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Graded 2r-Ideals
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Let G be a group and R be a commutative G-graded ring with nonzero unity. In this article, we 
establish the concept of graded 2r-ideals, which lies somewhere between graded r-ideals and graded 
uniformly pr-ideals. A proper graded ideal P of R is said to be a graded 2r-ideal of R if whenever 
x y h R, ( )Î  such that xy PÎ ,  then either x P y zd R2 Î Î or ( ),  where zd(R) is the set of all zero divi-
sors of R. Several properties of graded 2r-ideals have been achieved, and various results have been 
investigated.
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1. Introduction

Let G be a group and R be a commutative ring with nonzero unity 1. Then R is called G-graded if 
R R

g G g= Å
Î

 with R R Rg h ghÍ  for all g h G, ,Î  where Rg is an additive subgroup of R for all g 2 G. The  
elements of Rg are called homogeneous of degree g. If a 2 R, then a can be written uniquely as a a

g G
g=

Î
å , 

where ag is the component of a in Rg and ag = 0 except for finitely many. The additive subgroup Re is 

in fact a subring of R and 1 2 Re. The set of all homogeneous elements of R is 
g G

gR
Î
  and is denoted by 

h(R). let I be an ideal of a G-graded ring R. Then I is called a graded ideal if I I R
g G g= Å
Î

( ),\  i.e., for  

a 2 I, a = ag
g GÎ
å , where ag 2 I, for all g 2 G. An ideal of a graded ring is not necessarily a graded ideal. 

For more terminology, see [6, 7]. let I be a proper graded ideal of R. Then the graded radical of I is 
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Grad(I ), and is defined to be the set of all r 2 R such that for each g 2 G, there exists a positive integer 
ng satisfies r Ig

ng Î .  One can see that Grad(I ) is a graded ideal of R. Also, if r h RÎ ( ),  then r Grad IÎ ( )  
if and only if rn 2 I, for some positive integer n.

A proper graded ideal P of R is said to be graded prime if whenever x y h R, ( )Î  such that xy 2 P, 
then x 2 P or y 2 P [9]. A proper graded ideal P of R is called a graded r-ideal (graded pr-ideal) if 
x y h R, ( )Î  such that xy 2 P, then x 2 P or y 2 zd(R) ( ( ) ( )),x Grad P y zd RÎ Î or  where zd(R) is the set 
of all zero divisors of R [2]. Then in [3], a special class of graded pr-ideals that fixing the power of x 
in the above definition was introduced and examined. A proper graded ideal P of R is called a graded 
uniformly pr-ideal if there exists a positive integer n such that whenever x y h R, ( )Î  with xy 2 P, we 
have xn 2 P or y 2 zd(R). The order of P is the smallest positive integer for which the aforementioned 
property holds. The next two examples show that a graded r-ideal is not necessarily graded prime:

Example 1.1. Let R be a graded ring. Then I = {0} is a graded r-ideal of R: let x y h R, ( )Î  such that  
xy 2 I and y zd RÏ ( ).  Then xy = 0, and then x Ann y r R ryÎ = Î ={ } =( ) : { }0 0  as y zd RÏ ( )., which 
implies that x = 0 2 I. On the other hand, I is not necessarily a graded prime ideal of R.

Example 1.2. Let R be a graded ring and 0 ¹ Îx h R( ).  Then Ann(x) is a graded r-ideal of R: Ann(x) 
is a graded ideal of R by ([3], Lemma 2.15). Let a,b 2 h(R) such that ab Ann xÎ ( )  and b zd RÏ ( ).  Then 
abx = 0, and then ax Ann bÎ =( ) { },0  which implies that ax = 0, and hence a Ann xÎ ( ).  On the other 
hand, Ann(x) is not necessarily a graded prime ideal of R.

