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Abstract

In this paper we define a new class of Suzuki-type contractions and prove some results on fixed points
in S-metric spaces with ternary relation. As an application of our results, we prove the existence of
solutions for some classes of nonlinear matrix equations and provide a convergence analysis. Also, our
results generalize recent results from the literature.
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1. Introduction

In 1975, Dass and Gupta [7] introduced contractions of rational type and using these contractions
showed the existence of fixed points in complete metric spaces. After that, in 1977, Jaggi [12] intro-
duced another kind of contractions of rational type and obtained some results about fixed points.
Sedghi et al., in paper [26], defined S-metric space and studied its properties. Using S-metric spaces,
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several authors obtain results about fixed points, see [5, 6, 8, 9, 11, 13, 17, 18, 22, 30]. Khojasteh
et al. in the paper [14], results on fixed points for Z-contraction maps are obtained using simulation
functions. Many authors used Z-contractions related to simulation functions and obtained results
about fixed points in some classes of generalized metric spaces, see [2—6, 10, 15, 19, 25]. Kumam et
al., [15] initiated a new idea of Suzuki-type Z-contraction which generalizes Suzuki contractions [29].
In 2019, Mlaiki et al. [17] define a Z -contraction using the simulation function and prove the exis-
tence of fixed points of such a mapping in complete S-metric spaces. Further, Babu et al., [5, 6] use
S-metric space and almost generalized Z contractions of rational type and obtain some results about
fixed points. On the other hand, in the papers [24, 28] the authors introduce a new method in the
theory of fixed points of metric spaces with binary relations. In this direction, Alam and Imdad [1] get
some results about the coincidence points. In 2018, Sawangsup and Sintunavarat [25] define the Zp,
contraction and obtain some fixed point results. The notion of Z, Suzuki-type contraction, introduced
by Hasanuzzaman and Imdad [10], is a generalization of Z-contraction, Suzuki-type Z-contraction
and Z, contraction. Recently, Wangwe [31] and Kumar and Singh [16] using ternary relations in
G-metric spaces obtained results about fixed points for multivalued mappings.

In section 2, we give some preliminaries related to & metric spaces. In section 3, we present some
basic definitions on ternary relations. In section 4, we define Suzuki type = contraction under a
ternary relation R and obtain fixed points for such contractions in § metric space. Furthermore, an
example is provided to validate our results which shows the authenticity of Suzuki-type Z,, con-
traction over those previously mentioned contractions [5, 6]. In section 5, we get fixed point results
for 6, —n, Suzuki-type Zp, contractions Finally, in section 6, we apply our results to the solutions of
some classes of nonlinear matrix equations and provide a convergence analysis of the solutions.

2. Preliminaries
Here we give some definitions and results that we will use.

Definition 2.1. [14] The function ¢ :[0,+c0)X[0,+o0) — (—oo,+0) is a simulation function if satisfies the
following:

(1) ¢(0,0)=0,
() ¢(r,0)<v—r, forall v,x >0,

(iii) if the sequences {t,} and {v,} in (0,+e) are such that

lim ¢, = lim v, =te (0,+e) then limsupg(r,,0,)<O0.

D>+ D—>+oo D—too

We denote the family of all simulation functions by Z.

Definition 2.2. [26] The S metric is a function S: Ex ExE —[0,+) , where E # 0, which has fulfills
the following conditions:
Q) Sé&2)=0if o=¢=2z,
() S(,8,2) < S(@,0,0)+8E,E,0+8(z,2,0),
for all ,&,z,/€ E.

The pair (E, S) then called an S metric space.
From now on, E =(F,S) stands for S metric space.

Definition 2.3. [26]

(i) A sequence {w,}c E is convergent to a point we E if S(w,,0,,0) >0 as n— +ee, ie., for a given
€ >0 thereexists n,e N, S(o,,0,,0) <&, forall n>n,, it is denoted by lim W, = 0.

m,n—>+oo

(it) A sequence {w,} C E is a Cauchy sequence in E if
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lim S(w,,0,,0,)

n,m—>+oo

exists and it is finite. 3 3 3
(ii1) If each Cauchy sequence in E is convergent to a point in E , then E is complete.

Lemma 2.1 /5, 27] Let {®,} be a sequence in E such that
lim S(0,,0,,0,,,)=0

n—>+eo

and {w,} is not a Cauchy sequence. Then there exist € >0 and two sequences {m(p)} and {n(p)} with
m(p) >n(p) > p such that

S(@, ()5 By ) D)) 2 € ANd S(@,, ) 15D, 1) 15Dy ) < E-

(p)? (p)?

