
Received September 13, 2024; Accepted October 22, 2024; Online November 29, 2024

Some novel results on (α,β)-Ricci-Yamabe soliton 
and its spacetime
Kamakshi Sharma1, Pankaj Pandey2,*, Amit Kumar3

1,2Department of Mathematics (SCEPS), Lovely Professional University, Phagwara, Punjab-144411, India; 3Symbiosis Institute of Technology, 
Pune Campus, Symbiosis International (Deemed University), Pune, India.

Abstract
This article aims to investigate the characteristics of (a,b)-Ricci-Yamabe Soliton (briefly: a b, RYS

n( ) - ( ) )  
and its spacetime. The inclusion of killing vector field and the Lorentzian metrics make the Ricci-
Yamabe soliton richer and interesting. We study the cosmological and dust fluid model on (RYS)4 
equipped with Lorentzian para Sasakian (LPS)4 spacetime. The cases of h-parallel Ricci tensor and 
the Poisson structure have been studied on (RYS)n equipped with (LPS)n  manifold. Gradient (RYS)n   
equipped with (LPS)n manifold also reveal. Finally, we establish an example of four-dimensional 
LP-Sasakian manifold (LPS)4  that satisfy a b, RYS( ) - ( )4 and some results.
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1. Introduction

Hamilton [20] revealed the concept of Ricci flow (resp. Yamabe flow) in the last quarter of twenties in 
order to discuss new striking results in Riemannian geometry. The idea of Ricci soliton recognized as 
a generalization of an Einstein metric and governing as the solution of partial differential equation 
representing Ricci flow which is isomorphically equivalent to heat equation. In case of Ricci flow, the 
Riemannian metric is proportional to a (0, 2) type tensor 1

2 Lg + Ric( ). In this case the proportionality 
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constant is called the soliton constant. The Ricci flow in terms of soliton constant l (say) is governed 
by the equation [20]

- ( )( ) ( ) ( )1
2 1 2 1 2 1 2L g , = S , + g , ,v z z z z l z z  (1)

which is equivalent to
¶
¶
g t
t

S t g g( ) ( ), ( ).= - =2 00������  (2)

The Yamabe flow is discribed by an evolving equation [17, 20]
¶
¶
g t
t

r t g t g g( ) ( ) ( ), ( ),= - =������ 0 0  (3)

equivalently
1
2 1 2 1 2( )( , ) ( ) ( , ).L g r gv z z l z z= -  (4)

In (1) and (4), the Lie derivative L is taken along the complete vector field v and is denoted by Lvg. 
The Ricci tensor denotes S and the r is scalar tensor. The vector fields z1,z2 belong to the set of an 
algebra of tangent vectors denoted by χ(M ). The nature of the soliton can be expressed in terms of 
soliton constant l and is said to explore for l positive. We say the case is of compacting soliton or is of 
constant soliton, if l < 0 or l = 0. In general the Ricci and the Yamabe solitons are distinct for higher 
dimension but coincide in case of dimension 2. The reason behind this distinction is that the Yamabe 
soliton preserves the metric conformality in nature where as Ricci soliton denied it.

Guler and Crasmareanu [19] (2019) investigated another geometric flow restricted by Ricci-
Yamabe map. Authors pronounced with a special call: (a,b) type Ricci-Yamabe flow (briefly denoted 
a b, RYF

n( ) - ( ) ). Particularly, it is noted that the a b, RYF
n( ) - ( )  is nothing but the a-Ricci soli-

ton for b = 0 and it turns into b-Yamabe soliton, in case of vanishing a. The above said flow, in the 
Riemannian manifold, is defined by

¶
¶

b a
t
g t r t g t S t g g( ) ( ) ( ) ( ), ( ),= - =2 00������  (5)

where S being Ricci tensor, r: the scalar curvature, and l, a, b 2 R. As a restriction to solve the 
a b, RYF

n( ) - ( ) , the solution of nonlinear partial differential equation (5) notified as a b, RYS
n( ) - ( ) .

