Results in Nonlinear Analysis 8 (2025) No. 1, 73-87
https://doi.org/10.31838/rna/2025.08.01.008
Available online at www.nonlinear-analysis.com

Results in Nonlinear Analysis

ISSN 2636-7556

‘ Peer Reviewed Scientific Journal

On the radial solutions of a p-Laplacian equation
involving a nonlinear gradient term and initial datum

Arij Bouzelmate?, Hikmat El Baghouri?, Fatima Sennouni?

ILaR2A Laboratory, Department of Mathematics, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco; 2LaR2A Laboratory,
Department of Mathematics, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco; 3LaR2A Laboratory, Department of
Mathematics, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.

Abstract

The present paper establishes the existence, uniqueness and asymptotic behavior of positive radial
solutions to the following ordinary differential equation with a positive initial datum

N -1

(I P2 ) + [V P2 v +rv'+v=0 forr>D0,

where p > 2 and N > 1. We start by providing a result on the existence of radial positive solutions
using the shooting method and an associated energy function. Next, we derived crucial findings regard-
ing the behavior of entire solutions near infinity. More precisely, we prove that the solutions behave
like the function [/r, where [ is a positive constant.

Key words and phrases: Elliptic equation, p-Laplace operator, gradient term, radial solutions, shooting
method, positive solutions, asymptotic behavior.

Mathematics Subject Classification (2010): 35A01, 35B08, 35B09, 35B40, 35J60

1. Introduction

In this article, our attention is directed towards a radial self-similar solutions of the next elliptic
equation

N-1 [V P2 u'(r)+rv'(r) +u(r) =0 if r>0, (1)
r

("2 vy () +
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where p>2 and N> 1.
Given our focus on radial regular solutions, we impose the condition v’(0) = 0 and we examine the
subsequent initial-value problem

(1 P20 (r) + N-1 [V P2 (r) +rv'(r)+u(r)=0 for r>0, (EL)
(P) r

v(0)=b, v'(0)=0, (E2)

where p>2and N> 1 and b > 0.
The investigation of semi-linear elliptic equations, expressed in the form

Au+f(x,u, Vu) =0 2

has been the subject of numerous studies. In [1], H. Berestycki and L. Nirenberg established spe-
cific characteristics of the solutions to (2) under prescribed conditions on the function f. Additionally,
in [10], the authors demonstrated the existence of large positive solutions to (2) given certain supple-
mentary hypotheses. Also, in [5], C. Cowan and A. Razani utilized an explicit solution on the unit ball
combined with a linearization argument to obtain positive singular solutions for perturbations of the
unit ball of equation (2). For more detailed insights into this particular type of equation, we recom-
mend consulting [9, 16, 6], as well as the references contained therein.

When p > 2, several studies have focused on the equation

Au+f(x,u,Vu) =0, 3)

within bounded domains. In [7], C. Cowan and A. Razani demonstrated that if the domain is a
sufficiently small C2-perturbation of the unit ball, a singular positive weak solution of (3) exists.
Furthermore, in [23], the authors established the existence of a bounded positive classical solution
of (3) with additional specified properties.

In this research work, we draw inspiration from this combination of a source term and a gradient
term, and delve into the examination of an equation involving the p-Laplace operator with degener-
ate nature both at r = 0 and at points corresponding to v’ = 0. We refer the reader to the articles [2—4,
8, 17] and [18] for other equations of this type.

We summarize the results obtained for (P) as follows. We prove, by applying a fixed point theorem,
that for each b > 0 there is a unique function v(.,b) solution of (P) defined in [0, +] so that |v] I v] is
in C([0, +o0]). Certain concepts of the proof are derived from the following documents [11, 12, 19-22]
and [15]. Next, we carefully study the qualitative characteristics of the solutions to (P). Initially, we
demonstrate that each solution of (P) is strictly positive and strictly decreasing. Next, we study the
asymptotic behavior of solutions near to infinity. More precisely, inspired by [13, 14] and [24] we prove
that }LI}}O u(r) = }EBO v'(r) =0. We prove also that the function r v(r) tends to a strictly positive limit when

r tends to +oo.