Also,
(l) lim S(wm(p)’wm(p)’wn(p)) =&,

n—>+oo
(LL) hmnaw’ S(wm(p)—l ’ wm(p)—l ’ wﬂ(ﬁ)) =&,
(lll) llmn_Hm S(wm(p) 5 a)m(p) , wn(p)—l) =€,

@) him, . S(@,, )15 Dpp)-1 > Dpp)1) = E-

Definition 2.4. [6] Let T': E — E, and for any given ¢ € Z and L>0, we say that I is almost general-
ized Zg-contraction with rational expressions if:
s(STw,I'8,Tz), M(w,8,2) + LN(®,§,2))= 0, 2.1)

for all ,&,z€ E, where,
S(EETEN+ S(w,0,Tw)] SE, & Tw)[l+S(w,0,Tw)]

)

)

M(w,&,2) = max{S(w,ﬁ,z),

1+ S(w,&,2) 1+S(w,&,2)
S(z,2,T2)[1+ S(,E,TE)] S(z,2T2)[1+S(w,0,Tw)]
1+ S(w,é,2) ’ 1+ S(w,é,2) ’
1[S(z,2,TE) + S(£,E,Tz)[1+ S(Z,Z,Fa))]}
3 1+ S(w,é,2)

N(@,£,2) = min {S(w,w,rw),5(§,§,rw),5(z,z,rw), S(&,¢,lo)[1+ S(@,0,T 5)]}.

1+ S(w,é,2)

Theorem 2.1. [6] Let T:E — E, and for any given ¢ € Z and L>0, T is almost generalized Z-
contraction with rational expressions, then I has a unique fixed point.

Definition 2.5. [5] Let T': E — E, and for any given ¢ € Z and L>0, we say that T is almost Suzuki
type Zg-contraction with respect to s, if

%S(w, 0,T0) < S(,E,2) implies ¢(S(Tw,TE,T2), 8(w,£,2) + LN(,E,2)) > 0, 2.2)

for all w,&,z€ E, where,
N(w,&,z2) =min{ST o,T'w,0),STo,lo,E),STo,lw, z)}.

Theorem 2.2. [5] If (E,S) is an S metric space, T': E — 1_7]’, is an almost Suzuki type Zg-contraction
with respect to ¢ € Z. Then T" has a unique fixed point in E .
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3. Ternary relations

We will use the following notations.

(1) EMT,R)={de E : (8,0,T¥)e R}, where I': E - E,
2) v(m,z,z,R), the class of all S-paths in R from o to z,
(3) N* =NU{0}.

Definition 3.1. [31] A ternary relation R c EXEx E, where E #0. Then R is:

(i) Reflexive, if (¢,p,p)e Rfor all e E;

(ii) Symmetric, if (¢,&,2) € R implies (&,z,90)e R for all ¢,&,z¢€ E; B
(iii) Transitive, if (¢,&,2) € R,(£,2,0) € R implies (p,z,() € R, for all ¢,&,2,( € E;
(iv) Complete, if [(p,ﬁ,zJe R for all ¢,&,z¢€ E.

Definition 3.2. [31] A ternary relation R is T-closed, where T is a selfmap on E
if (0,&,2) e R implies (Tw,TE,Tz)e R, for all w,&,z€ E.
Definition 3.3. [31] A sequence (o } in E is R-preserving if
(,,0,,0,,)€ R, for all ne N™.
Lemma 3.1. [31] R* =R U R isT closed when R is T closed. If R is ternary relation on a nonempty
set E , then (0,E,2)e R® if and only if [w,E,2] € R.

Following on the similar lines of [10], we now define S self closed and S-path in S metric space as
follows.

Definition 3.4. A ternary relation R is S self closed if there is an R- preserving sequence such that
w, =" ® as n— +eo then exists a subsequence {®, } of {w,} such that lo, @, ;0] R.

Definition 3.5. Let (E , S) bean S metric space, R is ternary relation defined on E ., and let o,é€ E.
Then a finite sequence {g,,0,,...,0,} € E is called the S-path of length [ (1 is natural number) connecting
otoEinRif o=, 0,=& and (o,,0.,,,0,,)€ R forall ie {1,2,...,l-1}.

4. Main results

First, we give the following definition.

Definition 4.1. Let T be a self-map on an S-metric space E with a ternary relation R, ¢€ Z and
L >0 such that

S(o,0,Tw) <3S5(w,5,2z) implies ¢(STw,T'E,T2), My(®,5,2)) + LNy (®,5,2)) 20, (4.1)
for all w,&,z€ E , with (w,&,2) € R, where

M(w,&,z) = max {S(w,g,z), S8, T+ S o, Tw)]

1+S(w,&,2)
SEE Tw)|l+ S(w,0,Tw)] S(z,z,Tz)[1+S(E,ETE)]
1+ S(w,&,2) ’ 1+ S(w,&,2) ’

S(z,2,T2)[1+ S(w,0,Tw)] [S(z,z,TE)+SE,ET2)][1+ S(z,z,Fa))]}
1+S(w,&,2) ’ 31+ S(w,§,2)]

and

Ny(@,&,2) = min{S(l‘a),Fa),z),S(é,ﬁ,Fw),S(Fﬁ, TE,T2), S(z, T2, T¢), SE2 LML+ SO, “”rw)]}.

1+ S(w,¢,2)
Then T is called Suzuki type = contraction mapping.
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Theorem 4.1. Let (E, S) be an S-metric space with a ternary relation R. Let a self map T on E
satisfying subsequent conditions:

(a) exists M C E such that TE c M and (M, S) is R-complete;

(b) exist w, such that (@,,w,,T'®,)€ R;

(c) E(T',R) is nonempty,

(d) R is transitive and R is T closed;

(e) T is Suzuki type Z,, contraction;

(f) either I is R-continuous or RIM is S- self closed provided (4.1) holds for all w,&,z€ E with (0,&,2)e R

Then T has a fixed point. Moreover, if v(®,&,z,R*) non empty then I has a unique fixed point.

