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Controlling the movement of hexacopter along the 
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The article examines the issue of controlling the movement of a hexacopter-type unmanned aerial 
vehicle along the intended route. The movement of the hexcopter is assumed as the movement of a 
solid body, gravity and aerodynamic drag forces are taken into account. It is assumed that the feed-
back data during control (accelerometer and gyroscope data) ise obtained from MPU6050 type sensors. 
MPU6050 type sensors do not measure orientation angles, but their rate of change, therefore, qua-
ternions were used as orientation parameters in the mathematical model of hexocopter movement. In 
addition, quaternions do not have any singularities in the attitude expression. Moreover, quaternions 
are known to be more computationally efficient than Euler angles in attitude representations. In this 
article, the movement route is described as a trajectory consisting of straight sections, and an algo-
rithm for calculating the base values of the control parameters is given, which ensures stable flight in 
each straight section of the trajectory, when all the engines of the hexocopter are working normally. 
During the study, the issue of ensuring straight-line movement of hexacopters when any of the hexa-
copter engines is faulty (out of order) was also considered, in this case, the optimal control parameters 
ensuring straight-line flight of the hexacopter were determined.
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1. Introduction

The development of control methodologies for unmanned aerial vehicles (UAVs) has led to a wide 
range of applications, making advanced UAV control methods an active area of research. UAVs have 
proven to be beneficial in fields such as agriculture, logistics, disaster relief, surveying, and biological 
animal research, among others. As the demand for UAVs increases, there is a growing need for more 
sophisticated control methods to allow UAVs to safely operate over populated areas, particularly in 
urban settings. However, UAVs face risks such as crashes and collisions, exemplified by an incident 
in Japan where a drone crash injured six people. This highlights the necessity for improved control 
methods to mitigate failure risks.

One critical failure that could lead to severe accidents is rotor failure, necessitating the develop-
ment of fault-tolerant control systems. UAV flight is vulnerable to rotor thrust loss; if a rotor fails, 
the stability of the UAV may be compromised due to insufficient thrust from the remaining rotors. 
Various fault-tolerant control strategies have been suggested for UAVs, including sliding mode control, 
gain-scheduled PID control, PD control, model predictive control, LQ control, and adaptive control. 
Comparisons of these fault-tolerant control methods have been presented by researchers, providing 
insights into their effectiveness [1–3]. These types include, but are not limited to, tricopters, quad-
copters, hexacopters, octocopters, and others. Among these, quadcopter-type UAVs have been more 
extensively researched, leading to the production of various models and increased manufacturing. 
However, when flaws arise in the construction or operation of quadcopters, issues with their control 
can emerge. Therefore, hexacopter-type UAVs with six-rotor propulsion systems are considered more 
reliable in terms of speed, durability, and maneuverability due to certain design features A hexacop-
ter is an unmanned aerial vehicle with six arms, each equipped with a rotor symmetrically parallel to 
the symmetry axis passing through the center of the hexacopter. As a result of rotor operation, thrust 
forces and torque moments are generated parallel to the symmetry axis.

Figure 1. Direction of the rotors of hexacopter

In scientific and technical literature, various simulation models of hexacopter motion can be encoun-
tered. Depending on the characteristics of sensors used during the resolution of automatic control 
issues, the flight models of hexacopters differ from each other. During research, the use of MPU6050 
type sensors in the UAV has made it more appropriate to use quaternions as orientation parame-
ters in its mathematical model. MPU6050 type sensors measure the rate of change of orientation 
rather than orientation angles. Several articles by various authors have been dedicated to the model 
expressed with quaternions [5, 6, 7, 8]. Here, the model considered is fundamentally consistent with 
the one proposed in [6]. This article investigates the control problem of automatic flight of a hexacop-
ter-type UAV along the required route. The flight route is viewed as a trajectory consisting of straight 
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sections, and an algorithm for calculating the base values of control parameters ensuring the stable 
flight of the hexacopter in each straight section is provided. During the use of hexacopters, particular 
attention is paid to the occurrence of defects in their rotors. Therefore, in research work, parameters 
controlling the flight of the hexacopter in the examined straight section are determined even if one of 
the rotors is not functioning.