If we denote (Mn, g) by an n–dimensional a b, RYS
n( ) - ( ) , on (Mn, g) having structure (g, V, l, a, b) 

that gratify the equation
( )( , ) ( , ) ( ) ( , ).L g S r gV z z a z z l b z z1 2 1 2 1 22 2= - - -  (6)

The aforementioned soliton is known as the (a,b) type gradient Ricci-Yamabe soliton (briefly (a, b)–
(GRYS)n) if V becomes a gradient of f (if exist such a smooth function) and (6) reveals

Ñ + = -2 1
2

f S r ga l b( ) ,  (7)

where ∇2f is defined as Hessian of the smooth function f and denoted in general by Hess(f). The nature 
of the a b, RYS

n( ) - ( )  is quite similar and depends on the soliton constant l. Accordingly, the respec-
tive soliton is called steady for l = 0 otherwise natured as shrinking for being l negative. The positive-
ness of l explored as expanding.

An a b, RYS
n( ) - ( )  turns into almost a b, RYS

n( ) - ( )  (briefly (a, b)–(ARYS)n) for (l, a, b) being 
smooth function. The a b, RYS

n( ) - ( )  simplifying as Ricci soliton in special case (a = 1, b = 0) and 
it turns into Yamabe soliton in other special case (a = 0, b = 1). Also, for (a = 1, b = –1) and (a = 1,  
b = –2ρ), it pointed into Einstein and ρ-Einstein soliton. Some times, we call it proper for the values 
a ≠ 0,1. It is important to keep in mind that the Ricci Yamabe soliton corresponds to a specific class 



Sharma K, et al., Results in Nonlinear Anal. 7 (2024), 132–145 134

of generalized Ricci solitons [16] if scalar curvature r is constant in (6). Therefore, studying Ricci 
Yamabe soliton with non-constant scalar curvature rather than the constant scalar curvature is more 
appropriate and natural.

The Lorentzian manifold, which is among the most significant sub classes of pseudo-Riemannian 
manifold, has a significant impact on the advancement of the theory of relativity and cosmology. 
Ahsan and Ali [1] looked into the symmetries of soliton spacetime. The geometrical characteris-
tics discussed by Blaga [3] in fluid spacetime under assumptions of Einstein/Ricci soliton. In 2018 
Siddiqi and Siddiuqi [43] examined the geometrical importance of (PFST)n conformal Ricci solitons. 
Chaturvedi et.al. studied the Kähler spacetime manifold under consideration of Bochner flatness. 
They determined that the energy-momentum tensor of a perfect fluid Lorentzian Kähler spacetime 
manifold exhibits hybrid characteristics. They also analyzed the behaviour of dust fluid Lorentzian 
Kähler spacetime manifold where the Bochner curvature vanishes (see also authored by Pokhriyal 
and Chaubey [37]).

The LP-Kenmotsu manifold was investigated by Haseeb and Prasad in [23]. Haseeb et.al. [26] 
proposed the study on a b, RYS

n( ) - ( )  and (a, b)–(GRYS)n conditionally related to the z-conformally 
flat m–dimensional LP Kenmotsu manifold. They proved that the scalar tensor of (LPK)m manifold 
admitting Ricci Yamabe soliton satisfies the Poisson equation. Sardar and Sarkar [39] described 
Kenmotsu 3-manifold equipped with a b, RYS

n( ) - ( )  and (a, b)–(GRYS)n metric that satisfy z- 
parallel Ricci tensor. Recently, Pal and Chaudhary [31] revealed the idea of Poisson fluid flow to 
investigate almost soliton like Ricci soliton (briefly: (ASLRS)n) by exploring the statistical structure.

De and De [13] (2020) studied almost Ricci soliton and gradient almost Ricci soliton on para- 
Sasakian manifolds. Kundu [28] (2021) explored para-Kenmotsu metric as an h-Ricci soliton. In [11] 
(2021), De discussed Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton. Sarkar and 
Bhakta [40] obtained some interesting results on certain solitons on generalized (κ,µ) contact metric 
manifolds. D. Kar and P. Majhi [27] (2019) concentrated on Beta-almost Ricci solitons on almost 
Co-Kahler manifolds. Vishwas, Das, Baishya and Bakshi [44] studied h-Ricci solitons on Kenmotsu 
manifolds admitting general connection. Lee, Kim and Choi [29] classified the warped product spaces 
with gradient Ricci solitons. We propose the papers ([2, 4, 6, 7, 10, 17, 18, 22, 23, 24, 25, 30, 32, 33, 
34, 35, 36]) for deep understanding and various interesting results on respective solitons and various 
examples.