In this article, we follow [4] to establish the concept of graded 2r-ideals, which lies somewhere 
between graded r-ideals and graded uniformly pr-ideals. A proper graded ideal P of R is said to be a 
graded 2r-ideal of R if whenever x y h R, ( )Î  such that xy 2 P, then either x2 2 P or y 2 zd(R). Several 
properties of graded 2r-ideals have been achieved, and various results have been investigated.

2. Graded 2r-Ideals

In this section, we introduce and examine the concept of graded 2r-ideals.

Definition 2.1. Let R be a graded ring. Then a proper graded ideal P of R is said to be a graded 
2r-ideal of R if whenever x y h R, ( )Î  such that xy 2 P, then either x2 2 P or y 2 zd(R).

Clearly, graded r-ideals are graded 2r-ideals. However, the next example shows that a graded 
2r-ideal is not necessarily a graded r-ideal:

Example 2.2. Consider R = K[x,y], where K is a field, and G = Z. Then R is G-graded by R Kx yn i j n i j

i j= Å
+ = ³, ,

,
0

 
for all nÎ +  { },0  and Rn = 0, otherwise. Consider the graded ideal I xy=  of R. Then R/I is a 
G-graded ring by ( / ) ( ) / ,R I R I In n= +  for all n 2 Z. Consider the graded prime ideals P x I= +  and 
Q y I= +  of R/I. We show that zd R I P Q( / ) .=   Let f I zd R I+ Î ( / ).  Then there exists g I R I+ Î /  
such that g I I+ ¹ +0  and ( )( ) ,f I g I I+ + = +0  and then fg 2 I with g IÏ .  So, fg = xyh, for some h 2 R,  
and then x divides fg and y divides fg, which implies that x divides f or x divides g, and y divides f or 
y divides g. If x divides g and y divides g, then xy divides g, and then g 2 I, which is a contradiction. 
So, x divides f or y divides f, which implies that f I P Q+ Î  .  Thus, zd R P Q( ) .Í 

 Let f I P Q+ Î  .  
Then f I P+ Î  or f I Q+ Î . If f I P+ Î , then f I x I h I xh I+ = + + = +( )( ) ,  for some h 2 R, and then 
f – xh 2 I which implies that f – xh = xyt, for some t 2 R, and then f = xh + xyt =, so yf = xy(h + yt) 2 I,  
and thus ( )( )y I f I yf I I+ + = + = +0  with y I I+ ¹ +0  as y IÏ ,  which means that f I zd R+ Î ( ). 
Similarly, if f I Q+ Î , then f I zd R+ Î ( ). Hence, zd R I P Q( / ) .= 

 Now, we show that P 2 is a graded 
2r-ideal of R/I. Let f + I, g + I 2 h(R/I) such that (f + I)(g + I ) 2 P 2. Assume that g I zd R I+ Ï ( / ). Then 
g I P+ Ï .  Since ( )( )f I g I P P+ + Î Í2  and P is graded prime, we have f I P+ Î , which implies that 
( ) .f I P+ Î2 2  Hence, P 2 is a graded 2r-ideal of R/I. On the other hand, P 2 is not a graded r-ideal of R/I 
since x I x y I h R I+ + + Î, ( / )  such that ( )( ) ( ) ,x I x y I x xy I x I x I P x I P+ + + = + + = + = + Î + Ï2 2 2 2 2  
and x y I zd R I+ + Ï ( / ).
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Even though the next result is an immediate consequence of the definition of graded 2r-ideals, 
it is an important fact since it emphasizes that the components of the graded 2r-ideals are entirely  
consisting of zero divisors.

Proposition 2.3. Let R be a graded ring and P be a graded 2r-ideal of R. Then P zd Rg Í ( ),  for all g 2 G.

Proof. Let g 2 G and x 2 Pg. Then 1, x 2 h(R) such that 1.x = x 2 P, and then since P is a graded 2r-ideal 
and 1 12 = ÏP ,  we have that x 2 zd(R). Hence, P zd Rg Í ( ).