Proof. Starting by our assumption, E(I,R) # 0, let o, € E(T,R) and construct the sequence {o}
defined as w,,, =T, for all ne N™.
Using conditions (b) and (d), we have

(Tw,,Two,,Tw,), T, o, T’o,),...,("o,, "o, "o, e R,
thus
(w,,0,,0,)eR,

for all ne N™, hence the sequence {w } is R preserving sequence. First, we assume that o, = ,,,,
for some m, then immediately, o follows as a fixed point of I'. Next we assume that S(w,,0,,0,,,
for all n> 0.

Now, we claim that lim ., S(w,,0,,0,,)=0.

We have 1S(0,,0,,0,,,)<S®,,0,,0,,,) for all ne N” hence from (4.1) and utilizing R preserving

property of ® , we have

sSTow, ,,To, ,To) Mo, 0 ,0)+LNyjo, 0 5,0, =20, (4.2)

=Taw,
)>0

where

n—1? n n
1+S(w, |, 0, |,0,)

S(,,0,,To)1+S, 0, To, )]

1+S(w, |, 0, ,,0,)

1[8(0,,0,,T0, )+Sw,,,0,,,To)ll+S,0,T,,)]
3 1+S8(w, ,,0, ,,0,,,)

n—-1? n
1 S(a)n—l 2 a)n—l ’ wn+1) }

S, ,,0 ,To )1+Sw, o To )l

M (o, 0, ,,0,) =max {S(a)n1 0, ,0,),

’

(4.3)

L0 ,0),50,0,0. )=
12 n-12"n/> n?>n’ " n+l ,31+S(a)n_1,wn_1,wn)

) 1 2S(w, |, 0, ,0)+S0, 0, 60, )]
nr3 1+S(o, 0, ,0)

n-12""n-17

n

= max {S(a)

L0 ,0),50,0,,0,

n

< max {S(a)

and
Ny(o,_,,0

n-1%"n-1°

o,)=min{STw, ,.,To, ,0,),S, 0, To,_)STo, T

n-1? n n-1?

Sw,,0,To,_)1+Sw, 0, To,_ )| 0
1+S(w, |, 0, |,0,)

lm),Sow,,To, T, ),

(4.4)
If
S(w

n

L0 ,0)<S0,0,0,),
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then from (4.3), we have
MS (a)n—l 4 a)n—l ’ wn) = maX{S(wn—l 4 a)n—l 4 a)n )’ S(wn ) wn ’ wn+l )’
1[28(9,,,0,,,0,)+50,,0,,0,,)]

3 1+S(w, ,,0, ,,0,)

}: S(o,,0,,0,,). (4.5)

Therefore, from (4.2), (4.3), (4.4) and (4.5), we have
s S,,0,,0,.)Swo, 0, 0,,))+L0)=0

this implies
(So,,0,0,,),50,0,0,,)) 20,

it is a contradiction, thus
Sw,,0,0,)<Sw, 0 , 0).

Similarly, we can prove that
S(wn—l ’ wn—l ’ wn) < S(a)n—Z ’ wn—Z ’ a)n—l )

Combining above, we get
S(wn > wn 4 wnﬂ) < S(a)n—l ’ a)n—l ’ wn)’

for all ne N™ and

g(S(wn,a)n,a)n+1), S(wn_lawn_pa)n)) Z 0 (46)

Hence, {S(w,,»,,®,,,)} is non-increasing sequence of non-negative real numbers, which is convergent
and hence there exists 7 > 0 such that
nllgl S(ow,,0,,0,,)=Tr.
Assume that r > 0, then from (4.6) and property of (<3), we have
0<lim supg(S(w,,0,,0,.,),S(, ,,0, ,,0,)) <0,

n—+eo
it is a contradiction. Therefore r = 0, so,
lim S(w,,0,,0,,,)=0. (4.7)
n—+eo
Now, we wish to show that {® } is a Cauchy sequence. On contrary, if possible suppose that {® } is not
a Cauchy sequence, then by Lemma 2.1, there exist € > 0 and sub sequences {mp} and {np} of positive
integers such that

].im {S((Dmp , a)mp ) a)np )7 S(a)mp_l ,

p—>+oo "p

Now, if possible suppose there exists a p > p* such that

0, 1),.80, 0, .0, )5, 0, 0 )=¢. (4.8)

lS(a)m NO)
3 -

mp

0, )280, 0, 0, ).
Taking limits as p =+« and owing Lemma 2.1, we obtain € <0, it is a contradiction. Therefore

lS(wm , 0
3

p-1 mp

0, )<S8o, o, .0,5),

for all p > p*. Now, we have
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. ,l“a)w1 ) [1 + S(a)mm1 @, ,l“a)mml )]

1+Sw, 0, 0,)

p

,,w

mp

Mo, o, 0, )=maxS@, .0, ,0,);

’
my,_q my,_y

. ,l"a)mw1 ) [1 +S (a)mF1 0, ’mep,l )]