Motivated by the above research we study a b, RYS
n( ) - ( )  and (a, b)–(GRYS)n  on (LPS)n. The 

preliminaries discussed in section 2. After that we study a b, RYS
n( ) - ( )  in section 3. In section 4 we 

study a b, RYS
n( ) - ( )  in perfect fluid flow. Further in section 5 and 6, we deal with the cosmological 

models. Section 7 has been explored with h-parallel Ricci tensor and in section 8, we study Poisson 
manifold admitting a b, RYS

n( ) - ( ) . The gradient case (a, b)–(GRYS)n has been studied in section 9. 
The last section includes an example of a b, RYS

n( ) - ( )  admitting (LPS)n.

2. Preliminaries

Let Mn (Riemannian manifold) denotes the inclusion of the triplet data (φ, ξ, η) then we say  
(Mn, φ, ξ, η) is an almost contact metric structure that satisfy

fx
h fz
h x
f z z h z x

=
=
= -
= +

0
0
1

1

2
1 1 1

,
( ) ,
( ) ,

( ) .  (8)

Here, φ denotes a tensor field ((1,1)-type) and η we call 1-form on Mn defined by h z z x( ) ( , ).1 1= g  Some 
additional following properties also hold on almost contact metric manifold.
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g g( , ) ( , ) ( ) ( )fz fz z z h z h z1 2 1 2 1 2= -  (9)
equivalently

g g( , ) ( , )z fz fz z1 2 1 2= -  (10)
g( , ) ( ),z x h z1 1=

for all the vector fields z z c1 2, ( ).Î M
The structure (Mn, φ, ξ, η, g) poured to K-contact, for being killing to characteristic vector field ξ. For 
Lorentzian para Sasakian (LPS)n manifold with killing vector field, we have

Ñ x fzz1 1= ,  (11)

( )( , ) ,L gx z z1 2 0=  (12)

fx h fz f= = = -0 0 11, ( ) , .����� ����� ��rank n  (13)
Also

( )( ) ( ) ( ) ( , ).Ñ = Ñ - Ñ = Ñz z z zh z h z h z z z
1 1 1 12 2 2 2 2g  (14)

In view of (11) and (14) we have
( )( ) ( , ).Ñ =z h z z fz

1 2 2 1g  (15)
Let structure (φ, ξ, η, g) on (LPS)n Mn (n being dimension) then

g R R g g( ( , ) , ) ( ( , ) ) ( , ) ( ) ( , ) ( ),z z z x h z z z z z h z z z h z1 2 3 1 2 3 2 3 1 1 3 2= = -  (16)
R g( , ) ( , ) ( ) ,x z z z z x h z z1 2 1 2 2 1= -  (17)
R( , ) ( ) ( ) ,z z x h z z h z z1 2 2 1 1 2= -  (18)
R( , ) ( ) ,x z x z h z x1 1 1= +  (19)
S n( , ) ( ) ( ),z x h z1 11= -  (20)

S S n( , ) ( , ) ( ) ( ) ( ),fz fz z z h z h z1 2 1 2 1 21= + -  (21)
for the vector fields ζ1, ζ2, ζ3, where R and S denote the tensor of Riemann and Ricci.

3. aa , RYS nbb(( )) -- (( ))  on (Mn, f, x, h, g)

Lemma 3.1. Let Mn be an Lorentzian para Sasakian (LPS)n  manifold. If the a b, RYS
n( ) - ( )  admits 

an (LPS)n structure then it is Einstein manifold and its Ricci curvature is given by equation (22).

Proof. Taking V = ξ in (6) and using (12), we get

S r g( , ) ( , ).z z b l
a

z z1 2 1 2
2

2
= -æ
èç

ö
ø÷

 (22)

Hence proved.

Lemma 3.2. Let Mn be an (LPS)n manifold. If the a b, RYS
n( ) - ( )  admits an (LPS)n structure then (23), 

(24), (25), (26) and (27) hold good.

Proof. From (22), it is very obvious to obtain the following results:

S S r( , ) ( , ) ( ),z x x z b l
a

h z1 1 1
2

2
= = -æ

èç
ö
ø÷

 (23)
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S r( , ) ,x x l b
a

= -æ
èç

ö
ø÷

2
2

 (24)

Q rz b l
a

z1 1
2

2
= -æ
èç

ö
ø÷
,  (25)

Q rx b l
a

x= -æ
èç

ö
ø÷

2
2

,  (26)

SCA n r
RYS( , ) .a b

b l
a- = -æ

èç
ö
ø÷

2
2

 (27)

SCA(a, b)–RYS denotes the scalar curvature of a b, RYS
n( ) - ( )  admitting (LPS)n.