For a graded ideal P of R and a h R P a r R ra PÎ = Î Î{ }( ), ( : ) :  is a graded ideal of R containing P 
([3], Lemma 2.15).

Proposition 2.4. Let R be a graded ring and P be a graded 2r-ideal of R. Then for every a 2 h(R), 
either a2 2 P or (( : )) ( ),P a zd Rg Í  for all g 2 G.

Proof. Let a 2 h(R) such that a P2 Ï . Assume that g 2 G and b P a gÎ (( : )) .  Then a,b 2 h(R) such that 
ab 2 P, and then since P is a graded 2r-ideal, we have that b 2 zd(R). Hence, (( : )) ( ),P a zd Rg Í .

Theorem 2.5. Let R be a graded ring.
(1) If P is a graded 2r-ideal of R, then Grad(P) is a graded r-ideal of R.
(2) If P and Q are graded 2r-ideals of R, then P Q  is a graded 2r-ideal of R.
(3) If P and Q are graded r-ideals of R, then PQ is a graded 2r-ideal of R.
(4) Let P and Q be proper graded ideals of R such that P + Q = R. If PQ is a graded 2r-ideal of R, then 

P and Q are graded 2r-ideals of R.
(5) Let P and Q be proper graded ideals of R such that P + Q = R. If P Q  is a graded 2r-ideal of R, 

then P and Q are graded 2r-ideals of R.
(6) Every maximal graded 2r-ideal of R is a graded prime ideal of R.

Proof. (1) Let x, y 2 h(R) such that xy 2 Grad(P ). Then x y xy Pn n n= Î( ) ,  for some positive integer n, and 
then either ( )x Pn 2 Î  or y zd Rn Î ( )  as P is a graded 2r-ideal. If ( )x Pn 2 Î , then x Pn2 Î ,  which implies 
that x 2 Grad(P ). If y zd Rn Î ( ) , then y 2 zd(R). Hence, Grad(P ) is a graded r-ideal of R.
(2) Let x y h R, ( )Î  such that xy 2 P Q  and y zd RÏ ( ).  Then xy 2 P and xy 2 Q, and then x2 2 P and 

x2 2 Q, which implies that x2 2 P Q . Hence, P Q  is a graded 2r-ideal of R.
(3) Let x y h R, ( )Î  such that xy 2 PQ and y zd RÏ ( ).  Then xy 2 P and xy 2 Q, and then x 2 P and  

x 2 Q, which implies that x2 = x.x 2 PQ. Hence, PQ is a graded 2r-ideal of R.
(4) Since P + Q = R, 1 = x + y, for some x 2 P and y 2 Q, and then as 1 1 1Î = = + = +R x y x ye e e e e, ( ) .  

Note that, as P and Q are graded ideals, x Pe Î  and y Qe Î .  Let a, b 2 h(R) such that 
ab 2 P and b zd RÏ ( ).  Then ay b PQe Î ,  and then a y PQ Pe

2 2 Î Í , which implies that 
a a a x y a x a x y a y Pe e e e e e

2 2 2 2 2 2 2 2 21 2= = + = + + Î. ( ) .  Hence, P is a graded 2r-ideal of R. Similarly, Q 
is a graded 2r-ideal of R.

(5) Since P Q R P Q PQ+ = =, ,   and then the result holds from (4).
(6) Let P be a maximal graded 2r-ideal of R. Assume that a, b 2 h(R) such that ab 2 P and a PÏ .  Then 

Grad(P ) is a graded r-ideal of R by (1), and then Grad(P ) is a graded 2r-ideal of R, and so by max-
imality of P, P = Grad(P ) is a graded r-ideal of R, which implies that (P : a) is a graded r-ideal of 
R, and then again by the maximality of P, P = (P : a), and thus b 2 (P : a) = P. Hence, P is a graded 
prime ideal of R.