The subsequent sections of this paper are organized as follows: In Section 2, we introduce a result
pertaining to the existence and uniqueness of positive solutions to (P), employing a fixed point the-
orem and an associated energy function. Section 3 is dedicated to examining the behavior of global
solutions and their derivatives in the vicinity of infinity. The last section 4 highlights the main results
obtained and outlines the perspectives of this paper.

2. Existence of positive solutions

In this section, we use a Banach fixed point theorem and an energy function to demonstrate that (P)
has a unique positive solution. The fundamental theorem of existence is given below. We will refer to
the solution of (P) by v, to represent its dependence on the shooting parameter b.
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Theorem 2.1 For each b > 0, there is a unique solution v, of (P) defined on [0, +xo] so that
(lv, I v,) € C'([0,+0]) . Moreover

(I, I 1,y (0) = =b/ N. @

Proof: To establish this theorem, we will proceed through four steps. Firstly, we demonstrate the local
existence of a solution. Next, in the second step we establish the result giving by 4. In the third step,
we extend the solution on [0, +]. In the last step, we show that this solution is strictly positive on
[0, +oo]

Step 1. The local existence of v,.
Consider a solution v, of (P) on [0, r, [. Multiplying (E1) by "' we obtain:

[rN’l lv, I v, + vaJ =(N-Dr"y,, (5)

Integrating (5) over (0, r) and considering (E2), we obtain

0,0 =b—[ H(Glv,)(s)ds, ©)
Q

where H(s)=[s]| ,seR and G is a non-linear function given by

GI@)(s) =s0(s) + s [ (1= N)o" " d(0)do. (7)

Let R > 0, then let C([0, R]) be the Banach space of continuous functions on [0, R] with the uniform
norm | |.||,. Thus G[®] is appropriately expressed as an operator from C([0, R]) into itself, where
R > 0 and C([0, R]) denotes the space of continuous functions on [0, R] possessing the standard norm
| 1.11,- We consider b >0, K> 0 and we set the complete metric space E, , , giving by

E,p =4 € CAO,RD: | 1y —b] ,<K}. ®
In addition, we introduce the operator I'on E, ., by
F@](r)=b~ [ H(Gl®@)(s))ds. ©)

First, we show that I' applies E, ., in itself for K sufficiently small and R > 0. It is clear that
I'[®@] e C([0,R]). Using the definition of £ we determine that @ €[b- K,b+ K] and consequently,
a simple calculus gives

b,K.R’

GlD](s) > %(b - K)}s. (10)
As
m{—(b K)}:%m (11)

Then there is K, €[0,b] so that for all K €(0,K,), G[®@] has a constant sign. Thus there is >0 so
that for all s [0, R],

G[D](s) = ns. (12)
Since (H(r) / r)' <0 if re(0,+m), we obtain

r

[@10) |

H(G Hno)
G[®](o)

r'@)(r)-bl | G[@](o) | do, (13)

o'-—.

[@](c) | do <j
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for 0 < K< K and r [0, R]. However,
G[@](s) <IG[@](s)I<Cs, C=[2-1/N](b+K), (14)
hence, for each r € [0, R] we get

2-p p

| F[®](r) bl 2= . Cn"lr’” (15)

with the constant 7 fixed, R is chosen to be sufficiently small so that

4P b

—C TR <m (16)
p
Hence for each @ € E, , , we have
| C[@](r)-bI<K. 17

This means that I'[@]e E, ..
We will now show that I' is a contraction on an interval [0, r,].
Let ¢ and @ € E, , , we have

| "l(r) - T'[@](r) I< IIH(G[w](S)) - H(G[®](s)) | ds. (18)

Next, we let
y(s) =min (| Glel(s) |,| G[P](s)|)
As a consequence of relation (12), we get

Gly1(s) 2 ns,
for 0<s<r<r,. This gives

| H(Glp)(s)) - HG[@](s)) I< w | Glp](s) —~ GI®](s) |

(s)
Hence
| H(Glo)(e) - HGI@1e) 1< 22 | Glo)(s) - GEes) . (19)
in addition, from (7) we obtain
Glol(s) -Gl@](s) Al lp-@ | |, s; A=[2-1/N]. (20)
By combining (18), (19) and (20) we obtain
| Flpl() - @01 £ 222 T | 1o -0, @1)

for each r €[0,r,]. Finally, we choose r, small enough so that

o o
p-1 AnPrt <1,
p
we deduce that I' is a contraction. Thus, the fixed point principle involves the existence of a unique
fixed point of I'in E, . .. this point is the solution of (6) and therefore the solution of (P).