Theorem 3.3. Let a b, RYS
n( ) - ( )  admits an (LPS)n manifold having a non-constant scalar then a 

and b are related by a b= n
2 .

Proof. The derivative (covariant) of (25) yields

( ) ( ) .Ñ =KQ Krz b
a

z1 12
 (28)

Applying the metric both side, above equation reduces to

g Q Kr gK( )( , ) ( ) ( , ).Ñ =z z b
a

z z1 2 1 22  (29)

Arranging ζ1= ζ2 = ei in (29) and contracting, we get

g Q e e n KrK i i( ) , ( ),Ñ( ) = b
a2

 (30)

which implies

( ) .Kr nb
a2

1 0-æ
èç

ö
ø÷
=  (31)

For being non-constant scalar curvature r, we have the result.

Theorem 3.4. Let a b, RYS
n( ) - ( )  admits an (LPS)n manifold having a non-constant scalar curvature 

then soliton function is given by

l b= - -
2

1( ( )).r n n

Proof. Using (12) in (6), we get
2 21 2 1 2a z z b l z zS r g( , ) ( ) ( , ).= -  (32)

Substituting ζ2 = ξ in (32) and then applying (20), result obtain
2 1 21 1a h z b l h z( ) ( ) ( ) ( ).n r- = -  (33)

Since, h z( )1  is non-vanishing, the above equation produces

l b a= - -r n
2

1( ) .  (34)

With the help of theorem (3.1), equation (34) yields

l b= - -
2

1( ( )),r n n  (35)
which completes the proof.
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4. aa bb, RYS(( )) -- (( ))4  Admitting (LPS)4 Space-time

In this section, we consider the (LPS)4  spacetime to study. The Einstein’s field equation (briefly: EFE) 
defines the following relation

S r g g T( , ) ( , ) ( , ) ( , ).z z z z m z z z z1 2 1 2 1 2 1 22
- + = ¿  (36)

Here, µ denotes the cosmological term and ζ1, ζ2, the vector fields. ¿ being the gravitational constant 
and T deals for (0, 2) type energy momentum tensor (energy tensor).

The below equation reveals the information regarding perfect fluid and govern by
T p A A pg( , ) ( ) ( ) ( ) ( , ).z z r z z z z1 2 1 2 1 2= - +  (37)

Here, energy tensor and energy density function denote by T, whereas p indicates for fluid isotropic 
pressure. Also, we consider here a non-zero 1-form by A that define as g V A( , ) ( );z z1 1=  V being the 
flow vector field.

In our discussion, we consider ξ as the flow vector field and (37) changes in a new form as
T p pg( , ) ( ) ( ) ( ) ( , ).z z r h z h z z z1 2 1 2 1 2= - +  (38)

Substituting the value of Ricci tensor from (22) in (36), we have

T r g( , ) ( , ).z z m b l
a

z z1 2 1 2
1 2

2
= - -æ

èç
ö
ø÷

é

ë
ê

ù

û
ú¿

 (39)

Using Theorem (3.1), the energy tensor takes the form

T r g( , ) ( , ).z z m l
b

z z1 2 1 2
1
4

4 2= - +é

ë
ê

ù

û
ú¿

 (40)

The conclusion is below:

Theorem 4.1. Let a b, RYS( ) - ( )4  admits an (LPS)4 space-time with non-constant scalar curvature 
then energy tensor is an Einstein like tensor and given by

T r g( , ) ( , ).z z m l
b

z z1 2 1 2
1
4

4 2= - +é

ë
ê

ù

û
ú¿

Theorem 4.2. Let a b, RYS( ) - ( )4  admits an (LPS)4 space-time with non-constant scalar curvature 
then soliton function l is given by

l b r m= - + -{ }2
4 2 4¿( ) .p r

Proof. Equating (38) and (39), we obtain
1
4

4 2
1 2 1 2 1 2

¿
m l

b
z z r h z h z z z- +é

ë
ê

ù

û
ú = - +r g p pg( , ) ( ) ( ) ( ) ( , ).  (41)

Arranging ζ1= ζ2 = ξ, the above equation (41) yields the soliton function

l b r m= - + -{ }2
4 2 4¿( ) .p r  (42)

Hence the proof has been over.

