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Motivated by a recent and interesting article by S. Park [Results in Nonlinear Analysis 6 (2023) No.
4, 116-127], we recall several different notions of quasi-metric completeness that appear in the litera-
ture and revise how they influence on the fixed point theory in quasi-metric spaces. In particular, we
point out that there are several classical fixed point theorems that cannot be directly transferred to
the quasi-metric setting without extra conditions, when Park's approach is considered. We also recall
some emblematic examples that can help to clarify some aspects of the fixed point theory for these
spaces.
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1. Introduction

According to the current terminology, by a quasi-metric space we mean a pair (X, d) where Xis a (non-
empty) set and d is a function from X x X to [0, ) that fulfills the following axioms for all x,y,z€ X:

(qm1) d(x, y) = d(y, x) =0 if and only if x = y;
(qm2) d(x, y) < d(x, 2) + d(z, ¥).

In this case, d is said to be a quasi-metric on X.
If the quasi-metric d verifies the next condition stronger than (qm1l): d(y, x) = 0 if and only if
x =y, we say that d is a T, quasi-metric on X and that (X, d) is a T, quasi-metric space.
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The reader is referred to books [11, 16] for a depth study of the theory of quasi-metric spaces and
other related structures.

If d is a quasi-metric on a set X, the function d™': XxX —[0,~) defined as d'(x,y) =d(y,x)
for all x,ye X, is also a quasi-metric on X while the function d°:XxX —[0,e0) defined as
d*(x,y) = max{d(x,y),d" (x,y)} for all x,ye X, is a metric on X.

Let us recall that each quasi-metric d on a set X induces a 7| topology 7, on X that has as a base
the family of open balls {B,(x,e) : x € X,e >0} where B,(x,e) ={ye X :d(x,y) <&} for all xe X and all
€ >0 (in particular, 7_1is 7} if and only if d is a 7' quasi-metric).

Then, we say that a sequence (x,),_, in a quasi-metric space (X, d) is T,-convergent if it converges
in the topological space (X,7,). Therefore, (x,),.y is T,-convergent to x € X if and only if d(x,x,) — 0.

The lack of symmetry yields the existence of several different notions of Cauchy sequence and com-
pleteness for quasi-metric spaces. By using the classical terminology (see, e.g., [11, 12, 30]), next we
collect the more representative ones.

Let (X, d) be a quasi-metric space. A sequence (x,),., in X is said to be:

Left K-Cauchy if for each £ >0 there is an n, € N such that d(x,,x,) <& whenever n, <n<m.

Right K-Cauchy if for each £ >0 there is an n, e N such that d(x,,x,) <e whenever n, <n<m,
equivalently, if (x,), . is left K-Cauchy in (X,d™).

Cauchy if it is left K-Cauchy and right K-Cauchy, equivalently, if it 1s Cauchy in the metric space
X, &).

Then, (X, q) is said to be:

Smyth complete if every left K-Cauchy sequence is T ,-convergent.

Bicomplete if the metric space (X, d°) is complete.

Left K-sequentially complete if every left K-Cauchy sequence is 7,-convergent.

Right K-sequentially complete if every right K-Cauchy sequence is 7,-convergent.

d-sequentially complete if every Cauchy sequence in (X, d°) is T,-convergent.

d'-sequentially complete if every Cauchy sequence in (X, d°) is 7T -convergent.

Remark 1.1: The authors of [4, 18] refer to left K-Cauchy sequences as right-Cauchy sequences, to rigth
K-Cauchy sequences as left-Cauchy sequences, to Smyth complete quasi-metric spaces as left-complete
quasi-metric spaces and to bicomplete quasi-metric spaces as complete quasi-metric spaces.

The following implications are obvious:

Smyth complete = bicomplete = d-sequentially complete and d!-sequentially complete,
left K-sequentially complete = d-sequentially complete, and
right K-sequentially complete = d-sequentially complete.

The reverse implications do not hold. For instance, the well-known Sorgenfrey quasi-metric line
(see, e.g., [12, Example 1]) provides an example of a bicomplete and right K-sequentially complete
quasi-metric space that is not left K-sequentially complete and thus not Smyth complete. Thus, the
Sorgenfrey quasi-metric line constitutes an example of a complete non T-orbitally complete qua-
si-metric space in Park's terminology, for 7 the identity self mapping on the set of real numbers (this
contrast with the claim given in [29, p. 118]).

On the other hand, in Examples 2.4 and 2.6 below we recall instances of left K-sequentially and
right K-sequentially complete quasi-metric spaces that are not d?-sequentially complete and in
Example 2.5 below we provide an instance of a d'-sequentially complete quasi-metric space that is
not d-sequentially complete.

2. On the fixed point theory for quasi-metric spaces

In the recent article [29], Park showed that we can obtain full quasi-metric extensions of several
relevant fixed point theorems on complete metric spaces in a direct way from the corresponding
metric theorems. Park carries out his approach in the setting of bicompleteness and orbital Smyth
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completeness. In this direction, we point out that important fixed point theorems on metric spaces
due to Browder [6], Matkowski [25], Krasnoselskii and Stetsenko [24], Khan et al. [22], and Dutta and
Choudhury [14], also can be fully extended to bicomplete quasi-metric spaces in such a way that these
extensions are derived from the corresponding metric theorems, as proved in [2].

However, it seems appropriate to emphasize that this procedure is not a general one. In fact, there
exist classical fixed point theorems for complete metric spaces that cannot be extended verbatim to
the framework of bicomplete quasi-metric spaces without assuming extra conditions. In the next
three remarks we recall some of such exceptions.

