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Mathematical modelling for joining carbon 
nanostructures: fullerene and torus
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Different configurations of carbon nanostructures, including carbon nanotori and carbon fullerenes, 
have been identified using experimental techniques. These structures are used at the nanoscale in 
many different fields, and their inclusion may lead to novel combinations with improved features 
and applications. In this study, a carbon fullerene and nanotorus combination was identified. Two 
different approaches that depend on energy minimization were used to predict the conjoining curves. 
The primary model targets the reduction of elastic energy focusing on axial curvature alone, but 
the alternative model incorporates the Willmore energy, that accounts both the rotational and the 
axial curvatures. Due to the catenoid status as an optimal minimiser of this energy, a segment of it 
employed to facilitate the fusion of two nanostructures. Our findings reveal that both proposed models 
successfully identify the junction area among nanostructures, allowing for the creation of integrated 
nanostructures through either method.
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1. Introduction

Nanotechnology is a popular subject of study in many fields owing to its wide range of practical 
applications. Different forms of carbon nanostructures have diverse potential applications in many 
nanoscale devices because of their unique properties [3–5]. The ability to combine carbon nanostructures 
has attracted considerable attention owing to the integrated forms having enhanced properties [6]. 
Interestingly, the literature contains new uses of integrated nanostructures such as energy storage, 
drug delivery, and scanning tunnelling microscopy [9].
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(A) Spherical surface (B) Torus surface (C) Catenoid surface
Figure 1: Structure of surfaces.

Carbon fullerene C 60, also known as buckminsterfullerene or buckyballs, was discovered in 1985 [10].  
It has a hollow cage structure with 60 vertices enclosing a spherical carbon atom, as shown in Fig. 1A. 
These nanostructures have several distinctive and specific properties that hold promise for a variety 
of applications, including antioxidants, treatments for neurodegenerative disorders [11], transistors, 
electron-spin quantum computers [12], electron acceptors, photovoltaics [14], molecular diodes or  
rectifiers [13] and biosensors [15].

Carbon nanotori or nanorings are formed by connecting the two ends of carbon nanotubes (Fig. 1B). 
The structures of these compounds have been investigated in numerous studies for their electronic 
and magnetic properties [16–19]. They can generate gigahertz frequencies because of their circular 
shape and special resonance characteristics, they have the ability to produce gigahertz frequencies, 
which makes them attractive candidates for use in high-frequency oscillators and signal processing 
equipment. In addition, they are employed in ultrafast optical filters and nanoantennae that are sen-
sitive to high-frequency electromagnetic signals [20]. In addition, they have potential for application 
in terahertz communication systems [16].

Accordingly, different methods have been used to model scenarios for conjoined nanostructures. 
Previous studies used the elastic energy method to combine various nanostructures. This approach 
states minimizing a curvature-dependent energy function to obtain the optimal joining surfaces 
between the two nanostructures. This gives rise to derive the Euler-Lagrange equation for extremal 
curves or surfaces that minimize this energy that joins the two different nanostructures. Many studies 
have modelled the conjoining of nanostructures based on this model; e.g., The combination of several 
carbon nanomaterials, such as tubes-fullerenes, graphenes-fullerenes, cones-fullerenes, graphenes-
tubes, fullerenes-fullerenes, cones-cones [21, 23]. Furthermore, this model has been used to form 
boron nitride nanostructures [24, 25] . Predicting the geometries of the two conjoining nanostructures, 
we employed the Willmore energy function from our previous study [8]. In order to find the joining 
surfaces in the three-dimensional structures between nanostructures, this model takes into account 
each of the axial and rotational curvatures. Correspondingly, due to their status as perfect minimisers 
of the Willmore energy, catenoids are employed to connect the nanostructures, as shown in Fig. 1C. 
Additionally, this model indicates the conjunction of a carbon nanotube with a fullerene, two fullerenes, 
and carbon nanotubes with a carbon nanotorus [8][26]. In addition, this model combines different 
boron nitride nanostructures [22]. Typically, Willmore energy is utilised to simulate surface bending 
that occurs with the stretching of the membranes of cells [27], spinal vertebrae segmentation [28],  
and red blood cell activity [29]. Furthermore, other structures of boron nitride can be examined by 
using the presented approach, such as helical graphite [32], atypical helices [31], nanoneedles, helical 
hexagons [30], horizontally elongated spirals [33] and cylindrical structures [34].