Theorem 4.3. Let (a,b) steady-(RYS)n admits an (LPS)n space-time then non-constant scalar curvature 
is four times of cosmoligical scalar function µ, that is:

r = 4µ.
Proof. For the steady soliton we know that l vanishes. Therefore, using (4.2) we can calculate the 
value of cosmological constant µ as
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m b l
a

= -r 2
2

.  (43)

Applying theorem (3.1), completes the proof.

5. Cosmological Model on aa bb, RYS(( )) -- (( ))4  Admitting (LPS)4 Space-time

This section, contains the results on (LPS)4 space-time with considering a killing vector field. Here, we 
consider the (EFE), that does not consist cosmological term, given by

S r g T( , ) ( , ) ( , ).z z z z z z1 2 1 2 1 22
- = ¿  (44)

Using equation (22), (38) and (44), we obtain
r p g p A A( ) ( , ) ( ) ( ) ( ).b a l

a
z z k r z z- - -é

ëê
ù
ûú

= +2
2 1 2 1 2¿  (45)

Contracting ζ1 and ζ2 in (45), we get

r p= - + +
-

a r l
b a

¿( )
( )

.3 2
2

 (46)

Substituting (46) in (22), we get

S p g( , ) ( ) ( )
( )

( , ).z z ba r l b a
a b a

z z1 2 1 2
3 2 2

4
= - + - -

-
é

ë
ê

ù

û
ú

¿  (47)

As we know the Ricci operator Q is defined as
g Q S and S Q S( , ) ( , ) ( , ) ( , ).z z z z z z z z1 2 1 2 1 2

2
1 2= =�� ��  (48)

Thus, we have
A Q g Q S( ) ( , ) ( , ).z z x z x1 1 1= =  (49)

Then from equation (47) and (48), we have

S Q S p g( , ) ( , ) ( ) ( )
( )

( ,z z z z bat r l b a
a b a

z1 2
2

1 2

2

1
3 2 2
4

= = - + - -
-

é

ë
ê

ù

û
ú zz 2 ).  (50)

Contraction over ζ1 and ζ2 in (50), we have

Q p2
23 2 2

2
= - + - -

-
é

ë
ê

ù

û
ú

ba r l b a
a b a

¿( ) ( )
( )

.  (51)

Using theorem (3.1), we get

Q p2
21

16
3 3= - -é

ë
ê

ù

û
ú¿( ) .r l

b
 (52)

Theorem 5.1. If the perfect fluid space-time on a b, RYS( ) - ( )4  admitting (LPS)4 satisfy the (EFE) not 
consisting the cosmological term, the length of Ricci operator is given by

Q p2
21

16
3 3= - -é

ë
ê

ù

û
ú¿( ) .r l

b

Now, if we put ρ = 3p (the condition of perfect fluid to be radiation fluid) in equation (52), then we have

Theorem 5.2. If the perfect fluid is radiation fluid (i.e ρ = 3p) in a b, RYS( ) - ( )4  admitting (LPS)4, 
then length of Ricci operator is given by

Q 2
23

4
= é

ë
ê

ù

û
ú

l
b

.
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6. Dust Fluid on aa bb, RYS(( )) -- (( ))4  Admitting (LPS)4 Space-time

The dust fluid and the eneregy tensor can be modelled by
T A A( , ) ( ) ( ).z z r z z1 2 1 2=  (53)

Using equation (44) and (53), the expression becomes

S r g A A( , ) ( , ) ( ) ( ).z z z z r z z1 2 1 2 1 22
- = ¿  (54)

On contracting over ζ1 and ζ2 in above equation, we get

r = ¿ρ. (55)

By using equation (55) in equation (22), the Ricci tensor of perfect fluid a b, RYS( ) - ( )4  admitting 
(LPS)4 spacetime becomes

S g( , ) ( , ).z z b r l
a

z z1 2 1 2
2

2
= -é
ëê

ù
ûú

¿
 (56)

Thus, by virtue of equation (50) and (56), we obtain

S Q g( , ) ( , ).z z b r l
a

z z1 2

2

1 2
2

2
= -é
ëê

ù
ûú

¿
 (57)

