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In this paper, we have defined A- cone and related concepts in Banach spaces and prove a result con-
cerning convergence of a sequence in an A- cone. Also, atomic system for a subset of a Banach space 
is defined and proved that if a Banach space has an atomic system, then every subset of it also has an 
atomic system.
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1. Introduction

Throughout, H will designate a separable Hilbert space; B a separable real Banach space; Bd a Banach 
space of scalar valued sequences associated with the Banach space B, RO - reconstruction operator; 
BF - Banach frame; retro BF - retro Banach frame; FO - frame operator and exact BF - exact Banach 
frame.

Frames were initiated in [2] in the context of non-harmonic Fourier analysis. Frames were reac-
quainted in [5]. 

A sequence F = ={ }hn n 1
¥  in H is termed as a frame for H, if one can find scalars 0 < Bl, Bu < ∞ satisfying
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The scalars Bl and Bu in (1) are called frame bounds for . These bounds need not be unique. If  
Bl = Bu, then F = ={ }hn n 1

¥  is said to be a tight frame and if Bl = Bu = 1, then F = ={ }hn n 1
¥  is said to be a 

Parseval frame for H. (1) is termed as the frame inequality for the frame F = ={ }hn n 1
¥ . T : l2 ! H given 

by

T a a h ak
k

k k k({ }) , { }= Î
=
å

1

2
¥



is known as the synthesis operator. Also, its adjoint operator T * : H ! l2, is termed as the analysis 
operator and is defined by T y y h yk

* = Î( ) { , }, .   If we compose T and T*, then we obtain the frame 
operator (FO) S = TT* : H ! H given by

S y y h h y
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

The FO S is a self adjoint, positive, bounded, and an invertible operator on H. Every vector of the 
space H can be expressed as follows:
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Frames have many applications and uses in various areas of applied mathematics and engineering. 
Frames were traditionally used in signal and image processing [8, 9, 10, 11]. Today, besides tradi-
tional uses, frames are used in sensor networks and packet encoding [16, 17]. Muraleetharan and 
Thirulogasanthar [18] investigated the invariance of the Fredholm index under perturbations by 
small norm operators and compact operators. In [6], the topic of K-frame in quaternionic Hilbert 
spaces was investigated. Jahan, Kumar and Shekhar [13] prove that a cone associated with an exact 
BF lacks a weakly compact (compact) base, yet it inevitably has an unbounded base and an extremal 
subset.

Several researchers namely Feichtinger and Gröchenig [7], Casazza et al. [1], Terekhin [19], and 
Gröchenig [12] extended the idea of frame to Banach spaces in various ways. Atomic decomposition 
(AD) is one such extension of the notion of frame in Hilbert spaces to Banach spaces. In fact, Coifman 
and Weiss [4] were the first to suggest the idea of AD for some particular Function spaces. Feichtinger 
and Gröchenig extended the concept of AD to Banach spaces in [7]. The idea of a BF (BF) for a Banach 
Space is another extension of frames in Hilbert spaces. Gröchenig [12] was the first to propose the 
concept of the BF which is defined as follows:

Let {bn} Ú B* and S : Bd ! B be an operator. The pair ({bn}, S ) is called a BF for B with respect to 
Bd, if
(1) b x xn d( ) , .Î " Î   
(2) one can find positive numbers 0 < Al < Au < ∞ satisfying

A x b x A x xl n ud
        £ £ Î{ ( )} , .��  (2)

(3) S is a bounded linear operator satisfying S b x x xn({ ( )}) , .= Î�� 

The numbers Al and Au, are listed as frame bounds of the BF ({bn}, S ). S : Bd ! B  is called the recon-
struction operator (RO). If Al = Au, then ({bn}, S ) is called a tight frame for B and if Al = Au  = 1, then 
({bn}, S ) is called a normalized tight BF for B. The BF ({bn}, S ) is termed as an exact BF if there is no 
reconstruction operator S0 such that ({bn}i≠nS0) (i 2 N) is a BF for B.

Next, we give the definition of retro BF introduced by Jain et al. [14]
The pair ({gn}, T ) ({gn} Ú B, T : B*d ! B*) is called a retro BF for B* w.r.t. B*d, if

(1) {y(gn)} 2 B*d, for each y 2 B*.
(2) $ positive numbers A1 and A2 with 0 < A1 ≤ A2 < ∞ satisfying
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A y y g A y yn d1 2     

  
* *£ £ Î*
*{ ��( )} , .  (3)

(3) T is a bounded linear operator such that T({y(gn)}) = y, y 2 B*.
The numbers A1 and A2, are called retro BF bounds of the retro BF ({gn}, T ). T : B*d ! B* is termed as 
the RO. The tight retro BF is defined as in case of BF. A sequence {gn} Ú B  is called a retro BF sequence 
if it is a retro BF for span gn{ }.

For further details concerning frames in Banach spaces and allied topics, one may refer to [1, 3, 8, 
9, 10, 11, 14, 15].

1.1. Outline of the paper

In this paper, we first recall what we mean by A-subset and A-modulus of B. Examples are given to 
support their existence. Also, A-cone in a real Banach space is defined and a result concerning the 
convergence of a sequence in an A-cone satisfying some conditions is proved. Further, we defined 
atomic system in a Banach space B and proved that if particular subset X of B has an atomic system, 
then B has an atomic system.

2. Main Results

Let B be a real Banach space and X be any subset of B. Then X is called an A-subset of B if 
u v u v u v+ - > " Î ³ >1 0 1 0, , , .   with   The real number h


( )t  defined as

h ¥


( ) inf : , , , , [ , )t u v u v u v t t= + - Î ³ ³ Î{ }     1 1 0

is called the A-modulus of the set X.

