u v(0) (0) = (| | | | )

2
( ),0

2
0
2

0 2
2

0 2
2� � � � � ��

�
    (32)

� � � � � � � ��� �
�m u u v v dx u v(0) (0) = 2 ( ) ( ),0 1 0 1 0 2

2
0 2

2�     (33)

E E u v a u a v

m u m

m(0) (0) = 1 2
2

1 2
2

1
2

0 2
2

2
2

0 2
2

1
2

0 2
2

� � � � � � �

�

       

  22
2

0 2
2

0 1
1

0 1
1

0
2
0
22

1
( ) ,     v k

p
u v u v dxp

p
p
p�

�
� ��

�
�
� ��

(34)
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A A E u vm
2 2 3 2

0 2
2

0 2
2= 1

4
(0) (0) (4 (0) 3 ( )) (0) .� � � � � � ��� ��

�� � ��     (35)

The following lemma can easily be proven by using the technique given in [8].

Lemma 3.2: The sequence 

�m m m
t

m m mt u v u v ds u( ) = ( )
2
(2

2
2
2

0 2
2

2
2

0 2
2

          � � � � � � � � ���
� vv m0 2

2 ). (36)

has a subsequence that we still denote by the same notation converges uniformly to 

�( ) = ( )
2
( )2

2
2
2

0 2
2

2
2

0 2
2

0 2
2t u v u v ds u v

t
           � � � � � � � � ���

� ,, (37)

where t T∈[0, ]. 
Now we take the limit as m ��  in (31) and we obtain the following inequality 

�
�

( ) 1
( (0) )

.1/2 2t
At

�
��

Based on this we conclude that for ( , ) ( ) ( )0 0 0
1

0
1u v in H H� ��  and all ( , ) ( ) ( )1 1
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where � �(0), (0)�  and E(0) are given in (32),(33),(34). Then there exists a finite 0 < 0T  satisfying 

AT0
1
2 (0)�
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�  . As a result , the (17) holds. 

Verification of the compatibility conditions (38): First, for sufficiently large ( , )0 0u v  in 
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0
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the following inequality is true since we can control the first term on the left-hand side with the first 
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(39)

For λ > 0, substituting ( , ) = ( , )1 1 0 0u v u vλ λ  into (33) and (34) we get 
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and for λ  sufficiently large 
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Thanks to the inequality (40), we see that inequality in (38) is equivalent to the inequality 

� � � � �� �(0) > (4 (0) 3 ( )) (0) > 0.2
0 2

2
0 2

2E u v�     (41)

To prove (41), we proceed by sequentially replacing both sides of (41) with the following: 
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Now we let �
�

�2 = 1 > 0for sufficiently small  and obtain, 
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which is true by assumption (39).

4. Global Existence

We consider the equality (20), we have 
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Using Young inequality we have 
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If k ≥1 and p ≥ 3 then we get 
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Hence by (44) we have 

           

� � � � � � � � � �u v a u a v m u m vm m m m m m2
2

2
2

1
2

2
2

2
2

2
2

1
2

2
2

2
2

2
2 CC p k E t Em m( , , ) ( ) (0),� � �

which implies 

           

� � � � � � � � � �u v a u a v m u m vm m m m m m2
2

2
2

1
2

2
2

2
2

2
2

1
2

2
2

2
2

2
2 EE C p k Cm(0) ( , , ) .� ��

Hence the solution does not have a finite time blow up.
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