Contracting ζ1 and ζ2 in above equation, we have

Q 2
22

2
= -é
ëê

ù
ûú

b r l
a

¿ .  (58)

Using theorem (3.1), we have

Q 2
21

16
2= -é

ë
ê

ù

û
ú¿r l

b
.  (59)

Theorem 6.1. If the dust cosmological model on a b, RYS( ) - ( )4  admitting (LPS)4 space-time satisfy 
the (EFE) not consisting the cosmological term, the length of Ricci operator is given as:

Q 2
21

16
2= -é

ë
ê

ù

û
ú¿r l

b
.

Now, using equation (22) and (54), we get
b l a

a
z z r z zr r g A A- -é

ëê
ù
ûú

=2
2 1 2 1 2( , ) ( ) ( ).¿  (60)

Contracting over ζ1 and ζ2 in equation (60), we get

r = - +
-

ar l
b a
¿ 4

2( )
.  (61)

By multiplying A(ζ3) in equation (60) and then taking contraction over ζ2 and ζ3, we have

r =
+

.
2 ar l
b a

¿( )
-

 (62)

From equation (61) and (62), we obtain

ar¿ = 0. (63)
As we know ¿ is gravitational constant, therefore ¿  ≠ 0. Thus, we have either a = 0 or r = 0.
If r = 0, then from equation (53) and (63), we obtain

T(ζ1 , ζ2) = 0. (64)
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Therefore, we can state the following theorem:

Theorem 6.2. If the dust cosmological model on a b, RYS( ) - ( )4  admitting (LPS)4 space-time satisfy 
the (EFE) not consisting the cosmological term the it is vacuum.

7. η–PRT on aa , RYS nbb(( )) -- (( ))  Admitting (LPS)n

This section examines η-parallel Ricci tensor (briefly: η-PRT) on a b, RYS
n( ) - ( )  admitting (LPS)n. If 

an (LPS)n consist η-PRT then
g QK(( ) , ) .Ñ =z z1 2 0  (65)

for all smooth vector fields ζ1 , ζ2.
The following is the very general expansion of Ricci operator

( ) ( ).Ñ = Ñ - ÑK K KQ Q Qz z z1 1 1  (66)
Using (25) in (66), yields

( ) ( ) .Ñ =KQ Krz b
a

z1 12  (67)
Using (67) in (65), we obtain

g Q Kr gK( ) , ( ) ( , ).Ñ( ) =z z b
a

z z1 2 1 22  (68)

In view of (31), we have Kr = 0 only if nb
a2 1 0-( ) ¹ .

Theorem 7.1. There exists an a b, RYS
n( ) - ( )  admitting (LPS)n with an η-parallel Ricci tensor only 

if nb
a2 1 0-( ) ¹ . .

8. Poisson aa , RYS nbb(( )) -- (( ))  Admitting (LPS)n Manifold

This section provides a definition of the statistical Poisson manifold and highlights several significant 
findings related to the statistical structure on the manifold.

Definition 8.1. The Poisson manifold consist the codazzi structure and explored by 
( )( , ) ( )( , ).Ñ = Ñz zz z z z

3 21 2 3 1S S  (69)
Taking covariant derivative of (22) and using (11), we get

( )( , ) ( ) ( , ).Ñ =z z z b
a
z z z

3 1 2 3 1 22
S r g  (70)

Also, we can calculate,

( )( , ) ( ) ( , ).Ñ =z z z b
a
z z z

2 3 1 2 3 12
S r g  (71)

In view of (69), (70) and (71), we have
b
a
z z z b

a
z z z

2 23 1 2 2 3 1( ) ( , ) ( ) ( , ).r g r g=  (72)

Put ζ1 = ξ in (72), we obtain
b
a

z h z z h z
2

03 2 2 3( ) ( ) ( ) ( ) .r r-éë ùû =  (73)
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Put ζ3 = ξ  in (73) and using lemma (3.1), we have
b
a
z

2
02( ) .r =  (74)

So, we have either b
a2 0=  or (ζ2r) = 0.

As defined earlier a and b are non-vanishing constants, therefore ζ2r = 0 which is possible only if 
nb
a2 1 0-( ) ¹ .  Thus, we have

Theorem 8.2. An a b, RYS
n( ) - ( )  admitting (LPS)n is the statistical Poisson manifold only if nb

a2 1 0-( ) ¹ . 
and the scalar curvature is constant.