Clearly, if P is a graded prime ideal of R with P h R zd R ( ) ( ),Í  then P is a graded r-ideal of R, and 
so P is a graded 2r-ideal of R. In the next result, we discuss the case when the graded 2r-ideals of R are 
all graded prime. Recall that a commutative graded ring R with unity is said to be a graded domain if 
R has no homogeneous zero divisors. Obviously, if R is a domain and R is graded, then R is a graded 
domain. However, a graded domain is not necessarily domain ([1], Example 2.4). The next proposition 
shows that the graded 2r ideals of R are all graded prime if and only if R is a graded domain.
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Proposition 2.6. Let R be a graded ring. Then the followings statements are equivalent:
(1) Every graded 2r-ideal of R is a graded prime ideal of R.
(2) R is a graded domain.
(3) {0} is the only graded 2r-ideal of R.

Proof. (1) ) (2): Since {0} is a graded 2r-ideal of R, {0} is a graded prime ideal of R, and then R is a 
graded domain.

(2) ) (3): Let P be a graded 2r-ideal of R and a 2 P. Then for any g 2 G a P zd Rg gÎ Í =( ) { }0  by 
Proposition 2.3. So, ag = 0, for all g 2 G, which implies that a = 0. Hence, P = {0}.

(3) ) (1): Let x h RÎ -( ) { }.0  Then Ann(x) is a graded 2r-ideal of R, and then Ann(x) = {0}. Thus, x is 
a regular element, and hence R is a graded domain. So, {0} is a graded prime ideal of R which is the 
only graded 2r-ideal of R.

A proper graded ideal P of R is said to be graded primary if whenever x, y 2 h(R) such that xy 2 P, 
then either x 2 P or y 2 Grad(P )[8]. Clearly, if P is a graded primary ideal of R with P h R zd R ( ) ( ),Í  
then P is a graded r-ideal of R, and so P is a graded 2r-ideal of R. In the next result, we discuss the 
case when the graded 2r-ideals of R are all graded primary. Recall that a graded ring R is an HUN-
ring if every homogeneous element of R is either unit or nilpotent. Indeed, R is an HUN-ring if and 
only if nil(R) is a graded maximal ideal of R. The next theorem shows that the graded 2r ideals of R 
are all graded primary if and only if R is a graded domain or an HUN-ring.

Theorem 2.7. Let R be a graded ring. Then every graded 2r-ideal of R is a graded primary ideal of R 
if and only if R is a graded domain or an HUN-ring.

Proof. Suppose that every graded 2r-ideal of R is a graded primary ideal of R. Then {0} is a graded 
primary ideal of R, and then nil R zd R( ) ( ).=  Assume that R is neither graded domain nor HUN-ring. 
Let M be a graded maximal ideal of R. Then there exists a M nil RÎ - ( ),  and then a nil Rg Ï ( ),  for 
some g 2 G. Note that as M is a graded ideal, ag 2 M. Consider 0 ¹ Îb nil R( ),  so b nil Rg Î ( )  as nil(R) 
is a graded ideal. Let k be the smallest positive integer such that bg

k = 0.  We show that I a bg g
k= -1  is 

a graded 2r-ideal of R. Let x, y 2 h(R) such that xy 2 I and y zd RÏ ( ).  Then x2y2 = 0, and then as {0} 
is a graded r-ideal, we have x2 = 0 2 I. Hence, I is a graded 2r-ideal of R, and so I is a graded primary 
ideal of R with Grad I nil R( ) ( ).=  Now, a b Ig g

k- Î1  with a nil Rg Ï ( ),  so b Ig
k- Î1 ,  which implies that 

b rag
k

g
- - =1 1 0( ) ,  for some r 2 R, which means that 1 - Î = Íra zd R nil R Mg ( ) ( ) ,  so 1 2 M, which is a 

contradiction. Hence, R is a graded domain or an HUN-ring. Conversely, if R is a graded domain, then 
{0} is the only graded 2r-ideal of R, which is graded primary. If R is an HUN-ring, then every proper 
graded ideal of R is graded primary. In particular, every graded 2r-ideal of R is graded primary.