1+ S(me,l NOMEN) )

T

S(w

m,_

, @

mp

b

S(o, 0, T'o, ) [1 +So, o, To, )]

1+S, .0, 0,)

So, 0, T'o, ) [1 +So, o, To, )}

1+S, .0, 0,)

b

[S(a)n 0,.Te, )+So, 0, To, )[1+S(a)n ;o To, 71)]}

1+ S(conp_1 '@, 5O, )

W=

Taking limits as p — +e0 , using (4.8), we have

. 2e(1+
lim M(w, .0, ,To, )=max z;‘,O,O,O,M =E&. (4.9)
Pt po1” Moot » 3(1+¢) ’
Also,
Ny, .o, o, )=mn{STo, To, o, )S0, o, To, ),
ST, To To )So, lo To, )
(4.10)

S (a)np 0, . To, )[1 + S(a)mlH 0, o, )J

1+ S(a)mlH @, 0, )

=0.

Thus using (4.1) with o=, . $=w, ,z=w0,, utilizing (4.9), (4.10) and condition (s3), we deduce

p-1

OSh'msup g(S(a)m ’a)m ’a)n ﬂ)’MS(wm —l’a)m —l’wn )+LNS(wm —l’wm —l’wn ))<O’

p—+oo

it is a contradiction. Hence {o } is a Cauchy sequence in E . Since
{w,} cTE c M,

we conclude that {o } is an R-preserving Cauchy sequence in M.
S
Owing to (M, S) in R-complete, there exists ¢ € M satisfying o, —q.
Firstly, we suppose that I" is R-continuous, then
g=limw,,  =limle =T lim e, =Tq.

Again, in view of our assumption R/M is S-self closed, {® } is an R-preserving sequence and
S

Iim w, ->q
then exists sub sequence {®, } of {® } with
[conp,conp,q]e(R/M). (4.11)

We now assert that
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%S(wﬂp 0, 0, ) < S(a)np 0, ,q),
for all p. On contrary, if

%S(a)np 0, ,a)nm) > S(a)np 0, ,Q),
for some p, then we have

35(0, 0, .0)< SO, 0, .0, )<250, .0, .9+, 0, ,q),
S0,
S(wnp 0, ,q) < S(a)nm1 0, ,q),

this is a contradiction. Therefore,

%S(a)np 0, ,l"a)np) < S(a)np 0, ,q),
using (4.1), we have

0< g(S(l“a)np ,Fa)np ,Tq), My (wnp 0, ,q)+ LNy (a)np 0, ,Q)). (4.12)
Now
S(a)np 0, ,Fwnp ) [1 + S(wnp 0, ,Fa)np )]
1+ S(a)np 0, ,q)

b

M(o, ,0, ,q)=max<S(o, ,0, ,q),

S(conp 0, .To, ) [1 + S(a)np 0, To, )] 5(q,q9,Tq) [1 + S(a)np 0, To, )]

b

b

1+S(w, ,0, ,q)

S(q,q,Fq)[l + S(a)np 0, ,Fconp )} 1 [S(q,q,l“a)np )+ S(a)np 0, ,Fq)] [1 + S(q,q,l"a)np )]
'3

1+S(w, ,0, ,q)

1+S(o, ,0, ,q9) 1+S(o, ,0, ,q)

letting p — 4+ and employing (4.7), we have
lim My(o, ,0, ,9)=5(q,9,Tq) (4.13)
D—+oo P P

and
lim Ny(w, ,0, ,q)=lim min{S(Fwﬂ Jo, ,9),50, 0, ,Te ),STo, ,T'o, ,I'g),
PR p 13 Potoo p » 13 13 P 13 P

S(g.q,To, )1+S5, ,0, ,To, )]}

S(q,Tq,Tw ),
(@.Tq "P) 1+S(w, ,0, ,q)

(4.14)
Thus in view of conditions (4.12), (4.13), (4.14) and (s3), we derive

0<limsup ¢(S(o, 0, T'q),M(o, 0, .9)+LN(o, 0, .q) <0,

n
D—rteo P

this is a contradiction. Hence S(q,q,T'q) =0 implies ¢ =TYq.
To prove uniqueness, let r*, 9* be two fixed points of I such that r* # 9*.
Since by our assumption, we have

v, 9,0 RT) £0

then there exists an S-path say (g, . . . , 0,) of length / on R® from r* to ¥* so that ¢, = r,0 =7 and
[0:,0,,1,0.,,]€ R® for i€ 0,1,2,...,l -1, which implies by Lemma 3.1, we get [0:,0,,,,0,,]€R, as R is
transitive, we conclude [g,,0,,0,]€ R. Thus inview of (4.1), we have
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1 1
gS(QO,Qo,FQO) 255(90,907&) <8(0,0,50,)
hence from (4.1), we have

6(S8(Toy,T0,,T0,), My(0,,0;,0,)+ Ng(0y,0,,0,)), (4.15)

where,

S(0,,0,,T0)[1+8(0y,00,T0,)]