Although previous studies have considered different conjoining nanostructures, the conjunction 
between carbon and fullerenes has not been studied. Therefore, this study’s objective was to model the 
conjoining curve between the nanostructures by using both models.; first: the elastic energy model in 
2D, and second, the Willmore energy model in 3D.
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In this case of joining, we have a continuous donut-shaped surface with varying curvature among 
the inner and outer radii. The transition tends from the smooth to the polyhedral of the fullerene. 
The differences between surface energy and curvature among the structures must be considered. The 
model was adapted to ensure that the transition does not introduce excessive strain or distortions, 
but this adaptation is implicit in the application of the existing framework. In contrast with joining 
two fullerenes, we have structures of two polyhedral with same curvatures. The main target in the 
transition is to maintain the symmetry and structural integrity of the carbon atoms configuration. In 
addition, the energy minimizes the bending and stretching energy with united framework of carbon 
atom.

Furthermore, the joined structures are C1-smooth across the joins. That is the gradients are con-
tinuous at the junctions. This includes a smooth transition in the tangent direction without any 
abrupt changes in slope. Whereas if there is a jump in the second derivatives, it shows that the curva-
ture is not continuous. This jump means that while the structures are smooth in terms of slope, they 
may not have a smooth curvature (C2 continuity). Moreover, in some situations a jump in the second 
derivatives influences the accuracy of the model as in applications requiring precise control over 
stress distributions or where smooth curvature is critical. Further, C1 continuity can be sufficient in 
many practical applications, mainly those focused on overall shape and structural stability. The main 
target in these situations is ensuring that the structure is smooth and free of sharp edges, which is 
achieved with C1 continuity.

Moreover, if we compare the joining of a fullerene and a nanotorus with the joining of fullerenes 
of two different sizes, both scenarios use same profile curve to include a smooth transition (C1 con-
tinuity) between the joined structures. However, because every structure has a different curvature 
and topographical characteristics, there are variations in the geometry problems between the two 
scenarios. In particular, The toroidal curvature makes the joining between nanotorus and fullerene 
more complex than the joining between two fullerenes of different sizes. In addition, the topographical 
nature of the nanotorus raises additional considerations to the energy minimization model to ensure 
smooth transitions and structural stability.

The basic formulas that depict the region of interconnection between nanostructures are intro-
duced in the next section. The results are presented in Section 3. The paper is concluded in Section 4.

2. Models

2.1. Primary approach

(A) 3D configuration (B) 2D configuration

Figure 2: Geometry of the primary approach’s conjunction.



Alshammari NA, Results in Nonlinear Anal. 7 (2024), 84–92 87

This subsection investigates the application of the calculus of variation for identifying the curve that 
connects nanostructures of carbon. Specifically, we make the assumption that a torus at the nanoscale 
exhibits symmetry around the z-axis, having its minor radius a along with main radius R positioned 
at the centre. In contrast, the fullerene is positioned in such a way that its axis is aligned with the 
y-axis and has a radius of b. The beginning distance above the xz-plane, denoted as y0, is unknown. 
Furthermore, C, which may be obtained in the solution, is the space in the y-direction between the 
two forms. If both nanostructures exhibit rotational symmetry around the y-axis, the position y0 will 
lie on a 2-dimensional xy plane.

The curve links the structures located at the coordinates ( cos , sin )b b1 1 1 1d d  and ( cos , sin )b C b2 2 2 2d d+  
with the torus and the fullerene, respectively, spanning a precise arc length of c. as illustrated in 
Fig. 2.

Utilising the identical computations as presented in the reference [35], where y y x= ( )  represents 
an element of arc length ds, the sought-after curve that minimises J y1[ ]  is of the given form

J y ds ds
c c

1 0 1
2

0
[ ] ,= +ò òk l

Here, k1 represents the axial curvature and l is a Lagrange multiplier associated with the fixed length 
constraint. Because the model only takes into account the profile curve in this particular slice, the 
rotational curvature k2  does not exist in this planar slice across the junction. But k2  is in fact greater 
than zero when the complete rotationally symmetric surface is taken into account. Also c is the given 
length of the curve. By applying the variational principle to minimize J y1[ ] , we find Equation (1) rep-
resents the Euler-Lagrange equation associated with the extremals of the functional J y1[ ] ,
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2.2. Alternative approach