Let R be a G-graded ring and I be a graded ideal of R. Then R/I is a G-graded ring by 
( / ) ( ) / ,R I R I Ig g= +  for all g 2 G [7].
Proposition 2.8. Let Q Ò P be two graded ideals of R. Then P/Q is a graded 2r-ideal of R/Q if and only 
if for every x, y 2 h(R) with xy 2 P, we have x2 2 P or ( : )Q y  ≠ Q.
Proof. Suppose that P/Q is a graded 2r-ideal of R/Q. Let x, y 2 h(R) with xy 2 P and x2 Ï P. Then 
( )( ) /x Q y Q P Q+ + Î  and ( ) / ,x Q P Q+ Ï2  and then y Q zd R Q+ Î ( / ),  which implies that there exists 
a QÏ  with ( )( ) ,a Q y Q Q+ + = +0  so ay 2 Q, which means that a Q yÎ ( : ).  Hence, ( : )Q y  ≠ Q. Conversely, 
let x Q y Q h R Q+ + Î, ( / )  such that ( )( ) /x Q y Q P Q+ + Î  and ( ) / ,x Q P Q+ Ï2 . Then xy 2 P and x2 Ï P, 
and then ( : )Q y  ≠ Q. So, there exists a 2 (Q : y) – Q, which implies that ( )( ) .a Q y Q ay Q Q+ + = + = +0  
Thus, y Q zd R Q+ Î ( / ),  and hence P/Q is a graded 2r-ideal of R/Q.
Corollary 2.9. Let Q Ò P be two graded ideals of R. If Q is a graded r-ideal of R and P/Q is a graded 
2r-ideal of R/Q, then P is a graded 2r-ideal of R.
Proof. Let x, y 2 h(R) such that xy 2 P and x2 Ï P. Then by Proposition 2.8, ( : )Q y  ≠ Q, and then there 
exists a 2 (Q : y) – Q, which implies that a Qg Ï ,  for some g 2 G, but ag 2 (Q : y) as (Q : y) is a graded ideal. 
Now, Q is a graded r-ideal with a y Qg Î  and a Qg Ï ,  so y 2 zd(R). Hence, P is a graded 2r-ideal of R.
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Let R and S be two G-graded rings. Then a ring homomorphism f R S: ®  is said to be a graded 
ring homomorphism if f R Sg g( ) ,Í  for all g 2 G. Moreover, if f is a graded ring epimorphism, then  
f(Rg) = Sg, for all g 2 G [7].
Proposition 2.10. Let f R S: ®  be a graded ring homomorphism. Then f–1(P) is a graded 2r-ideal of 
R, for every graded 2r-ideal P of S, if and only if f(x) is a regular element in S, for every homogeneous 
regular element x in R.
Proof. Suppose that f–1(P) is a graded 2r-ideal of R, for every graded 2r-ideal P of S. Let x be a homo-
geneous regular element in R. Assume that f(x) is not regular in S. Then f x zd S( ) ( ),Î  and then 
there exists s 2 S – {0} such that f(x)s = 0. Since s ≠ 0, sh ≠ 0, for some h 2 G. On the other hand, 

g G
g

g G
gf x s f x s f x s

Î Î
å å= = =

æ

è
çç

ö

ø
÷÷( ) ( ) ( ) ,0  but {0} is a graded ideal and f x sg( )  is a homogeneous element, for 

