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Abstract

We consider the initial boundary value problem for a system of strongly damped wave equations with
homogeneous Dirichlet boundary conditions and a nonlinear source term. By applying a modification
of the concavity method, we demonstrate that the solutions blow up for p <3 with arbitrary positive
initial data. Furthermore, we show that the global solvability of the problem for p > 3.
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1. Introduction
In this note, we consider the initial boundary value problem for the following system

—2
u, —oAu, —a;Au+miu+klulP u=v'u, xeQ,0<t<T, (1)

—2
v, —0Ay, —azAv+mav+ kv PP v=uty, xeQ,0<t<T, (2)

under the following initial and boundary conditions

u(x,0) = uy(x), u,(x,0) =u, (x), v(x,0) = v,(x), v,(x,0) = v, (x), 3)
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u(x,t) =v(x,t) =0, for (x,t) in 0Qx[0,T), (4)

where a >0, the positive numbers mi and mo represent the masses of the scalar fields © and v,
respectively. The functions u,,v,,u, and v, are given, Q is an open bounded connected domain in R"
with a Lipschitz boundary. We also assume that

n

1<p< for n>3

p>1, for n<2.

Our goal is to investigate the existence of blow-up solutions for the problem (1)-(4). The research
on global nonexistence or blow-up solutions is a longstanding topic, extensively explored by numerous
researchers in the context of wave equations. Among them, we refer to [4, 10, 12, 15, 16, 19, 20, 26,
28, 34].

The first result on the global nonexistence of the solutions for the strongly damped nonlinear
abstract wave equation

Pu, + Au+vAu, = G(u),

in a Hilbert space H is established by Levine in [20]. Here both P and A are positive self-adjoint
operators in a Hilbert space,and G(u) is a nonlinear operator that satisfies the condition

(w,G(w)) 22(2a, +1)H(u), (5)

where o, >0 and H(u) is the Fretchet anti-derivative of G and (.,.) denotes the Euclidean inner prod-
uct. The main result of blow up solution is obtained here assuming the initial energy of the system is
non-positive.

It is obvious that the vector field F(u,v) = V*u—k|ulP™ u,u*v—Ek|v P v) of the system (1)-(2) does
not satisfy this condition (5).

In their work, Bilgin and Kalantarov [3] studied the problem of nonexistence of global solutions of
a Cauchy problem for the following nonlinear abstract equation

Av, + Bv+Cv, =G(v), (6)
under the initial condition
v(0)=v,, v,(0)=v,. (7)

where A and B are densely defined self-adjoint positive definite operators in a Hilbert space, and C is
a selfadjoint densely defined non-negative operator such that

D(B) c D(C) c D(A),
and the nonlinear operator G(v) meets the condition
(G(u,v),(u,v)) - 220, +1)H(u,v) > -D,,a, >0, D, >0.

Here the authors showed that there is a class of initial data with arbitrary large initial energy for
which the solutions of the Cauchy problem (6) blow up in a finite time. M.O. Korpusov in [15], exam-
ined homogeneous Dirichlet problem for the nonlinear system of equations of the Klein-Gordon-Fock
type

w, + pu, — a’Au+miu=v’u, u l,o=0,
v, + pv, —b*Au+miv=u’v, vl,=0,

u(x,0) = uy(x), u,(x,0) =u,(x), v(x,0) = v,(x), v,(x,0) = v, (x),
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where p>0,a,b, m; and m, are positive numbers and the datum are given functions u,,u,,v,, and v,
and Q is a subset in R? with the regular boundary 6Q belongs to C*" for n € (0,1]. Using the Faedo-
Galerkin approximation he proved the existence-uniqueness of the local weak solutions and the exis-
tence of blow-up solutions by using a modification of Levine’s concavity method developed in [17].
Recently Y. Ye and L. Li, using the potential well method studied the existence of global solutions
and the existence of blow-up solutions for a class of strongly damped wave equations in the system
u, —Au+ wu, —oAu, = g, (w,v), (x,t) e QxR",
v, — AU+ v, — w,Av, = g,(u,v), (x,t) e QxR
under the initial boundary value conditions
u(x,0) = uy(x), u'(x,0) = 1, (x), v(x,0) = vy (x), V'(x,0) = v, (x),x in Q
w(x,t) =v(x,t) =0, for (x,t) in 0QxR".