9. Gradient aa , RYS nbb(( )) -- (( ))  Admitting (LPS)n Manifold

Suppose that a b, RYS
n( ) - ( )  admits (LPS)n manifold then (7) turns to

Ñ = -æ
èç

ö
ø÷

-z l b z a z
1

1
2 1 1Df r Q .  (75)

The derivative (covariantly) of (75) along ζ2, produces

Ñ Ñ = - Ñ - - Ñz z z zl b z b z z a z
2 1 2 2

1
2 21 2 1 1Df r r Q( ) ( ) .  (76)

Interchanging ζ1 and ζ2 in (76) refer

Ñ Ñ = - Ñ - - Ñz z z zl b z b z z a z
1 2 1 1

1
2 22 1 2 2Df r r Q( ) ( ) .  (77)

It is quite simple to arrange the above information to form the following

R Df r r Q Q( , ) ( ) ( ) ( ) ( ) .z z b z z z z a z zz z1 2 2 1 1 2 2 12 1 2
= - - Ñ - Ñéë ùû éë ùû  (78)

On the other hand, equation (25) results as

( ) ( ) ( ) ( ) .Ñ - Ñ = -éë ùûz zz z b
a

z z z z
1 22 1 1 2 2 12
Q Q r r  (79)

Using (79) in (78), we get

R Df r r r r( , ) ( ) ( ) ( ) ( )z z b z z z z a b
a

z z z z1 2 2 1 1 2 1 2 2 12 2
= -éë ùû- -é

ë
éë ùûêê

ù
ûú
,  (80)

which can be simplified as
R Df r r( , ) ( ) ( ) .z z b z z z z1 2 2 1 1 2= -éë ùû  (81)

Contracting (81) and using Lemma (3.1) we get
S Df n r( , ) ( ).z b z2 2=  (82)

Alteration of ζ1 by Df in (22), yields

S Df r f( , ) ( ).z b l
a

z2 2
2

2
= -æ
èç

ö
ø÷

 (83)

In view of (82) and (83), we have

n r r fb z b l
a

z( ) ( ).2 2
2

2
= -æ
èç

ö
ø÷

 (84)
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Since ζ2r = 0 is possible only if nb
a2 1 0-( ) ¹ .  Hence, we have

b l
a

xr f-æ
èç

ö
ø÷

=2
2

0( ) .  (85)

As (ξf) ≠ 0, the soliton function reduce to

l b= r
2
.  (86)

Theorem 9.1. In a a b, RYS
n( ) - ( )  admits (LPS)n manifold the soliton function is given by.

l b= r
2
.

provided nb
a2 1 0-( ) ¹ .

The metric inner product on (82) with ξ results

h z z h z z b z h z z h z( )( ) ( )( ) ( ) ( ) ( ) ( ) .2 1 1 2 2 1 1 22
f f r r- = -éë ùû  (87)

Put ζ1 = ξ in (87) and using lemma (3.1), we have

h z x h x z b z h x x h z( )( ) ( )( ) ( ) ( ) ( ) ( ) .2 2 2 22
f f r r- = -éë ùû  (88)

Simplifying, above equation reduces to

( ) ( ).z
b
z2 2

2r f= -  (89)

Using (89) in (84) and then applying theorem (3.1), we receive

l
b

=
+( )r n2
2

2

.  (90)

Thus, we can state

Theorem 9.2. The soliton function of a b, RYS
n( ) - ( )  admits (LPS)n Manifold, having non-constant 

scalar curvature, is given by

l
b

=
+( )r n2
2

2

.