all g 2 G, so we have f x sg( )  =0, for all g 2 G. In particular, f x sh( ) .= 0  So, f x I Ann sh( ) ( ).Î =  Now, I 
is a graded 2r-ideal of S, so f–1(I ) is a graded 2r-ideal of R with x 2 f–1(I ). Since x is homogeneous in R,  
x 2 Rg, for some g 2 G, and then by Proposition 2.3, x x f I zd Rg g= Î Í-( ( )) ( ),1  which is a contradiction. 
Hence, f(x) is regular in S. Conversely, let P be a graded 2r-ideal of S. Assume that x, y 2 h(R) such that 
xy 2 f–1(P ) and y zd RÏ ( ).  Then y is a homogeneous regular element in R, and then f(y) is regular in S, 
so f y zd S( ) ( ).Ï  Now, f x f y h S( ), ( ) ( )Î  such that f x f y f xy P( ) ( ) ( ) ,= Î  and then f x f x P( ) ( ( )) ,2 2= Î  so 
x f P2 1Î - ( ).  Hence, f–1(P ) is a graded 2r-ideal of R.

Recall that for a ring R, S Ò R is said to be essential in R if S I  ≠ {0}, for every nonzero ideal I of R.
Corollary 2.11. Let R be a graded ring such that Re is essential in R. If P is a graded 2r-ideal of R, 
then Pe is an 2r-ideal of Re.
Proof. Define f R Re: ®  by f(x) = x. Then f is a graded ring homomorphism. Let x 2 Re be a regular 
element. Assume that f(x) is not regular in R. Then there exists r 2 R – {0} such that rx rf x= =( ) ,0  so 
r Ann xRÎ ( ),  and then AnnR(x) is a nonzero ideal of R. Thus R Ann xe R ( )  ≠ {0}, which implies that 
there exists t 2 Re – {0} such that tx = 0, which is a contradiction. So, f(x) is regular in R. Hence, by 
Proposition 2.10, f P P R Pe e

- = =1( )   is an 2r-ideal of Re.
Proposition 2.12. Let f R S: ®  be a graded ring epimorphism such that f zd R zd S( ( )) ( ).Í  If P is a 
graded 2r-ideal of R and Ker f P( ) ,Í  then f(P) is a graded 2r-ideal of S.
Proof. Let s,t 2 h(S) such that st 2 f(P ). Then there exist x, y 2 h(R) such that f(x) = s and f(y) = t, 
and then f xy f x f y st f P( ) ( ) ( ) ( ),= = Î  which implies that xy 2 P as Ker f P( ) .Í  So, either x2 2 P or  
y 2 zd(R), and then either s f x f x f P2 2 2= = Î( ( )) ( ) ( )  or t f y f zd R zd S= Î Í( ) ( ( )) ( ).  Hence, f(P) is a 
graded 2r-ideal of S.

Let R and S be two G-graded rings. Then R ´ S is a G-graded ring by ( ) ,R S R Sg g g´ = ´  for all  
g 2 G. A graded ring R is said to be a cross product if Rg contains a unit, for all g 2 G[7].
Proposition 2.13. Let R and S be two G-graded rings such that R and S are cross products. Assume 
that P and Q are two graded ideals of R and S respectively. Then P ´ Q is a graded 2r-ideal of R ´ S if 
and only if P is a graded 2r-ideal of R and Q = S or Q is a graded 2r-ideal of S and P = R or P and Q 
are graded 2r-ideals of R and S respectively.
Proof. Suppose that P ´ Q is a graded 2r-ideal of R ´ S. Then P ´ Q should be proper, and then 
P ≠ R or Q ≠ S. Assume that P ≠ R. Let x, y 2 h(R) such that xy 2 P and y zd RÏ ( ).  Then y 2 Rh, 
for some h 2 G. Since S is a cross product, Sh contains a unit, say s. Now, ( , ),( , ) ( )x y s h R S0 Î ´  
such that ( , )( , ) ( , )x y s xy P Q0 0= Î ´  and ( , ) ( ),y s zd R SÏ ´  so ( , ) ( , ) ,x x P Q0 02 2= Î ´  and then x2 2 P. 
Hence, P is a graded 2r-ideal of R. Similarly, if Q ≠ S, then Q is a graded 2r-ideal of S. Conversely, 
suppose that P and Q are graded 2r-ideals of R and S respectively. Let ( , ),( , ) ( )x t y s h R SÎ ´  such 
that ( , )( , ) ( , )x t y s xy ts P Q= Î ´  and ( , ) ( ).y s zd R SÏ ´  Then x y h R t s h S, ( ), , ( )   Î Î  such that xy PÎ ,  
ts Q y zd RÎ Ï, ( ) and s zd SÏ ( ).  Thus, x2 2 P and t2 2 Q, and then ( , ) ( , ) .x t x t P Q2 2 2= Î ´  Hence, P ´ Q 
is a graded 2r-ideal of R ´ S. Similarly for the other cases.
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Let R be a G-graded ring. Assume that M is a left unitary R-module. Then M is said to be G-graded 
if M M