2. Problem statement

The implementation of automatic flight of the UAV along the required route primarily considers the 
provision of the route. Typically, the flight route is expressed as a sequence of straight sections and is 
given by the coordinates of its end points. Therefore, the flight along the route considers straight flight 
on each segment of the trajectory separately. The UAV’s flight along the straight sections of the route 
differs practically depending on the direction and how the flight altitude changes along the considered 
straight section. Naturally, the UAV’s stable flight along this trajectory can be ensured by maintain-
ing a certain fixed orientation. In other words, the control parameters should be such that the thrust 
forces and moments generated by the rotors do not cause deviations during flight. Thus, the issue of 
controlling the hexacopter’s movement along the route boils down to controlling it along a straight 
line segment. Below, the mathematical formalization of the problem and its solution are provided.

3. Coordinate Systems

The mathematical model of the hexacopter is expressed in terms of the relationship between quanti-
ties calculated in local and global coordinate systems. OXYZ is the reference coordinate system fixed 
to the ground, while is the local coordinate system associated with the hexacopter used to determine 
its orientation in space. For clarity, let’s assume that the origin O of the cYZ system is a designated 
point on the surface. The OXYZ coordinate system has the OY axis pointing north, the OX axis point-
ing east, and the OZ axis pointing upwards perpendicular to the OX and OY axes. Let’s assume that 
the Ox axis aligns with the first arm of the hexacopter, the Oy axis is perpendicular to the surface and 
parallel to the Oz axis, and the Oz axis is perpendicular to the plane formed by the OX and OY axes 
and is oriented along the symmetry axis of the hexacopter. In a horizontal equilibrium state, the Oz 
axis points upwards, and the Oxy plane is considered a positively oriented system.

4. Orienting with quaternions

In research, the orientation of the UAV is expressed with quaternions. Let’s provide a brief overview 
of quaternions. A quaternion is a 4-dimensional hypercomplex number represented in the general 
form as q = q0 + q1i + q2j + q3k where q0, q1, q2, q3 are real numbers, and i, j, k are imaginary units. The 
quaternion’s properties allow for comfortable and adequate use in expressing rotations. Using quater-
nions, the orientation of the aircraft is represented as follows:
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Here u = (u1, u2, u3) is the principal rotation vector in order to determine the current attitude of the 
aircraft, j is the principal rotation angle [11]. In a special case, if the attitude vector aligns with the 
Oy axis and j is the principal attitude angle, then u = (0, 1, 0) and
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Suppose that, the local coordinate system oxyz is obtained from rotation of the inertial coordinate 
system OXYZ by the q vector. Then, the following transformation matrix can be applied to calculate 
the coordinates of the given vector in the inertial coordinate system from the local coordinate system 
[11]:
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It is obvious that, to find the coordinates of a vector given in OXYZ coordinate system relative to 
oxyz coordinate system, the inverse of the transformation matrix should be applied. Let’s denote the 
elements of the inverse matrix as follows:
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5. Mathematical model of the hexacopter

As mentioned above, for simplicity, the weight force and aerodynamic forces will be considered in the 
mathematical model of the UAV. At the given time t ≥ 0 the coordinates of the center of gravity of the 
hexacopter in the coordinate system OXYZ is denoted by X(t), Y(t), Z(t), the quaternion of the related 
local coordinate system with respect to the inertial coordinate system q0(t) + q1(t)i + q2(t)j + q3(t)k, and 
the rotation frequency of the blades of the i–th engine as wi. Then the movement of the hexacopter can 
be expressed by a system of equations that relate its x(t), y(t), z(t) coordinates, w w w1 2 6, ,...,  frequencies 
and q0, q1, q2, q3 components and written as follows. If we denote the velocity of the hexacopter rela-
tive to its local coordinate system Oxyz as (vx(t), vy(t), vz(t)), then the motion equations expressed with 
quaternions for the hexacopter’s velocity coordinates can be written as follows [11]:
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Lets denote the angular velocity of hexacopter as w(t) = (wx(t), wy(t), wz(t)). In that case, considering 
the resultant moment M = (M1, M2, M3) created by the forces acting on the hexacopter, we can write 
the following equations with respect to the angular velocity [8,9]:
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The dependence of the moment M on the freguencies w w w1 2 6, ,...,  can be expressed as [6]:

M

kl cos

kl cos=

- + + -

- + - + -

3
2

1
2

0 2
2

3
2

5
2

6
2

0 1
2

2
2

3
2

4
2

5
2

a w w w w

a w w w w w

(

( ww

w w w w w w

6
2

1
2

2
2

3
2

4
2

5
2

6
2b( - + - + -

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

 (5)

By subtracting the angular velocity w(t) obtained from equation (4), we can formulate the following 
ordinary differential equations system (Poisson kinematic equations) to solve for the quaternion rep-
resenting the current orientation of the hexacopter [9]:
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The key conditions for controlling flight along a route

As mentioned earlier, flight along the straight segments of the route involves variations not only in 
direction but also in altitude along each respective straight segment. Therefore, to determine the solu-
tion principle for finding the control parameters along the route, it’s feasible to consider each segment 
separately. Thus, without loss of generality, it can be assumed that the hexacopter’s flight is intended 
along a straight line connecting specific points A(xa, 0, za) and B(xb, 0, zb) in the Oxz plane at a given 
velocity V0.

It is clear that if the hexacopter had roll, then it wouldn’t fly along the straight line. In such a case, 
the deviation of the roll angle from zero during flight along the line would necessitate a moment that 
would force it to deviate from this trajectory. Therefore, during flight along the straight trajectory, the 
hexacopter’s roll must be zero.

When it comes to the hexacopter’s yaw, it should be such that the thrust force of the propeller com-
pensates for the sum of the weight force and aerodynamic resistance forces along the Oz axis. On the 
other hand, the thrust should also be such that the component of the weight force directed in the flight 
direction compensates for the appropriate aerodynamic resistance force. Thus, it is required to find 
rotation frequencies w w w1 2 6, ,...,  so that the UAV flies from point A(xa, 0, za) to the point B(xb, 0, zb) with 
the required speed V0. Let’s split velocity vector V0 into components along the vector AB
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Let’s assume that the movement of the UAV with the required speed V0 is ensured by the pitch 
angle j. Then, the quaternion representing the appropriate orientation will be of the form of (2). 
Therefore, p sin p p cos13 23 330= = =j j, , . We take into account these values in the 1st equation of (3) 
system
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Thus, the quantities w w w1 2 6, ,...,  satisfying the stated requirements must satisfy the system of equa-
tions (7)-(8). 

Ensuring control in normal operation mode

Let’s assume that all the engines of hexacopter work normally. In this case, let’s examine the issue of 
determining the quantities w w w1 2 6, ,...,  that satisfy the system (7)-(8). For each k let’s denote wk

2 with 
xk, k = 1, 2, ..., 6. Then system (7)-(8) can be written as follows:
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As can be seen, (9) is a system of linear equations written in terms of 6 unknowns, and its rank is 
equal to four. Therefore, this system has an infinite number of unique solutions. In order to choose the 
most suitable one from set of possible solutions according to the nature of problem,let’s introduce the 
following optimality criterion:
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¹
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Minimization of functional Á is essentially a requirement that the quantities xi  and ultimately 
rotational frequencies wk

2 be as close to each other as posssible. This requirement is justified by that, 
when controlling UAV in rectilinear motion, its engines are loaded as equally as possible. From math-
ematical point of view, the problem (9)–(10) is a conditional extremum problem with respect to xk 
variables, to find its solution the method of Lagrange multipliers can be used [10]. For this purpose, 
let’s denote the expressions included in the left side of equations (9) as m m m m1 2 3 4, , , . Then, including 
l l l l1 2 3 4, ,  multipliers the Lagrange function for (9)–(10) is written as follows:

L º Á+ + + +l m l m l m l m1 1 2 2 3 3 4 4 .  (11)

Thus, the conditional extremum problem (9)-(10) comes to the problem of finding unconditional 
minimum of the functional (11). To find the minimum of functional L, let’s calculate its special deriv-
atives with respect to variables x x1 6,...,  and l l1 4,...,  and make them equal to zero. Then the following 
system of equations is obtained:
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If we solve this system of equations by Cramer’s rule, we get:
x x x x x x l l l l1 2 3 4 5 6 0 1 2 3 40 166 0= = = = = » = = = =, ,( )f