Although the system worked by Y. Ye and L. Li reminiscents our system is different from theirs
because it includes a nonlinear damping term |u [’ u on the left-hand side while their damping
terms are u, and —Au,.

2. Preliminaries

Definition 2.1: [35] Let Q < R" be an open connected domain and q >0 be a real number. L(Q)
denotes the class of all measurable functions h defined on Q with

jg | h(x) ! dx <o

The functional || . ||q defined by
1
I, = ([, 1heor e ax)e
is a norm on L?(Q) provided 1<q <oo.

Definition 2.2: [35] Let Y be a Banach Space and 1< q <o the space L'(0,T;Y) denotes the Banach
space of vectors of Y valued measurable functions f :]0,T[— Y such that || f(t) ||, L*(0,T) with

1

= Uf”f(t)\\g dtjq for 1<q <oo,

€SSSUpP|g | £(2) ||Y for q = .

l

L10.T;Y)

Lemma 2.3: [35] (Hélder’s Inequality)
Let 1<a <w and B denote the conjugate exponent defined by

.11
ﬁ=Lthatls—+—=1,
a-1 a p

which also satisfies 1< <. If g € L(Q) and h € L’ (Q), then gh € L' (Q), and

Jolg@h@) ldx <[g, 1],
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Lemma 2.4: [36] (Young’s Inequality)

1 1 ap bq
Ifl1<p,g<w, —+—==1and a,b>0,a,beR, then ab<—+—.
b q b q

Now we borrow the Korpusov theorem [15]:

Theorem 2.5: Assume that a functional ¥(t) satisfies the following conditions:

Y -, PP+ WY+ BY 20, o >1, B,>0, y >0, (8)
where ¥(t) e C*([0,T]) ,¥(t)>0 ,¥(0)>0.
If
Y'(0)>—— o - 1 Y (0), 9)
)
(‘if 0)- ‘P<0>] by, (10)
oy — 20, -1

Y(t) >0, and ¥(0) >0, then the time T >0 can not be arbitrarily large the inequality

T <T" whereT <¥ “(0)A™"

where T is the maximal existence time interval for ¥(¢) and

=(a, 1) (0){(\11 O - w)? - 2P o) |. (11)

0‘1 2a, -1
such that 1im, ,;* sup ¥(t) = +o.

Definition 2.6: Assume that u,,v, belong to Hé(Q) and u,,v, belong to L*(Q). The functions u(x,t)
and v(x,t) satisfying the conditions,

1. u,ve L”0,T; Hy(Q) x Hy(Q),

2. u, v eL”0,T;[*(Q)x [*(Q)),

3. w',v"eL”0,T;H*(Q)xH*(Q),

) [ (Lw),g) dt =0, g(x,0) € L'0,T; HY(Q) x HY(), (12)

1s called a weak generalized solution of (1)-(4), where the bracket {.,.) denotes the duality between
the Hilbert Space H}(Q)x Hy(Q) and its dual space H ' (Q)x H ' (Q) and L(w) = (L, (u,v), L,(v,u)) are
as below

—2
L(u,v) =u,-adu, —aAu+mu+klul’™ u-vy, 13)
13
—2
L,(u,v) =v, —aAv, —azAv+mev+k|vlP™" v-vu’.

Now we state the existence-uniqueness result. Local solvability of the problem (1)-(4) can be proved
by the Faedo-Galerkin Approximation method. For the local existence of the solution to this type of
problems, we refer to [1, 5, 6, 7, 13, 15, 22, 24, 25, 26].

Since the solution w = (u,v) is not a C%-function in ¢ to establish our blow-up result we will use a
finite-dimensional approximation of solutions w,, € C*([0,T]; Hy(Q) x Hy(Q)) as in the Faedo-Galerkin
Method. For this sake, we ponder the ordinary differential equations system

(Lw,,),g;)=0, for j=1,2...,m, (14)
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where w, =(u,,v,), g;=(8;,8,;), {g;} are functions in the the basis set of the Hilbert space
H)(Q)x H)(Q), which we select as the ortho-normalized basis in space L*(Q)xL*(Q), and
w,, = Z;n:lcmj ()g; in equations (14), L(w,,) = (L, (u,,,v,,),(Ly(v,,,u,,)) and the differential operators L,
and L, are given in (13). We assume the initial conditions satisfy

wm(x,O)=Zcmj(O)gj—>w0=(u0,vo) as m—> oo, (15)

j=1

strongly in H(Q)x H}(Q) and,

w;n(x,O)ZZC,’nj(O)gj—)wl=(u1,vl) as m— oo, (16)

J=1

strongly in I*(Q) x L*(Q).