This subsection outlines the application of the Willmore energy function (WEF) to determine the 
surface where carbon forms in nanoscale are connected. (WEF) J2 is realize as the integral over  
the joining surface of the mean curvature squared. Namely, the mean curvature H is identified by the 
sum of the axial curvature k1  and the rotational curvature k k k2 1 2 ( . ., ).i e H = +  In addition, J1  covers 
a length restriction and J2  contains an area restriction, representing the two-dimensional analogue, 

J y d d2 1 2
2[ ] ( ) ,= ò + + òk k m l m

where, dm refers to the element of the area, H represents the mean curvature and l indicates a 
Lagrange multiplier associated with an area restrictions. Because the axial curvature k1 and the 
rotational curvature k2 are balanced, a catenoid is a minimum surface, meaning that its mean curva-
ture H = +k k1 2  equals zero. It is therefore an absolute minimizer of the Willmore functional without 
constraints [7]. This scenario is modified though, when an area limit is added. It will be necessary to 
carefully take into account the outside radii of both structures in order to link a fullerene and a torus 
smoothly utilizing a catenoid. These radii need to meet specific requirements in order for the join to 
be sufficiently smooth, which we describe in the analysis that follows.

Given that catenoids are the most optimal solutions in terms of minimising Willmore energy, we 
made the assumption that the connection would possess a catenoid surface with coordinates as:

x a y a z f a= = =cos , sin , ( ),q q  
referring to Fig. 1C. 

Furthermore, the mean curvature can be expressed as
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if this is equal to zero, it results in an absolute minimiser of the Willmore energy, and the solution is 
obtained as the following:

f a
c a c a

c
c( )

ln
,= ±

+ -( )
+

1 1
2 2

1
2

1

with constants of c1 and c2. Additionally, the solution can be written as:

f a c a
c

c( ) cosh ( ) .= ± +
-1

1

1
2  (2)

This suggests that the connecting surface functions as a catenoid, forming the link among the two 
nanostructures of carbon. For further information, refer to the reference [8].

3. Results

3.1. Results via the primary approach

In this instance, the elastic energy was utilised to establish the connecting curve amongst carbon 
forms. Here, the value of y' varies from x b x b= = - -1 1 2 2 1 2cos cos cot cot .d d d d to  as  to  Therefore, 
the boundary condition (B. C.) may be expressed as ¢ = -y b( cos ) cot .2 2 2d d  Since the joint curvature in 
this situation continues to be positive over the whole arc length c, then the positive value of equation 
(1) is taken into account. Using tanq = ¢y  in (1) yields

k l a q1
1 2= +( cos ) ./

By defining the curvature as k1 1 2 3 2= ¢¢
+

y
y( ' ) /  and considering the derivative of y, we can derive
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Given the B.C. at the position ( cos , sin )b b1 1 1 1d d , we may conclude that
y k b( ) (cos cos ) sin ,f b f f d= - +2 1 1 1

where δ1 represents the first angle of connection with the torus, and f1 is defined as f
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In contrast, if we use the B.C. at points ( cos , sin )b C b2 2 2 2d d+  and f d
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 we obtain

C k b b= - + -2 1 2 1 1 2 2b f f d d(cos cos ) sin sin ,  (3)

where q p pÎ - -[ / , / ].Ã Ã1 22 2  Also
x b E k E k F k F k( ) cos { [ ( , ) ( , )] [ ( , ) ( , )]},f d b f f f f= - - - -1 1 1 12

the symbols F k E k( , ) ( , )f f and  represent the standard Legendre incomplete elliptic integrals of the 
first and second kinds, correspondingly. From the B.C. of the fullerene at ( cos , sin )b C b2 2 2 2d d+  we 
obtain
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b b E k E k F k F k1 1 2 2 2 1 2 12cos cos { [ ( , ) ( , )] [ ( , ) ( , )]}.d d b f f f f- = - - -  (4)
Given the equation that constrains the length of the arc, we may conclude that

c y dx
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applying ¢ =y tanq  to obtain the following:

c F k F k= b f f[ ( , ), ( , )].2 1  (5)
Substituting (5) into (4) yields
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with m d d= -( cos cos ) /b b c1 1 2 2 . Consequently, b b1 2 1 2, , ,   d d  and c are prescribed values. By solving (6) 
numerically to find k and inserting the obtained result into equation (5), we may determine the value 
of b, C can be obtained from (3), as demonstrated in Fig. 3.