M(0,,0,,0,) = max{S(@o,gl,@l),

1+ 80,050
S(0,,0,,To)[1+8(0y,00:T0,) ] S(01,0,,Te)[1+8(g;,0,,T0)]
1+8(05,0,,0) ’ 1+ 805,050, ’
S(0,:0,,To)[1+8(0,00,T0,)] 1[S(01,0,,T0) +5(0,,0,To)J1+ S(QZ,QI,FQO)]}
1+ 8(0,, 0, 0,) '3 1+8(0y,0,,0)
= max{S(r*,ﬁ*,ﬁ*),O,M,0,0,0} =S, 9,%)
1+807,9,0) 4.16)
and
Ng(0y,0,,0) =min{S(Te,,Te,,0,),S(g,0,T¢,),S(T¢,,T0,,T0,)
S(e,To,,Tay), S(Q”Q”ZQO)[I ’ S(Q°’QO’FQ°)]} -0,
+8(0y,0,,0,) 4.17)

thus from (4.15), (4.16) and (4.17), we have
0<¢(SFr",0,9),80r 9 ,9)) <SFr", 0" ,9") - Sr*,9",97) =0,
a contradiction. Hence, r* = 9*.
The following example supports our result.
Example 4.1. Let E =0, 9), we define S: E? —[0,+) by
0, if 0= =z,
max{w,t,z}, ifo+&+#z.

S(w,§,2)={

Consider a ternary relation on E as

R :{(17 2’ 8)7 (]" 7’ 2)7 (17 37 7)7 (17 17 1)7 (0’ 07 1)7 (8’ 87 0)’ (2’ 2’ ]')’ (77 77 1)7 (37 37 1)7 (3? 37 3)7 (7’ 7’ 7)’
(8,4,1),(2,3,1),(3, 3, 2)}

1, ifwe0,1],

7, ifwe(1,3],

3, ifwe (3,7],

2, ifwe (7,9).

Let M=[0,7]<[0,9), then clearly, TE ={1,2,3,7} c M c E. Evidently, T is discontinuous. Also, R is

I'-closed and transitive. 3
Foro=1,Tw®=1, we have (1,1, 1) € R implies E (I',R) # 0.

We defineTon E by Tw=

S
If {o } is any R- preserving sequence with @, -,
(w,,0,,0, ,)e RIM

n+l1?>"n

there exists n € N** with 0 = {1, 2, 3, 7} for all n > N**. Now, we define ¢ :[0,+e0)X[0,+e0) = R by
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4
Im)=—m-—/,
s(l,m) 5m

for all J,m €[0,+00) and L > 10. We have to verify the inequality when
(0,¢,2)€{1,2,8),(1,7,2),(1,3,7),(8,8,0),(7,7,1),(3,3,1),(8,4,1),(2,3,1)},
since in remaining cases, we have
STw,Té,T'z)=0,
we have
%(a),a),l"w) <S(w,¢,2),

this implies
s(STw,I'é,I'z), M (0,8,2) + L(N (0,8,2)) = %(Ms(w,é,z) + L(N,(®,8,2))) - ST w,I'E,I'2) 20
and we have
S(T®,TE,T2) < %(Ms(w,é,z) + LN (0,€,2))).
Case (1): When @ =1, £ = 2, z = 8, we have

%(1,1,1“1) =0<S(w,&,2) =8,
now, from (4.1), we have
(ST, TE,T2), M.(@,E,2) + LN (0,E,2)) = %Ms(a),éj,z) + L(N.(0,€,2))) - S(T,TE,T2) = %.
Case (2): When =1, =17, z= 2, we have
%(1,1,r1) _0<S(@,E,2)=T,
from (4.1), we have

(ST, TE,T2), M.(0,E,2) + LIN (,&,2)) = %Ms(a),é,z) + LN (0,&,2)) - S(Tw,TE,T2) = g

Case (3): Whenw=1,£=3,z=17, we have
%(1,1,1"1):0<8(a),§,z)=7,
from (4.1), we have
s(STw,TETz), M (w,&,2)+ L(N (0,&,2)) :%Ms(a),f,z)+L(Ns(a),§,z)))—S(Fa),l"é,l"z) :?.

Case (4): When ©=8,& =8, z=0, we have
%(s,s,rs) =§< S(w,£,2) =8,
from (4.1), we have

g(S(FO), Fé,FZ),MS(a),f,Z) + L(Ns(w’é’z)) = g(MS (60,5,2) + L(Ns(w,é,z))) - S(Fw, FéarZ) = %

Case (5): When 0 =7, =17, z=1 we have
§(7,7,r7) =§< S(@,6,2) =1,
from (4.1), we have

S(STOTET), M (0,6,2)+ LIN,(@8,2) = 5 (M(0,.8.2) + LIN,(@,2) - SToTET2) = -2
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Case (6): When ®=3,& =3, z=1, we have
%(7,7,r7) :§<S(a),§,z) _3,

from (4.1), we have

(ST, TE,T2), My(0,£,2) + LIN.(@,E,2)) = %(MS (@,E,2) + LN (,&,2)) - ST, TE,T2) = 14?1.