3. Finite time blow-up solution

Our method of proving the existence of blow-up solutions is based on the Korpusov Lemma given by
Theorem 2.5. In this section, we denote by

t o
W, (0) =l 5+ 10 5 o[ (1 Vit [ 41V 15 )ds + 5 (1 Vit 5+ Vg, [£).
L@ =lul 2 +11v), 12+ [ 1V, [+ Vo, [2)d
m um 2 vm 2 a 0 u’m 2 vm 2 S
and
—2
E, ) = u, 5 +Iv, |5 +a] || Vi, 5 +a3 | Vo, [§ +ma 1w, |5 +

2k
(I 125 +11v, 157) = [_unv?, .

2 2
m U +
2 || m H2 1

The following theorem express the main theorem of this study:

Theorem 3.1: For any initial profiles (u,,v,) € H(l) (Q) x Hé (©Q) and for any (u,,v,) € LZ(Q)x L*(Q)) there

exist a weak generalized solution w = (u,v) of problem (1)-(4) that meets the following conditions:

w =(u,v) e L(0,T; H}(Q) x H)(Q)),

w' = (W',v') e L*(0,T; L*(Q) x [*(Q)),

w'=w",v") e L”0,T; H(Q)x H'(Q)),
for some T}, >0 and all T €(0,7})). Here, either T, =+ or T < +o. Moreover, (I) For any nonzero
initial profiles (u,,v,) with sufficiently large initial velocities (u,,v;) and 1< p <3, k<1 there exists
0<T, < ¥ 12(0)A7! such that

1
and 1im sup ¥ (¢) = +o, (17)

YO G0 - ary T

where

1/2
A= {i lP‘?’(O) [‘P,(O)Q —(4E(0) + 3a(|| Vy, ||§ +]| Vo, Hg))\P(O):I} >0. (18)
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(IT) For n=3,k>1 and p >3 or n <2 for any p >1 the systems have global solutions.
We will give a proof of this theorem for n = 3.

Proof. Now we proceed by multiplying equation (14) by c, ,(¢) and adding from k=1 to k=m, we
arrive at

1d*¥ (t) —2
Tl 5 +110) 18) + & | Vi, 5 +a3 11 Vo, 15 +ma 1w, 15
2 dt
(19)
—2
tmz v, 1§ +k(1w, 125 +1lv, 150 =2[ uiv?, dx.

Similarly, multiplying equality (14) by c,,'(t) and adding up over k£ =1,2,..,m, we have

1 d !/ ! ’ !
5 gl B+ 11 1) + o (I Ve, [+ V0, )

—2 —2
d af , al 9 M 9 M2 2
+—| 2 |Vu, | +=2|Vu, |l +—lu,, |l +— v

1d
1 1) — 2.2
e (e I3 4o 175) = 5 ol de

Integrating this equality over [0,7] we get

t —2
1@ +af IV, |+ Vo, [§)ds+af | Va, [§ +a3 || Vo, | +m1 |u, |5

K @1)
Ul 55+l 73 ) = BO) = [ vy, d.

p+1 p+1

—2
+mz||v, [} +

Plugging the left hand side of (21) for Igufnvi dx into (19) we find the inequality ;

1
§‘I’i£(t)—(ll wp, 5 +110), 15) +af || Va,, I +a3 |V, I

p+1
Lp+1

p+l

—2 —2
+m || u’m ||§ +me || Um ||§ +k ” u’m | P+l

+k| v, |
(22)

t
> 21,0+ 20 (| Vi, |2 +[[ Vo), [B) ds + 202 ||V, |E +2a2 | Vv, |2

5w, 123 + 110, 129) - 2E, ©).