Step 2. (ly, " v,) € C'([0,r,.. D).
From the form of (E1), it is sufficient to verify that v, is of class C" at point r = 0, for that we integrate
(E1) over (0, r), we obtain
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lv, 1”2 v, (r) = —rv,(r) + (N =1)r'™" L s" v, (s)ds,
then applying the L’Hoépital’s rule we obtain

s
limM - _b/N. (22)

r—0 r

Hence, according to (£1), we have
lim(1v, 1"* v;,) () =-b/ N.

Step 3. Extend the solution v, on [0, +oc].
In this step, we will prove that the solution v, is global, i.e. it can be extended on [0, +o]. For this, we
introduce the energy function

(p-DIuOF  ve)

E (r)= 2 vr>0. (23)
It’s obvious from (£1) that
: N-1
E/(r) = -rv(r) [r—2 lo, (M2 +1]  wr=o0. (24)

Then E, is decreasing and as a result it is bounded on [0, +o]. Consequently v, and v,’ are also
bounded and then v,(r) exists for each r > 0.

Step 4. v, is strictly positive on [0, +oo].
Proceeding by contradiction, we suppose that v,(r)) = 0 (where r, > 0 is the first zero of v,). Thus
v,(r)>0on [0, r] and v,'(r)) < 0. We integrate (5) over (0, r,), we get

o, PP o () = (N —l)joro s" v, (s)ds. (25)

According to our assumptions, the right term of the relation (25) is strictly positive. Which is a
contradiction. The proof of this theorem is completed. Ll

3. Asymptotic behavior near infinity

In the present section, we examine the behavior of solutions to (P) near to infinity, taking into consid-
eration the fact that they are strictly positive. First, we present some characteristics of the solutions
to (P).

Theorem 3.1. Let v, denote a solution of (P). Then
limv,(r) =limuv, (r) = 0.

Proof. Recall that the energy function E, is positive and decreasing for all r > 0. Then there is L > 0
so that lim E,(r) = L. We assume by contradiction that L > 0, then there is r, > 0 so that for all r > r,

we have
E,(r)> % (26)

Next, we define the function

p-2 — r
N -1| Uy | Ub'(r)vb(r) n N4 1 UZ (r)+ .[0 80;2 (s)ds. @7

I(ry=E,(r)+
-
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Hence

I!(r) —_ (N - ]-) |:| Ub' |p +N| Ub’ |p—2 Ub’(r)vb (r) + U: (7'):| . (28)
2r r

Note that v, and v,’ are bounded. Hence

Lo I, (0,0

r—+ow r

0.

In addition, according to (29), we get for all r > r,

1 -1 L
vi(r)+ v, IP (r)ZEUE(r)-f— pp lv, I” (r) =Eb(r)25.

Hence, as N > 1, there is two constants 4 > 0 and r, > r, so that

I'(r)< “E for r> r,. (29)
r
Integrating (29) over [r,, r], we obtain
I(r)<I(r,)—puln(r/r,) for r>r,

which implies that lim I(r) = —o0. Moreover

r—>+0

E,(r)+ < I(r).

Hence limE,(r)=-c. This is impossible and therefore limE,(r)=0. Thus from (23),

N —1lv, P v, (r)v,(r)
r

limuv,(r) =limu, (r) =0. (]

The following theorem gives information on the monotonicity of solutions to (P).

Theorem 3.2. Let v, be a solution of (P), then v, is strictly decreasing.

Proof. We proceed by means of contradiction. Then let v, > 0 be the first zero of v,". Thus from (E1) we
have (lv, I’”* v,) () = —v,(r,) <0. Furthermore, we can see from (22) that v,'(r) < 0 for r = 0. By conti-
nuity of v,” and definition of r, there is £ >0 so that v,’is strictly negative and strictly increasing on
Ir, —&,7,[ . This implies that (|v, [’ v,) (r) >0 for all r €]r, —¢,7,[, and consequently, if we tend r to r,,
we obtain (|v, I v,) (r,) >0. Which is contradictory. |

Theorem 3.3. Let v, denote a solution of (P). Then
lim r*v, (r) € [0,+oo[ forall O0<k<l1.