Case (7): When © =8, =4, z=1, we have
%(8,8,1"8) :§<S(w,§,z):8,

from (4.1), we have
(ST, TE,T'z), My(,8,2) + L(N (0,§,2)) =%(Ms(a),cf,z)+L(Ns(a),é,z)))—S(I‘a),l“cf,l“z) =%-
Case (8) : When ®=2,£ =3, z=1, we have
%(7,7,r7) =%< S(@,,2) =3,

from (4.1), we have

(S(T0.TE.T2), M(@6,9)+ LN, (0£,2) = 5 M(0.£,2) + LIV, (0£,2) - STO.TE T2) = .

Thus all the hypotheses of Theorem (4.1) are verified. Here 1 is the unique fixed point of I'. Here it
is worth noting that the mapping I' neither satisfies the contractive condition (2.1) nor adheres to
contractive condition (2.2), when =0, =1, z= 2, we have

S(r0,T1,T2) =7,
M(w,&,2) =3 and N(w,&,z)=0. Also, when ®=0,=1,2z=2,
~8(r0,T0,0) =+ < S(0.1,2),
but S(M0,I1,T2) =7, S(0,1,2) =2 and
LN(@,¢,z) = Lmin{S(T0,I'0,1),S(I'0,'0,1), S(I'0,10,2)} = 0,

hence by virtue of condition (i1) of ¢, there does not exists any ¢ € Z such that equations (2.1) and (2.2)
are satisfied, hence S is not almost generalized Z contraction with rational expressions and almost
Suzuki-type Z, contraction. Hence Theorem 2.1 and Theorem 2.2 cannot be applied to this example.
Hence, we can conclude that our results are more general than the results due to Babu et al., [5,6].

5. Results for some Suzuki-type contraction mappings

Priyabarta et al., [22] introduced 6 -admissible mapping with respect to 1.

Definition 5.1. Let (E,S) be an S-metric space I':E—>E, and 0., n, : E* 5[0,+e0). Then I' is an 0,
admissible with respect ton_if o,&,z€ E,

0. (w,8,2) 21 (0,6,2) implies 6, (T'w,T'E,Tz) 2n (TFw,T'E,Tz).

Note that if n (®,£,2)=1, then T" is 6, admissible and if 6,(®,£,2)=1, then T" is 0 -sub admissible
mapping.

We now define triangular 6 admissible with respect to 1 .
Definition 5.2. Let (E,S) be an S-metric space, I': lz' > E, 6, 1n,: E? —[0,+c). then I'is an 0, trian-
gular admissible with respect to 1 if for all ,£,z€ E, we have
) 6,(w,&,2) =21, (w,€,2) implies 6,(Tw,TE,Tz) 21, (Tw,TE,Tz2),
(i) 0 (w,&,2) 21 (0,&,2), 6,(&,2,u)2n,(,z,u) implies 0,(w,z,u) 2N (®,2,u), for any ue E.
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When n (w,§,2) = 1, we say that I' is triangular 6 -admissible mapping, when 6(®,&,z) =1, then I is
triangular n_ subadmissible.

Definition 5.3. Let (E,S) be an S-metric space, I' :E > E and 03,773:173'3—>[0,+oo). Then T
is 0, —n, Suzuki-type Z, contraction mapping if there exist L > 0 and s € Z such that for all

0,¢,zek, 0(0,¢,2) 21 (0,8,2) and
éS((D,w,F(D) < S((D,g,Z) lmph’es g(S(FCO, ré,FZ),MS((D,g,Z) + LNS(CO7§72)) 2 Oa (51)
where M(w, &, z) and N (o, £, z) are defined as in Definition 4.1.

Corollary 5.1. Let I':E —> E, and 0,.n, : E* - [0,+0). be two mappings on an S-metric space E.
Suppose that I' is 0, —n_ Suzuki-type Z, contraction mapping satisfying the following conditions:

(i) let € E such that 6,(w,,Tw,,Tw,)>n,(0,,Teo, Ta,),
(it) T istriangular 6 admissible mapping with respect ton,,

(iii) if {»,} is a sequence in E such that 0 (0, ,0 ,To,)>n (o 0, ,To,), ne N" and ®, > q as n — +o

there exists {o,,} of {®,} such that 6,(®,,,0,,2) 20,(®,,,0,2), forall peN".

ThenT hasafixed pointin E. In addition, if for any two fixed points p, q of T such that 6,(p,q,q) 21,(p,q,9),
then T has a unique fixed point.

Proof. Define R on E as (w, & 2) € if and only if 6,(®,€,2) 21, (0,&,2).
We now have the following observations.
(1) Let w,e E such that

6, (w,,0,,T0,) =1, (0,,0,,[w,) implies (o,,®,,['w,) € R and E(I',R) # ¢.

(1) If (o, & 2) € R, then 6,(0,§,2) 21, (0,&,2). AsT is 0, triangular admissible map with respect to
N, we have 6,(Tw,I'§,T'z) 21, (Tw,I'§,Tz) then (F'w,I'§,Tz)e R, thus Ris T closed.

@11) If (o, &, 2) € R, (€, 2, u) € R then 0, (0,§,2) 2n (0,&,2) and 6,(&,2z,u) 2n,(5,2,u),, since T is tri-
angular 6, admissible with respectn , we have 6,(¢,z,u) >n, (§,z,u), therefore R is transitive.