10. Example

Example 10.1. Let’s have a look at a differentiable manifold in four dimensions, 
M 4

1 2 3 4 1 2 3 4 0= Î ¹( , , , ) : ( , , , ) ,z z z z Â z z z z  where ( , , , )z z z z1 2 3 4  is the standard coordinate in four- 
dimensional real space. Considering that each point on M has a collection of linearly independent 
vector fields, let’s call them (f1, f2, f3, f4), and is defined by

f f f f f f fa a a
1

1
2

2
3

3

1 4 2 4 3 4= = =- - -z z z z z z¶
¶z

¶
¶z

¶
¶z

, , ,���� ���� ���� 44
4

= ¶
¶z

 (91)

where a is non-zero constant and ¶
¶z

¶
¶z

¶
¶z

¶
¶z1 2 3 4

, , ,
ì
í
î

ü
ý
þ

 denotes the standard basis of M 4.
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Let the metric (Lorentzian) and the 1-form η components on M 4 are concreted by 

g g f f
c d
c d

c d
cd c d= =

- = =
¹

= ¹

ì
í
ï

î
ï

( , )
,
,
,

1 4
0
1 4

if�
if�

if�
 (92)

and
h z z( ) ( , ).1 1 4= g f  (93)

for any z1 ÎG( )TM  on M 4.
If f f f f( ) , ( ) , ( ) , ( ) ,f f f f f f f1 1 2 2 3 3 4 0= = = =  are the tensor field then the following relationships may be 
easily verified by g’s and φ’s linearity properties:

h f z z h fz fz z z h z h( ) , ( ) , ( , ) ( , ) ( )f X f g g4
2

1 1 4 1 2 1 2 11= - = + = -���� ���� (( ).z 2  (94)
The Lie bracket’s (non-vanishing) components are determined as follows:

[ , ] , [ , ] [ , ] .f f af f f af f f af1 4 1 2 4 2 3 4 3= = =���� ����  (95)
The Koszul’s formula yields for f4 = ξ

Ñ = Ñ = Ñ = Ñ =

Ñ = Ñ =
f f f f

f f

f af f f f af
f f

1 1 1 1

2 2

1 4 2 3 4 1

1 2

0 0
0
, , , ,
,
�� �� ��
�� aaf f f af

f f f af
f f

f f f

4 3 4 2

1 2 3 4

2 2

3 3 3

0
0 0

, , ,
, , ,

�� ��
�� �� �

Ñ = Ñ =

Ñ = Ñ = Ñ = ��
�� �� ��

Ñ =

Ñ = Ñ = Ñ = Ñ =
f

f f f f

f af
f f f f

3

4 4 4 4

4 3

1 2 3 40 0 0 0
,

, , , .  (96)

The curvature components R, Ricci components S and the scalar tensor r are obtained respectively
R f f f a f R f f f a f R f f f a f
R
( , ) , ( , ) , ( , ) ,1 2 1

2
2 1 3 1

2
3 1 4 1

2
4= - = - = -��� ���

(( , ) , ( , ) , ( , ) ,
(
f f f a f R f f f a f R f f f a f

R
1 2 2

2
1 2 3 2

2
3 2 4 2

2
4= = - = -��� ���

ff f f a f R f f f a f R f f f a f
R f

1 3 3
2
1 2 3 3

2
2 3 4 3

2
4

1

, ) , ( , ) , ( , ) ,
(

= = = -��� ���
,, ) , ( , ) , ( , ) .f f a f R f f f a f R f f f a f4 4

2
1 2 4 4

2
2 3 4 4

2
3= - = - = -��� ���  (97)

S f f S f f S f f a S f f a( , ) ( , ) ( , ) , ( , ) ,1 1 2 2 3 3
2

4 4
23 3= = = = -����  (98)

r = 6a2. (99)

If we consider l b a= -3 2a ( ),  and the values from the equation (10.8) and (10.9), equation (3.1) satifies.
Hence, it is an example of four-dimensional a b, RYS( ) - ( )4  admitting (LPS)4.
Using Theorem (3.1) in l b a= -3 2a ( ),  we get

l = –3ba2. (100)
Equating (100) and (35), yield

a = ±1. (101)
Hence, for a = ±1, the defined metric in (10.1) and the values obtained in (10.8) and (10.9) satisfy the 
theorem (3.1) and theorem (3.2).

Conclusion

The Lorentzian metric and its generalizations play very important role in the study of cosmology.  
The perfect fluid, that depends on the lorentzian metric, is an example to represents the universe. 
Here, we study the soliton metric on Lorentzian manifold and discuss some fruitful investigation. 
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Specially, the cosmological models have been discussed and the length of Ricci operator has been 
obtained and proved that spacetime is vaccum. The Poisson structure is an interesting topic to inves-
tigate in cosmology and mathematical physics. The soliton function has been discussed under the two 
different conditions, whether the scalar curvature is constant or not.
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