g G g= Å
Î

 with R M Mg h ghÍ ,  for all g, h 2 G, where Mg is an additive subgroup of M, for all  
g 2 G. The elements of Mg are called homogeneous of degree g. It is clear that Mg is an Re-submodule 
of M, for all g 2 G. We assume that h M M

g G
g( ) .=

Î


 Let N be an R-submodule of a graded R-module 

M. Then N is said to be a graded R-submodule if N N M
g G g= Å
Î

( ),  i.e., for x 2 N, x x
g G

g=
Î
å ,  where  

xg 2 N, for all g 2 G. It is known that an R-submodule of a graded R-module is not necessarily graded. 
The idealization R M r m r R m M( ) {( , ) : , }+ = Î Î  of M is a commutative ring with componentwise 
addition and multiplication; ( , ) ( , ) ( , )x m y m x y m m1 2 1 2+ = + +  and ( , )( , ) ( , ),x m y m xy xm ym1 2 2 1= +  for 
each x, y 2 R and m1, m2 2 M. Let G be an abelian group and M be a G-graded R-module. Then 
x = R(+)M is G-graded by xg = Rg(+)Mg, for all g 2 G. If P is a graded ideal of R and N is a graded 
R-submodule of M, then P(+)N is a graded ideal of R(+)M provided that PM Ò N [10]. Note that 
zd R M x m x zd R zd M m M( ( ) ) ( , ) : ( ) ( ), ,+ = Î Î{ }   where zd M x R xm m M( ) := Î = ¹ Î{ }0 0 for some 
([5], Theorem 3.5).
Proposition 2.14. Let G be an abelian group, M be a G-graded R-module and P be a graded ideal of 
R. Then P(+)M is a graded 2r-ideal of R(+)M if and only if for every x, y 2 h(R) with xy 2 P, we have  
x2 2 P or y zd R zd MÎ ( ) ( ).

Proof. Suppose that P(+)M is a graded 2r-ideal of R(+)M. Let x, y 2 h(R) with xy 2 P and x2 Ï P.  
Then ( , )( , ) ( , ) ( )x y xy P M0 0 0= Î +  and ( , ) ( , ) ( ) .x x P M0 02 2= Ï +  Hence, ( , ) (( ( ) )),y zd R M0 Î +  which gives 
that y zd R zd MÎ ( ) ( ).  Conversely, let ( , ),( , ) (( ( ) )x m y t h R MÎ +  such that ( , )( , ) ( , )x m y t xy xt ym= +  
Î +P M( )  and ( , ) ( ( ) ).y t zd R MÏ +  Then xy 2 P and y zd R zd MÏ ( ) ( ).  Hence, x2 2 P, and then ( , )x m 2 = 
( , ) ( ) .x xm P M2 2 Î +  Thus, P(+)M is a graded 2r-ideal of R(+)M.
Corollary 2.15. Let G be an abelian group and M be a G-graded R-module. If P is a graded 2r-ideal 
of R, then P(+)M is a graded 2r-ideal of R(+)M.
Corollary 2.16. Let G be an abelian group and M be a G-graded R-module such that zd M zd R( ) ( ).Í  
Then P is a graded 2r-ideal of R if and only if P(+)M is a graded 2r-ideal of R(+)M.
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