@iv) If (o, & 2) € R then 6,(&,z,u) 21 (&,2z,u), since I is almost 0, —n, Suzuki type Zg-contraction
then I' is Suzuki type Z, contraction.

(v) From assumed condition (iii), we have (@,,®, ,T® )e R, forall neN" and lim _ _w, =q, then
there exists subsequence {o, , }of {w,} such that

(o, »ER,

) Pnip

for all pe N”. Hence the assumptions of Theorem 4.1 are satisfied, I' has a fixed point in E. Also, if
for any two fixed points p, g of I" such that 6, (p,q,q) 2n,(p,q,q9), then v(p,q,q,R) # J. Therefore, by
Theorem 4.1 it follows that I has a unique fixed point. O

6. Application to nonlinear matrix equations

In this section, we utilize our research findings to establish a conclusion about the existence of solu-
tions for a nonlinear matrix equation attributed with a ternary relation.

Let the set M(n) encompasses all square matrices of order of n x n. Let H(n) represents the set of
Hermitian matrices, i.e., matrices that are equal to their conjugate transpose, the set gp(n) refers to
the set of positive definite matrices, while R(n) represents the set of positive semi-definite matrices,
which have non-negative eigenvalues.
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For Ae M(n), we denote the singular values of A by sv(A) (Singular values are the absolute
values of eigen values of a matrix) and sum of all singular values by sv*(A) and A>]] signifies that
A-Tle R(n). i.e., sv"(A) = Al},, where Il.l|, denotes the trace norm. On #(n), we define A - [T signi-
fies that A —I]e g(n).

ro

Lemma 6.1. [25] If A= 0 and IT =0 are nxn matrices, then
0 < tra(AIT) < || A || tra(IT).

We now obtain positive definite solution to the following non-linear matrix equation (NME)

®=U+Y D F(®D, (6.1)
i=1
where U is Hermitian matrix, D, is conjugate transpose of D, and F :H(n) - (n) is an order-
preserving mapping such that F =0, where H(n), g(n) stands the set of Hermitian matrices and set
of positive definite matrices respectively.

Theorem 6.1. Consider NME (6.1) with the following conditions;

(i) there exists Ue gp(n) such that U + ZD;‘]:(Z/{)DL. =0,
i=1
(it) for all ®,I1,Q € p(n) with ®<I1<Q implies
D F(@)D, < YD F(ID, < YD FQD,
i=1 i=1 =1

(iti) for all ®,11,Q € p(n) with ®<I1<Q implies

tr?

2
gIICD—F‘DIIt,SIICD—QIItﬁIIH—QII

(iv) Y. DD’ <yl,, ya positive number
(v) there exist k € (0, 1) and L > 0 such that for all ®,11,Q € p(n) with ®<I1<Q, the following
inequality holds

| Fo - FQ ||, < —[(M,(®,11,Q)) + LN (9,T1,Q) |,

k.
2y
and

| FI1-7Q, < ;[(MS(QH,Q)) + LN, (®,I1,Q)],
14

where

2||H—FH||tr(1+2||(I)—FCI)||tr)
e -Q,+HIT-Q,
2| I-TO |, )A+2||®-TD|,) 21Q-TQ|,d+2|1-TT]|,)

b

M (D,I1,Q) = max{“ O-Q, +[TT-C

LHO-Ql,+IITT-Ql, = +]0-Q|,+IT-Q],
211Q-TQ|,0+2|®-TD)|,, 2(|Q-TTII| ,+|IT-TQ|,)0A+2|][Q-TD)|l,)
L O-Q, +ITT-Q, A+ @ -Ql,+ITT-Q1l,) ’

N (®,11,Q) = min{2|| T® - Q|| ,,2||1-TQ||,,2|| [T -TQ|

2HQ—T®HNH+2H®—F®”J}
T e-Q,+IITT-Q,

tr? tr?

| Q—TTI[,+||TQ-TTL|]
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Then (6.1) has a solution ®. In addition, the iteration

®,=U+YD F(@,,)D,
i=1
where @ e p(n) satisfies ®,=<U+ YD F(®, ,)D,, converges in the sense of trace norm ||.|l,, to the
solution of (6.1). =

Proof. First we define mapping T": g(n) — g(n) by

Fo=U+>D F(®)D,

=1

for all ® e p(n). We define
R ={(®,11,Q) € @(n) x ga(n) x ga(n) : ® <TM=Q}.

The solution of a matrix equation (6.1) will be subsequently the fixed point of I'. Clearly, I is well
defined on =, I' is closed, since

U+ D F(®)D, -0,
i=1

U=U=TU and hence (U,U,TU)e R this implies p(n)(I',R) # . Define S: p(n)xp(n)xpn) — R" by
S(@,IL,Q) =] @ -Q|| ,+ | TT-CQ]]

tr?

for all ®,I1,Q € po(n). Then (p(n),S) is an S metric space with respect to ternary relation R.
Let (O,I1,Q) e R™ ={(D,I1,Q) e R,['D = I'TT = ['Q}. By assumptions (ii), (iii) and (iv), we have
S(I'®,IT1,IQ) =|| Td ~TQ||,,+[| T -TQ]|,,

S| YD (F@) = F@)D, |, +I| XD (F(I - FE@)D I,

=1 i=1

<I 3D/ D(F@) - F@) I, +1| Y0 DFAD -~ F@) I,

=1

<I 30D, I (F@) - F@)I|+ 1 S0/, Il (FD - F@)I,

=1

YD %[Ms (@,1,9)) + LN, (@,T1,9)]

=1

HI DD IS M,@,1,0) + LN, (@,11,0)]
) Y

< k[(M,(®,11,Q)) + LN (,1,Q) ],

this implies
0 <k[(M (®,11,Q)) + LN (®,11,Q) |- S(M'®,TTI1,I'Q).
Hence by considering ¢(t,s) =ks—t, k €(0,1), we get
0 <g(S(P,11,Q),(M (D,I1,Q)) + LN (D,I1,Q)).