The proof of Theorem 3.3 requires the following result, which gives information on the monotonic-
ity of the functions r°v,(r) for ¢ > 0. The reason why we define for each function v, verifying (£1), the
function T by

T.(r)=r"“(@v,(r)), ¢>0 and r>0, (30)
that is
T(r)=cv,(r)+rv,(r), ¢>0 and r>0. (31)

Since v, '(r) < 0 on (0, +o0), we have from (E£1),

(p-Dlv, " (NT(r) =(p-1) [c - f j lv, 1772 0, (r) = v, (1) = 70, (7). (32)



Bouzelmate, A., et al., Results in Nonlinear Anal. 8 (2025), 73-87 79

Hence for all r  so that T (r)) = 0, we have

(p-1)lu, I"* ()T = m(m){c 14 (p-De (ZZ 2. cj e (“’)}. (33)

0

The following proposition is devoted to study the sign of 7'(r) if r is sufficiently large.

Proposition 3.4. Consider a solution v, of (P), and let ¢ > 0. Then T (r) keeps a constant sign if r is
sufficiently large in both cases

(1) c#1,

- p

i) e=12 Y

Proof. (i) Let r, sufficiently large so that 7' (r)) = 0. Since v, is strictly positive and converges to 0
at infinity, then from (33), we have T '(r)) > 0if ¢ > 1 or else T '(r,) <0 if ¢ < 1. As a consequence, 7T (r)
# 0 if r is sufficiently large.

For (i1), similarly if r is large enough so that T'(r,) = 0, then

N - v’ (r,

1, P (3)TG) =[ P —1} L), (34)
p-1 T,

Hence T, '(r,) # 0 and therefore T'(r)) # O when r is large enough. Cl

The demonstration of Theorem 3.3 is now within our reach.

Proof. Let 0 < k < 1. According to (i) of Proposition 3.4, the function 7(r) keeps a constant sign if r is
sufficiently large. Assume that 7', (r) is positive when r is sufficiently large. Then, according to (31) and
the fact that v,’ <0, we have

rlv,(r) < ky,(r), (35)

when r is sufficiently large. However, using (E1), we obtain

(lv, P v,) (r) = N-1 v, I (r) + 71, (r) | —v, (7). (36)

Using (35), we find that if r is sufficiently large,
(Iv, P 0,) (r) < (N = 1)k?" ”b (’) + kv, (r) = v, (), (37)
Which is equivalent to

(v, |”2v)(r)<v(r)[k 1+ (N -t D) (")} (38)

if r is sufficiently large. As v, is strictly positive, 0 < £ < 1 and limy,(r)=0, we deduce that

r—+oo

(lv, P v,) (r) <0 if ris sufficiently large. Moreover, since v,'(r)<0foreachr>0,then }eri v, (r) € [—0,0[ .

However, this is contradictory since v, is strictly positive. It follows that 7' (r) is negative if r is suf-
ficiently large and so, by virtue of (30), the function r*v,(r) is decreasing when r is sufficiently large.
Consequently lim r*v,(r) € [0, +oo]. O

Now, after establishing the existence of lim r*v,(r) for all 0 <k < 1, the question of convergence of the

function rv,(r) arises. The answer lies in the subsequent theorem.
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Theorem 3.5. Consider a solution v, of (P). Then

limrv,(r)=1>0 (39)
Moreover if N-p #1, then

p-1
lim r’v (r)=-1<0. (40)

The proof of Theorem 3.5 requires the next preliminary results.

Lemma 3.6. Let v, be a solution of (P). Assume in addition that thereis 1 >0,y 20 and r, >0 so that
v,(N<n+r)” for each r=r,. (41)
Then there is a constant m depending on 1, y andr, so that

lv, () IKm@+7r)""  forall r>r,. (42)

Proof. Let us define the function ¢ as follows

¢(r)= exp{ 1 js lv, (s) ? ds]. (43)
p-1

o

Remember that v," <0, hence {(r) is properly expressed for all r > r  and it is strictly increasing
and infinitely differentiable. By multiplying (£1) by

N-p N-1

(p-DrD¢(r) =lu, P o6 (r), (44)
we obtain, for all 7 > r,
(p —=Dr¥ Ve (P, + (N =1)r "D (r,, + (p —Dr¥ Ve D¢ (ry,
— _(p _ l)r(pr)/(pfl)éf '(T)Ub.