Remark 2.1. The famous Boyd and Wong fixed point theorem [5] states that if T is a ¢-contraction on
a complete metric space (X, d) such that the function @ :[0,) —[0,0) is right upper semicontinuous,
then T has a unique fixed point.

The following (see [2, Example 2.14]) is an easy example of a @-contraction T on a bicomplete qua-
si-metric space (X, d) where the function ¢ :[0,0) — [0,) is right upper semicontinuous, but T has no
fixed points.

Let X =0, 1} and let d be the quasi-metric on X defined as d(0, 0) =d(1, 1) =d(0, 1) =0, and d(1, 0)
= 1. Since d° is the discrete metric on X it follows that (X, d) is a bicomplete quasi-metric space. Then,
the self mapping T of X defined as T0O =1 and T1 = 0, is a ¢-contraction, where @ :[0,0) — [0,) is the
(right) upper semicontinuous function given by @(0)=1 and @(t)=t/2 for allt > 0.

Remark 2.2. In [26], Meir and Keeler proved their famous fixed point theorem that can be stated as
follows: Let T be a self mapping of a complete metric space (X, d). If for each € > 0 there exists 6 > 0 such
that for all x,ye X,

e<d(x,y)<e+0=d(Tx,Ty)<e,

then T has a unique fixed point.
As it was observed in [33, p. 2], the self mapping T of the bicomplete quasi-metric space (X, d) of
Remark 2.1 satisfies the Meir-Keeler contraction above but has no fixed points.

Remark 2.3. A simplified form of the renowned Suzuki fixed point theorem [34] states that if T is a
self mapping of a complete metric space (X, d) such that there is a constant r € (0,1) satisfying the next
condition for all x,ye X,

d(x,Tx) <2d(x,y) = d(Tx,Ty) <rd(x,y),

then, T has a unique fixed point.

In [31, Example 3] it was given the example presented below of a self mapping T of a Smyth complete
quasi-metric space (X, d), without fixed points, but for which there is a constant r € (0,1) satisfying the
next condition for all x,ye X,

d(x,Tx) <2d(x,y) = d(Tx,Ty) <rd(x,y).

Let = N U {eo} and let d be the quasi-metric on X given by d(x, x) = 0 for all xe X, d(n,)=0 for all
neN, d(e,n)=1/n for all ne N, and d(n, m) = 1/m for all n,me N with n # m Finally, let T be the
self mapping of X defined as T~ =1, and Tn = 2n for all ne N.

This example shows that Theorem 6.3 and Corollary 6.5 in [29] are not true.

Furthermore, fixed point theorems stated in the realm of left K-sequentially, right K-sequentially,
d-sequentially or d'-sequentially complete quasi-metric spaces, cannot be derived from the corre-
sponding ones to complete metric spaces. Indeed, if (X, d) is a quasi-metric space endowed with one
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of these types of completeness, we get that completeness of the metric space (X, d°) is not guaranteed.
Next we recall some emblematic quasi-metric spaces where this scenario occurs.

Example 2.4. Let d be the quasi-metric on N given by d(n,n) = 0 for all ne N, and d(n, m) =1/m
for all n,me N with n # m. Note that T, is a compact topology on N, so (N, d) is left K- and right
K-sequentially complete. However, it is not d!-sequentially complete because T, is the discrete topology
on Nand (x,),. is a Cauchy sequence in the metric space (N, d*).

Example 2.5. Denote by e the quasi-metric d-! of the preceding example. Thus, e(n, n) =0 for all ne N,
and e(n, m) = 1/n for all n,me N with n # m. Then, (N, e) is not e-sequentially complete but (N, e) is
left K- and right K-sequentially complete.

The topology 7, of Example 2.4 is T but not Hausdorff. The quasi-metric space of the following
example has the same completeness properties than Example 2.4 but its topology is metrizable.

Example 2.6. It is well known that the Alexandroff (or the one-point) compactification of N consists of
the set N U {eo} endowed with the compact and metrizable topology t,, where each natural number is
an isolated point and the neighborhoods of © are of the form (N U {=}) \ F, where F'is a finite subset of
N. We endow N U {o} with the following quasi-metric d such that t, =7, and (N U {e},d) is left K- and
right K-sequentially complete but not d-*-sequentially complete:

d(e0,) =0, d(eo,n)=1/n for all ne N, d(n,m):|1/n—1/m| for all n,me N, and d(n,~)=1 for all ne N,

We conclude this note by recalling the usefulness of the aforementioned types of completeness in
the fixed point theory of quasi-metric spaces.

Thus, left K-sequential completeness provides a suitable context to obtain reasonable quasi-metric
extensions of Downing-Kirk fixed point theorem [13] (see [9]). On the other hand, right K-sequential
completeness provides a suitable context to obtain full quasi-metric extensions of Carisit-Kirk’s fixed
point theorem [7, 23] and Ekeland Variational Principle [15] as shown in [10, 20], while d-sequential
completeness allows us to extend Kannan fixed point theorem [19] and generalized forms of Cirié fixed
point theorem [8] among others, [3, 7, 32]. Finally, d'-sequential completeness provides an appro-
priate framework to obtain a full quasi-metric extension of Caristi-Kirk’s fixed point theorem when
w-distances in the sense of Park [28] are involved [21] (in [1] were obtained, via w-distances, versions
of Caristi-Kirk’s fixed point theorem, equilibrium version of Ekeland Variational Principle and of
Nadler’s fixed point theorem [27], in the more restrictive context of 7| Smyth complete quasi-metric
spaces).
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