Figure 3: Conjoining profile between fullerene and nanotorus using elastic energy.

3.2. Results via the alternative approach

In this instance, our sought to merge the previous carbon-based structures utilizing the alternative 
approach as depicted in Fig. 4.

Figure 4: Conjunction geometry of the alternative approach.



Alshammari NA, Results in Nonlinear Anal. 7 (2024), 84–92 90

The catenoid curve equation can be expressed from (2) as

z c a
c

c= ± +
-cosh ( ) ,
1

1

1
2  (7)

with constants c1 and c2 where the positive and negative signs represent the top and bottom catenoid 
segments, respectively. Here, the top segment joins to a fullerene, whereas the bottom segments joins 
to a torus. At point ( , )am 0 , the differential is equal to ¥ which results 1

11
2 2c am -

= ¥,  and,
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1 2
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Now, proceeding under the assumption that the fullerene equation is:

z A R a= - -1 1
2 2 ,  (9)

where the fullerene’s radius is symbolized by R1 and A1 is a constant that pinpointing the centre of the 
fullerene along the positive z-axis. Subsequently, at ( , ),a zf f  (7) and (9), we deduce
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Next, upon aligning the gradients at point ( , ),a zf f  we derived a R af m= 1 .  Consequently, we find A1 
is the

A a R
a

R R am
m

m1
1 1

1 1=
æ

è
çç

ö

ø
÷÷ + --cosh ( ),  (11)

By substituting (8) and (11) into (7) and (9) with predefined values of am and R1, thereby establishing 
the connection to the fullerene.
On the other side, the catenoid merges a torus with torus’s equation in Cartesian coordi-
nates as x y R z a2 2

2
2

1
2+ -( ) + = ,  and through conversion, we arrive at x R a= +( cos )cos ,1 f q  

y R a z a= + =( cos )sin , sin ,1 1f q f  in which q and f stand for the polar and azimuthal angles in the 
x-axis and xy-plane, respectively. R represents the torus’s major radius whereas a1 denotes its minor 
radius. Thus, the equation for the torus in cylindrical coordinates is ( ) ,a R z a- + =2 2

1
2  which can be 

written as

z D a a R= + - -1
2 2( ) ,  (12)

where D is a constant defined by the torus’s place along the negative z-axis [26]. Next, at the intersec-
tion point (at, zt), if we consider the negative value of equation (7), which depicts the bottom section of 
the catenoid, together with equations (8) and (12), we obtain
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the substitution of (8) allows us to identify at
a a R Rm= + +4

2
1 ,  consequently resulting in
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By substituting (8), (11) and (13) into (7), (9) and (12), respectively, with the given values for am, R1, a1 
and R, we delineate the merging curve between structures via the catenoid curve, as illustrated in 
Fig. 5.

Figure 5: Conjoining profile of fullerene and nanotorus using a catenoid.

4. Conclusions

In this research, the connecting area that connects a fullerene and a nanotorus was pinpointed by 
evaluating two approaches. In particular, that were produced through the minimization of two sepa-
rate functionals which depend on the Willmore energy and variational calculus approaches. The inte-
grated structures are foreseen to serve as probes for scanning tunnelling microscopes. The variational 
calculus approach, which is predicated on minimising the elastic energy of the bending curve, was 
used to facilitated the determination of this connecting area. The connection among the fullerene and 
nanotorus was expected to occur at the specified arc length. In the present case, a connecting curve of 
the nanostructures was established upon scrutinizing the problem in a 2–dimensional space on the 
xy-plane. The strategy includes utilising the top segment of the catenoid for the fullerene connection 
while the bottom segment used for nanotorus connection, considering advantage of the catenoid being 
an optimal minimiser according to the Willmore approach. As a result, these connecting formations 
are envisioned in a three-dimensional space within the presumption of both structures retain their 
geometrically flawless shapes without any deformation about their original configurations. Despite 
the lack of experimental or computational data, these theoretical models seem to provide plausible 
approximations of these intricate structures and could prove beneficial for future investigations in 
similar subject. One promising avenue for future work is a model with a nonlocal term which may 
enhance the model’s ability to account for global structural differences between fullerenes and nano-
torus, which are not fully captured by local curvature-based models.
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