—2 2 o2 2
+2mi || w,, [y +2ms ||v, [|; + 1 41 p+1

Using the definition of I, again we rewrite above inequality as

1 " t ’ !
3 ¥n®)-31, +2Em(0)ZOtJO(HVum b +1Vo, ds +a) [V, [ +a; [ Vo, |5

k(3 - p)
p+1

(23)

—2 —2
+m || u’m ||§ +maz || Um ||§ + (H um ||1l>7ji + ” Um ||p+1)'

For 1< p <3 and k <1, the right-hand side of this inequality is non-negative and hence we have
v’ @t)-61 (t)+4E (0)=0. (24)
Now we establish the inequality:

(W,)" <4¥, I +20¥ (| Vi, [ +] Voy, [)- (25)
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Differentiating ¥, (¢) and applying Holder’s inequality we get

¥ () =2 Igumu,’ndx +2 jgumu;ndx +a |V, |} +al| Vy, |

, , (26)
<2, bl w, b +2 1, [V, llp +e ||V, [l +e || Vo, |3 -
and
al|Vu, |f= a_[ti |V, |12 (s)ds +a || Vu,, |F= 205th (Vu! ,Vu Ydxds+a | Vu,, | (27)
m 112 OdS m 112 Om 112 0o m? m Om 112 *
Applying Hélder’s inequality to the right-hand side of (27) we obtain that
2 t 2 % t 2 % 2
o | Vi <20 [[ 1V, I ds ([ 19, 1 ds | Vg 5, 29
and similarly,
1 1
t , 2 3 2
Vo, 6= 2a( [} 190, I ds (2190, 1 ds | [ uy, (29)
Using (26), (28) and (29), we prove (25). Now, multiplying the (24) W(¢) using (25) gives
" _§ r\2 E 2 2 >
W, = (¥ (4B, 0) +3a (|| Vug, [+ Vo, [£)) ¥, > 0. (30)
Now, the axioms of the Theorem 2.5 are satisfied for
3 ,
=2, B =4E,(0)+3a (I Vo [ +11 V0o, ) 72 = 0 and ¥, (0) >0,
¥,,(0)” > (4E,, (0) + 3a || Vag,, [§ +[ Vg, [2))¥,,0), E,(©0)>O.
Therefore the blow-up time is 7, <¥;"*(0)A! , where
2 1 -3 1 2 2 2
45 =¥, 0 ~(4E,, (0) +3a (| Vo [} +1| Vo, [3) ¥, 0) |,
and
¥ ()2 1
m - (\P;I/Z(O) —Amt)z . (31)
Now we proceed by taking the limit as m — o for a subsequence {¥,, (¢)}:
Essentially, considering the limit properties (15)-(16),
o
¥, (0> WO = [ (luy P +1v, ) dx + 2 1V 5+ Vg [5), (32)
¥1,(0) > P'(0) =2 (upte + o)) dx +a(| Vi [+ Vv, [, (33)
E, (0 = EO) =|u, [ +[lv, [ +a [| Vi [l; +a5 [| Vo, [l; +
% (34)

(Il wo ’p+1 +1 v, |§E)_ ngvg dx,

2 2 2 2
mi||u +ma || U +
1 H 0 Hz 2 H 0 H2 1
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1 - /
A > AT =P O) WO - @EO) +3a(| Vi [+ Vug [E)FO) |- (35)
The following lemma can easily be proven by using the technique given in [8].
Lemma 3.2: The sequence
t a
Ot 410, 8 5 1V, 8+ V0, [B)ds + 51 Vg, 8+ Ve, ), (36)
has a subsequence that we still denote by the same notation converges uniformly to
t o
PO =uls +lvl; +06I0(||VUI|§ +[| Vv |!§)ds+§(|wu0 5+ 1V [5), (37)

where t €[0,T].
Now we take the limit as m — « in (31) and we obtain the following inequality

1

lP(t) 2 (\P—I/Z(O) _ At)2 '

Based on this we conclude that for (u,,v,) in Hy(Q)x Hy(Q) and all (u,,v,) € L*(Q) x L*(Q) satisfying
conditions,

W'(0) > [(4E(0) + 3o (| Vg |3 + || Vo, [E)FO)]2 >0,  E(0) >0, (38)

where ¥(0),¥'(0) and E(0) are given in (32),(33),(34). Then there exists a finite 0 <7, satisfying
-1
AT, <¥ 2% (0) . As aresult, the (17) holds.