Example 2.1. Consider the Banach space Lp [a, b]. Then the subset  = Î ³{ }x L a b xp [ , ] : 0  is an 

A-subset of Lp [a, b] with A-modulus h ¥ ¥

( ) ( , [ , )).

/
t t p tp p
= +( ) - £ < Î1 1 1 0

1
��

Example 2.2. Consider the Banach space C[a,b] of continuous functions on [a,b]. Then, for each ¢Ît a b[ , ] ,  
the subset X C= Î ={ }¢f a b f t f[ , ] : ( )    is an A-subset of C[a,b] with A-modulus h ¥


( ) , [ , ).t t t= Î� 0

Recall that the Rademacher functions Rp(x) on[a,b] are given by

p
px sign x p( ) sin( ) ,= ( ) " Î2 p �   (4)

Example 2.3. Let {an} be a sequence with a nn = ± Î1, .   Then X = {anRn : Rn are as defined in (4)} is 
an A-subset of Lp [a, b] (1 < p ≤ ∞) However, one may verify that X is not an A-subset of L1[a, b].

Definition 2.4. A subset K of a real Banach space B is called an A-cone if K is an A-subset of B and K 
is a closed subset of B satisfying       + Ì Ì ³ Ç - =, ( ) ( ) { }.�� ��  and l l 0 0

Example 2.5. Let {fn} be a sequence of unit vectors in the real Hilbert space 2 and let 
 = Î ³ " Î{ }u u nn

2 0: ( ) ,f   be a cone associated with {fn}. Then K is an A-cone and its A-modulus 
is given by

k t t t( ) , [ , ).= + - " Î ¥1 1 02 �  

Next, we prove a result related to the convergence of a sequence in an A-cone satisfying certain 
conditions.

Theorem 2.6. Let K be an A-cone in B. If {gn} is any sequence in K such that, for an increasing 

sequence {kn} in N, sup , lim .1 1
1

0£ < = ®
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Proof. By hypothesis
u
u

v
u

u v
   

+ - > " Î1 0 0, , { },��  K\
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 is a non-decreasing sequence in K. Therefore, there exists a b < a such that

b
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 (5)

Let if possible b !  ∞. Then, one can find an  > 0 and an increasing sequence {pn} in N satisfying
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1

 ,     (6)

Note that b ≠ 0 and so for any d with 0 < d < b there exists a positive integer say m() such that
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ε
b( ) > 0  for sufficiently small d b d bb> -( ) + ( )( ) >0 1, . M

K

ε

This is a contradiction. So lim .
k ii

k g
® =

< ¥å¥ 1

Since K is closed, there exists an element say g0 2 K such that lim .
k ii

k g g
® =

=å¥ 01

Corollary 2.7. Let K be an A-cone in a real Banach space B. If {gn} and {hn} are sequences in K 
satisfying

lim ,
n

j

n

j ng h g
®

=
å +
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è
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ö

ø
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then lim g fn ii

n
® =

= Îå¥ .1

Moreover, if    g f g f= =, . then 

Proof. In view of Theorem 2.6, it is enough to prove that
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Let if possible for some p, g gjj

p

-å ³1   .  Then, using a property of A-cone, for g g hjj
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This contradicts (7).
Suppose that f g= . Let  > 0 be such that, for some increasing sequence {kn} of natural numbers, 

 h jkj
> " Î , .�   Then for a suitably chosen d d��( )0 < < g  and a positive integer m(d), we have
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Since f g= . and by (7), we compute
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This is a contradiction.
From now onwards, by B, we mean a separable Banach space. Next, we define an atomic system for 

a Banach space B as follows:
Let B be a Banach Space and and X be a subset of B. Then { },{ } , { } ,{ }x f x fn n n n( ) Í Í

*    is called 
an atomic system for X with respect to Xd if
(1) { ( )} ,f x xn dÎ Î �
(2) $ positive constants A and B such that

A x f x B x xn d
        £ £ Î{ ( )} ,

(3) x f x x xnn n= Î
=å 1
¥ ( ) , � 

Let B be a Banach Space. Define

 = Î = Î ¹ ={ }*x f x c f c f : ( ) , ( ) .�where� �and� 0 0

Then X is a Banach Space. Also, define
  d n nf x x f= Î Î{ }*{ ( )} : { } .�and�

Then Xd is also a Banach Space.
In the following result, we prove that if Y = ( ){ },{ }x fn n  is an atomic system for X, then y is also an 
atomic system for B. More precisely, we prove that

Theorem 2.8. If Y = ( ){ },{ }x fn n  is an Atomic System for X with respect to Xd , then y is an Atomic 

System for B with respect to  d nf x x f
n

= Î Î{ }*{ ( )} : , .'� s 

Proof. Suppose first that Y = ( ){ },{ }x fn n  is an Atomic System for X with respect to Xd . Then
{ ( )} , .f x xn dÎ Î �  (8)
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$ a positive constants A and B such that

A x f x B x xn d
        £ £ Î{ ( )} ,  (9)
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Let y 2 B be any element such that f(y) ≠ 0. Then
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Also, if y 2 B such that f(y) = 0, then, by definition of X, y + y0 2 X, for any y0 2 X such that y0 satisfy 
(8),(9), and (10).
Since

f y y f yn n d( ) ( ) ,+{ } = { }Î0 0 

We have
A y y f y B y yn

d
+ £ { } £ +0 0 0  

( ) .

Thus, for every y 2 B, $ a y0 2 X  such that y = y0.
Hence, Y = ( ){ },{ }x fn n  is an Atomic System for B.
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