This equation can be written as follows

W) = ~(p— Dr™ 20 Gy, (45)
with
W(r) = (p - D, (Hr> £ (), (46)

for all r > r . Integrating (45) over (r,, r) for all r > r,, we obtain

(-N)/(p-1) O Ll I SR
v, (r) :Wvb,(ro)r0 P 0 Is PREIE (v, (s)ds.
Asv,'(r) <0 and {'(r) >0, then for all r > r,
o) | W PR <1—N>/<p—1>J n
v,rHE——— . """ o ()| +———/,
' sy ° v g(r)

with

J = js(N’m“”’”C’(r)vb (s)ds.

o
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As v,"is continuous on [0, +oo] and lim v, (r) =0, then there is a constant 7, depending on r, exists,
so that o

lv, (r) FP>n,. (48)
Hence
¢(r)y=n,exp(nr?)  forall r>r,, (49)

1 . . .
where n, = ﬂno and 7, = exp[-n,r’]. By majoring the first term of the right-hand side of the
p —
inequality (47), we obtain

=N L (N-D/(p-1) 1
C(’(”)) lv, (r,) < 77_ lv, (r,) | exp[-n,r]. (50)
2

Then, to obtain an estimation of the second term of the right-hand side of the inequality (47), we
use the assumption (41). So for all r > 2r, we have

ri2 r

J<C j sNPYPDE() (1 4 8) 7 ds + cj sNPYPD (Y (1 + 8) 0 ds. 1)
T r/2

One can easily verify that

r/2 h H

[s ¢ +9)7ds<@+r) " max, ,,(s")(r/2), (52)
also

r N-p N-p

[s e ma+sy ds<@+r/2y max,,, (s")E0). (53)

rl2

Therefore, we note that

0D exp| - [ slv, ()17 ds . (54)
C(r) p _1 rl/2
from (48) we deduce that
L(ri2) 2
<exp[-n,r], (55)
g(r) ’
where n, = L110. Combining (51-55), we obtain
8(p-1)
N g 1N N-p
ret _C( ) <SA+r) "t +6rot max, ., (s”")exp [—nSrz ], (56)
r ,
with § >0 is a constant that depends on N, p, r, and o. Finally, by combining (50) and (56), we
deduce the estimation (42). This completes the demonstration. [l

Lemma 3.7. Let v, be a solution of (P) with v(0) =b. Then
C
O<v,(r)<—  for r large enough, (57)
r

where C is a strictly positive constant.
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Proof. By multiplying (E1) by v,/r, it is easy to obtain

vir) v, P (r N . v o, 2o, |
bi): br()—vbvb,—r—zvblvbrlpzvb,— % . (58)
Using the energy function given by (23), we obtain
_ p p-2 '
Eb(r) = 3p-2 lvb’ | (r) - ll)bUb' _lzvb |Ub' |p72 Uy _l % lv—b’ | i . (59)
r 2p r 2 2r 2 r

However, according to Theorem T3.2, v,’ <0, then

Eb(r) = 3p —2 |vb' |p (I") —lUbUb + EZUI, |Ub' |p_1 —l —vb |vb' |1”2 Yy
r 2p r 2 r

s T T RS TS (EA L
- b 2 b [ °
2p r 4 2 r

We integrate the last equality on (r, R), then we get

R

J'Eb(s)dsz 3p—2

R »
[l g Loy« Loz
s 4 4

, S 2p 3
+ET v,(s) v, I (S)ds 1y, Ry, P v, (R)
2 s” 2 R
BRI I v, ()
2 r

Using v, > 0 and v," < 0 again, we obtain

R R »
IEb(S) ds < 3p—2I|vb/(8)I
S 2p ¢ S

ds+ivf(r) +

r

% f v, ()| & ) % v, (R)| J B
Since v, is bounded, more precisely v,(r) < b, we can assume that there is 6 >0 and C > 0 so that
v,(r)<Cr° (60)
for r large enough. Thus, the Lemma 3.6 implies that