In view of existence of greatest lower bound and least upper bound of for all ®,T1,Q € p(n), we have
v(®,IT1,Q,R) is nonempty. Thus by Theorem 6.1 it can be deduced that there exists § € g(n) such
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that I'(§") = " holds. Hence the matrix equation (6.1) has a solution. Thus on using Theorem 4.1, T’
has a unique fixed point, and hence we conclude that (6.1) has a unique solution in g@(n).

Example 6.1. Consider NME (21) fori =3, n =4, k1= 0.4, y=158.1 and L =2 with an order-preserving
continuous mapping F :p(n) — g(n) by FO =30* with F(0)=0 i.e,

® =U + D 30D, + D, 30D, + D, 30D,

where

9.0020010412 8.0000013812 12.000001735 0.000002082
2.0012013812 0.0020018742 0.000002360 0.000002846
13.000001735 6.0000023607 10.002002984 0.000003605
4.0000020825 0.0000028461 3.001136094 0.002004374
[ 5.009001 0.015412 4.0184125 0.0251667

0.120034 3.5010123 2.0020345 0.1800123

' 10.1410654 0.0038345 0.0052234 0.0066345
10.0125567 0.0192347 0.0318548 0.2091987

[ 3.0020001 0.1800125 0.50102341 2.0154021
1.0000005 0.0132234 0.0159234 1.01920981

? 2.0046234 4.0062123 0.0092986 0.20911234
10.03852234 0.0251456 0.0184987 0.00792345

[ 2.2100105 4.00302342 7.1070678  0.0140345
7.0095456 0.00152098 3.00361234 0.01461235

® 10.00134561 0.01345678 0.00662345 0.00967891
10.31883456 0.07973987 0.01599867 0.00532134

To verify all the hypotheses of Theorem 6.1, we use the following iteration for F(®)=®, , i.e.,
® =U+D 30! D +D;3d: D, +D,3d’ D,
We now start with the following three initial values

3.237200104166 0.25060138885  0.29900173588 0.1250000208250
1.25000138885  4.20200187490 0.213000236074  0.28900284610
0 1.11000173588  0.35000236074 2.00200298535  0.00000360941
| 6.08000208250 0.008032846106 0.27111360941  5.10200437210
[1.00077577436 0.00387817630 0.00977314110 0.00146356780
0.00878176300 0.00416351410 2.00523511220 0.00148455210

® 10.00506929770 0.00112202140 1.00164133970 1.00971391711
10.00146356781 0.00455216912 0.00897139172 1.000051590732
[2.4517101 0.29662345 0.05618790 0.2667987

0.3180130 1.0952345 0.2204987 0.62518965

® 10.0551989 0.21713456 3.62892874 0.06328903

10.1262456 0.4560789  0.0633543  5.6826897
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After 20 iterations the following solution is obtained.
6.6309 2.4505 4.8127 0.8351
| 2.4452  2.9417 2.8794 0.4750
*14.8150 2.8854 6.3703 0.1492
0.8389 0.4746 0.1522 0.4472

O=0

Numerical calculations of Example 6.1 as shown in the following Table 1.

Table 1. Numerical calculations of Example 2

Initial value F(D,) Iteration number  CPU (sec.) Error
D, CI)g 21 0.032896 2.209e-03
0 % 22 0.032234 2.295e-03
®, Qg 21 0.032769 7.18¢—03

In figure 1, we illustrate the convergence phenomenon through a visual representation.

Convergence Plot
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Figure 1: Graph of convergence behaviour

Conclusion

This study presents novel fixed point theorems for Suzuki-type Z, contraction mappings in S-metric
spaces, which do not necessarily derive from a standard metric. As a result, more general conclusions
are drawn compared to existing literature. Our findings are applied to demonstrate the existence of
solutions for nonlinear matrix equations. Additionally, we provide a numerical example to illustrate
the practical implementation of our results.

A key aspect of our approach is the use of weaker conditions, such as R-completeness on subspaces
instead of full-space completeness and R-continuity rather than standard continuity. We also explore
the property that R |,, is S self closed. These contraction conditions reduce classical forms when the
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universal relation is considered. Our results offer a detailed framework for further research into
S-metric spaces equipped with ternary relations.

There remain several intriguing directions for future research. For instance, readers could explore
the study of unique and non-unique fixed points, as well as fixed circles, e. g [13, 18, 20, 21, 30] using
ternary relations in S metric spaces.
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