Accoring to the found values of quantities x x1 6,...,  we get the following values for the rotational 
frequencies of propeller:
w w w j1 2 6 0 4= = = » +... , | |c v v mgcosA z  (12)
Thus, for hexacopter in order to fly in rectilinear motion, it is first brought to the appropriate ori-

entation by changing the rotational frequencies of propellers and a suitable pitch is achived (note 
that, the issue of calculating the rotational frequencies of the propellers for changing the orientation 
of UAV is not considered in this article). Then it is controlled along the trajectory corresponding to 
rotational frequencies.

Providing control in case of failure of one of the engines

As can be seen from equations (12) optimal control of flight in rectilinear motion when all engines 
are working normally is ensured by rotation of all propellers at the same frequency. Now suppouse 
that one of the engines of hexacopter has failed. Then, without distrupting the overall system, it can 
be considered that the damaged one for example, 6th engine. This means that when solving system 
(6)–(7), it is necessary to take w6 0= . Thus, the system (6)–(7) becomes a system consisting of four 
equations written in terms of five unknowns. After the substitution x wk k k= =2 1 2 5( , ,..., ), the analog of 
system (8) can be written as follows:
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In order to choose the most suitable one from the set of possible solutions according to the nature of 
the problem, we can take the following optimality criterion as an analogue of the functional (9):
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Analogously, we can write the appropriate Lagrangian function L by marking the expressions 
included in the left side of equations (13) as j j j j1 2 3 4, , ,  and applying l l l l1 2 3 4, ,  multipliers. By equat-
ing its specific derivatives to zero, we get the following system of linear-algebraic equations:
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When solving the system of equations with Cramer’s formulas, the following answers are obtained:
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According to the found values of the quantities , we get the following values for the rotational fre-
quencies of the propellers:
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Discussion

The obtained results were conditioned by the choice of functional Á. As mentioned above, the extreme 
value of the Á functional lays down condition that the UAV’s engines to be approximately equally 
loaded during the rectilinear motion that covers most of the UAV’s flight. Such loading serves to 
ensure that its various engines do not wear out more than others during the operation of the UAV. 
From this perspective, when all engines are tuned to the same level, it is natural for controlling rota-
tional frequencies for its rectilinear flight to be the same, in accordance with formula (12). When one 
of the UAV’s engines fails, the functional (11) obtained by discarding the thresholds involved in the 
rotation frequency of the failed engine was minimized for the calculation of the control parameters 
during its control on the route. The results expressed by the formulas (15) show that in case of failure 
of one of the engines, the control of the hexocopter along a straight trajectory takes place in the order 
of control of the quadcopter. At the same time, this case shows that the hexocopter can be controlled 
normally on a straight trajectory even if two symmetrically located engines fail. At the next stage of 
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the research, it is planned to consider the case of failure of two engines of the UAV, which are not 
located symmetrically at the same time. However, it should be noted that in these cases, the proposed 
criterion for finding the optimal rotation frequencies of the engines (similar to the functional I) can 
be more complicated. So, unlike the cases discussed above, depending on which two engines fail, the 
additional load assigned to the other engines may exceed their technical capabilities. Therefore, in 
the case of 2 or more engine failures, the function of optimal determination of rectilinear flight control 
parameters should also include restrictions on the rotation frequencies of the engines.

Conclusion

Thus, the issue of determining the optimal control parameters for the hexacopter’s straight flight 
along the route, expressed with quaternions in the motion equations, has been studied. A procedure 
has been developed for calculating the propeller speeds in a regime where the propellers are approx-
imately equally loaded. It has been shown that when all propellers of the hexacopter are functioning 
properly, straight motion is ensured with the same propeller speeds. However, when one propeller 
malfunctions, to ensure straight flight, the propeller speed of the malfunctioning propeller parallel to 
the non-working propeller should be set to 0, while the propeller speeds of the other propellers should 
be the same. This also means that the hexacopter can still be controlled normally along the straight 
trajectory even when two symmetrically located propellers are out of order.
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