lv, (r)I<Cr™ (61)
lv, P (r) and % | v,; P

r
tend R — +oo and use the fact that }E}; v, (r) = }LIE v, (r) =0, we obtain

when r is large enough. It follows that

are in L'(Jr,,+oc[) for all r, > 0. We

2 (62)
S s

r

© 0 P o p-1
[ B e 8220 g, Ly N 76,
2p Y s 4 2

We set

A(r) = T@ ds. (63)

r
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From (23) we have v}(r) <2E,(r) , consequently (63) implies that

A(r) + %A'(r) —A(F) - @

vi(r (64)

< A(r) - #
Hence from (62) we obtain
Ar) + %A'(r) < 3‘; ; 2 T [0y (38) " 4o + %T 0L ”;2' ) g (65)
Consequently, according to (60), (61) and (65), we obtain
[r*A(r)] <Cr?“"  when ris large enough. (66)
A simple integration of (66) yields
A(r)<Cr, if rislarge enough. (67)

Now, taking into consideration the fact that the energy function E, is non-increasing, we obtain

2r 2
AG) = E(S) gg > 2o20) L v,C2r) (68)
S 2 4
Hence, according to the estimation (67) we have
v,(r)<Cr', when rislarge enough. (69)
The demonstration is achieved. Ol
Lemma 3.8. Consider a solution v, of (P). Assume that limruv,(r) =0. Then for each real m >0,
}LIEO r"u,(r) = }EEO r"uv,(r)=0. (70)
Proof. We set
! |p-2 .t
I(r)= r[vb(r) + M] . (71)
r
Then, we have
1 |p-2 .
1,(r) = —(N —1) % %) (72)
r

According to the Lemmas 3.6 et 3.7, the function r — r™* |v] [’ is integrable on (r,, +oo) for all ;> 0.
Hence I' € L'(r,,+%). As limru,(r) =0 and limv,(r) =0, then lim I (r) =0. As a result

I(r)= —T I(t)dt.

Hence, from the expressions of I and I ' we have

-l 0@ N1 F@F 06, (73)
r

r S

r

Since v,’ <0, then

1t p-1
N -1 J‘ lv,(s) ] ds
r s

1, .,
vb(r)S;Ivb P+ (74)

r
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Since lim rv,(r) =0, then, according to Lemma 3.6 and (74), we have if r is large enough

v, <Cr'??,
for some C > 0. Let us define the sequence
m,=(p-1)m, +p and m,=1.

Then lim m, = +o, Consequently, the theorem is obtained by induction, starting with m = 1. This

r—>+0

completes the proof. O

Lemma 3.9. Let v, be a solution of (P). We define the function J by

10,1 v—b'(’)]

r

J,(r)y=r" {vb (r)+ (75)

Then, for each r >0, we have J (r) >0 and J (r) > 0.

Proof. 1t is easy to verify that
J,(r)=(N-1r* v, (r).

Since v,(r) is strictly positive, then for all r > 0, JJ 1is strictly increasing. Moreover, since

(I v, IP? v, )' (0)=-b/ N is finite, then J (0) = 0. Therefore J (r) >0 for all r > 0. |
Now, we can proceed to prove Theorem 3.5.

Proof. Recalling Lemmas 3.6 and 3.7, we have the function r —r™" |v; I’ is integrable on (r,,+) for
all r,> 0. Thus I e L'(r,,+). Therefore

lim ,() = [ L()dr + 1,6;) &

exists and is finite. Moreover, (57) and (42) implies that
lv, P'< Cr??, (78)

if r is large enough. Then it follows from (71) and (78) that lim rv,(r) =1 exists and is finite. Suppose
now that [ = 0, then by virtue of Lemma 3.8, we have o

lim r"v, (r) =limr™v, (r) =0,
for all m > 0 and then lim ¢/ (r) =0. But this is a contradiction as ¢/ is strictly positive and strictly
increasing for all r > 0 (according to Lemma 3.9). Therefore limrv,(r) =1> 0.