Verification of the compatibility conditions (38): First, for sufficiently large (u,,v,) in

H (Q)x H)(Q) and with o >0 small enough and 1< p <3,k <1 and suitable coefficients al,a2,a1,r7lz
the following inequality is true since we can control the first term on the left-hand side with the first
term on the right-hand side and the others term on the left-hand side by integral of ugvgz

@ - 4va) ([ ug [ +11vp ) Vatg [ +1 Vo )
4¥(0)

—2 —2 2k
"’((112 | Vi, Hg +a§ |V, ||§ +ma ||, ||§ +ma || v, ||§)+m(” Uy |£ﬁ +v, |§ﬁ (39)

a’(| Vu [l +11 Vi, )
4¥(0)

3a 9 9 2.2
- <
+ =2V [ + 11V, ) + [ ugv} dx.

For A >0, substituting (u,,v;) = (Ay,,Av,) into (33) and (34) we get
W'(0) = 2] (gt +vvy) dx + (| Vag [ + [ Vv, [) "
=22 (luy P +10y ) dx +a(| Vi |+ Vo, [5)> 0, o
and for A sufficiently large

—9
E@©)= )vz(H Uy ||§ +1 v, ||§)+a12 | Vi, ||§ +a22 | Vv, ||§ +my || u, ||§

2k
el 5+ v I~ [ de >0,

—2
+mz || v, Hg + p+1
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Thanks to the inequality (40), we see that inequality in (38) is equivalent to the inequality
P(0)* > (4E(0) +3a(|| Vi [l + |V [[3)¥(0) > 0. (41)
To prove (41), we proceed by sequentially replacing both sides of (41) with the following:

W(0)* = 427wy [l; + 1l vg [£)* +a® (| Vg [ + 1 Voo [15)?

(42)
+4a(|ug [ +11vg [0 Vit [+ Vg [5),
and
(4E(0) +3a(| Vi [l +1 Vv, [2))¥(0))
= 205)«2(” Uy HS + v, H;)(H Vu, ||§ +| Vu, ||§) + 412(” Uy ||§ +l v, HS)Q
+3a(|| Vi, HS +| Vu, ||§)T(O) + 4\11(0)(“12 | Vi, ||§ +a§ [ Vo, Hg
—2 —2 k
e g [ +m oy 8 + (1w 152+ vy 125 = [ s ).
and we obtain the inequality
427wy [ + 110 [12)* + 2027 (1w [ + 1wy D)0 Vit [l + 1 Vg 1)
—2
+3a(| Vg [l; + [ Vv, [5)P0) +4¥O)a) | Vi [l; +a5 | Vo, [l; +ma (| [
—2 2k (43)
+ma ||y, Hg +—— (|, Hiﬁ +|lvg Hﬁﬁ _[ uovo dx] <4/12(H Uy Hz +|lv, Hz
p+1
+4ad(uq [l +11vy U Vg [l + 1 Vg 15) + a1 Vg [+ Vo, [5)?
1 . . .
Now we let 1% == for sufficiently small o >0 and obtain,
o
(2—4\/;)(” g s +110 1B Vg [ + 1 Vg [12) 2 2, 2 2 2 2 T2 2
+(ay || Vu, [|; +ag [ Vo, [|; +ma [lug [l +me v, ()
4¥(0)
3at o’ (| Vi [l + Vo, [5)*
1923+l 1520+ = 1 Vg [+ Vg [B) < == 2 [
which 1s true by assumption (39).
4. Global Existence
We consider the equality (20), we have
t
E, () +2a[ (|Vu;, | +1| vy, [)ds = E,, (0). (44)
Using Young inequality we have
uz 2(p+1)
Iuivfndxs I —dx— I lu, [P de+ 2= I lv, | P dx.
Q Q p+1 p+1
Now, by applying Younginequality tothe secondintegral on the right side, for y = p-1 and 6 = p_—:13’
p p—
we get

2(p+1)

-1
p J‘Ivmlp’1 dx <
p+1l7e

P dx + C(5, p,Q).
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If k>1 and p >3 then we get

2k
p+1

2 92 ptl
Igumvmdxs I lu,, P dx +

1l jgwm 7! dx + C(p, k, Q).

Hence by (44) we have

—2 —2
ey, 3 + 1oy, 5 +a 11V, G +a5 |V, 5 +mi |[w,, [§ +mz[|v, |2 ~C(p,k,.Q) < E, (&) < E,,(0),

which implies

—2 —2
ey, 2 +Wvy, [ +ar | Vi, [§ +ag || Vo, [ +ma [[u, [ +ms |[v,, [;< E,, 0) + C(p,k,Q) <C.

Hence the solution does not have a finite time blow up.
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