Now, to show that r’v,(r) converges to — at infinity, we make the following logarithmic
transformation:

U@)=rv,(r) with t=In(r). (79)
So U satisfies the following equation

w'(t) + Tw(t) + > 'U'(t) =0, (80)
where

w®) =y I (@), (81)
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y@) =U't)-U(t) = r*v,(r) (82)
and

I'=N-2p+1. (83)

From Proposition 3.4 and (30), we know that r v, is strictly monotone for large r if N-p #1.
According to (82) we have p-1

U'(t)=y@)+U) =r(rv,) . (84)
Therefore U is strictly monotone for large t. Since tlim U()=1>0, then necessarily limU'(t) = 0.
Afterwards, by (82), tlim y(t) = —tlim U(t)=-1<0, thatis limr’v,(r) = -1 <0. O

Theorem 3.6. Consider a solution v, of (P).

o1

_f >1, then r v, is strictly increasing and r’v, is strictly decreasing, for larger.
p p—

N

.. -p
@) If o1

<1, then r v, is strictly decreasing and r’v} is strictly increasing, for large .

Proof. First, we use the logarithmic change (79) and we show that w(¢) is strictly monotone if ¢ is large.
Suppose that there is a large ¢, so that w'()) = 0, then from (80), we have

w'(t,) = (1 -2p)e* " U(L,). (85)

Since U is strictly monotone for large ¢, then w"(¢,) # 0. Hence w'(f) #0 for large ¢, that is w is
strictly monotone for large ¢. Moreover, since

limw(® = lim | 5O F* 30 =1 <0, (36)

then necessarily limw't =0 and thus according to (80), we get

t—>+00

lime**'U'(t) =—(N-2p+1) tlim w(t)

t—>+00 (87)
=(N-2p+1)*".
That is from (84) and (31), we have
tlirn r*(rv,) = tlim r?* T (r)=(N -2p+1)I"". (88)

According to our hypotheses, we have I' =N —-2p +1# 0. Then the monotonicity of r v, depends on
the sign of T'.
Now, to see the monotonicity of r’v, , we use again the logarithmic change (79), we get

1 ,
YO = — 1wl w(R) = () =T, (89)

Since w(t) is strictly monotone for large ¢, then y is also strictly monotone for large . Therefore r’v,
is strictly monotone for large r, that is T}(r) # 0 for large r. On the other hand, we have from (88),

lim 7} (r) = 0. Therefore, If N- f >1, we have T(r) is strictly positive, strictly monotone if r is large
r—+0 p —

and converges to 0 at infinity. Then necessarily T'(r) < 0 if r is large, hence (r*v;)' < 0 for large r. If
N-p

p-1
0 at infinity. Then necessarily 7’(r) < 0 if r is large and so (r*v;)'> 0 if r is large. Ol

<1, in the same way, T'(r) is strictly negative, strictly monotone if r is large and converges to
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Theorem 3.11. Assume that N-p #1. Let v, be a solution of (P). Then

p-1
lim r’v,.(r) =21 > 0. (90)
Proof. Since v,' < 0, then from (1) and expression (31), we write
, . N-1 . ,
(p-Dlv, P v,(r)=- - lv, 1”7 v, (r) = T,(r). (91)
Hence
vb,,(r):L(r) N_1+#(r) . (92)
(p-Dr lv, 177 v, (r)

Using again v,’ < 0, then we obtain

2 '
rSUl/)r(r) — r | U},(r) | N _1 _ T:T; (r)71 . (93)
(p-1) lv, (r) IP
Since limr?® |v;(r) =1 > 0, then by (88),
M:N—Zp—i—lio. (94)
r—+00 | vb (’n) |p
Hence from (93), we obtain lim r°v}(r) = 21 > 0. This completes the proof. O

4. Conclusion and perspectives

In this work, we proved the existence of entire solutions of (P) through the utilization of Banach’s
fixed point Theorem and the energy method. Next, we studied the asymptotic behavior near infinity.
More precisely, we demonstrated that any solution of (P) is strictly positive, strictly decreasing and
behaves like 1/r near infinity. The study was based on the fact that the dimension N > 1. The uni-
dimensional case remains an open question to be examined in future research.
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