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1. Introduction

The inception of probabilistic distance concept is credited to K. Menger [14], a key figure in the 
advancement of probabilistic metric space theory. Subsequently, numerous probabilistic adaptations 
of the triangle inequality have emerged (refer to [7, 13, 16, 21, 22, 23]), with the examination of these 
inequalities playing a pivotal role in the evolution of probabilistic metric space theory. For a more 
comprehensive grasp of significant advancements in this domain, consulting [17] is recommended.

Among the array of mathematical theories that make such generalized structures intriguing and 
noteworthy, fixed point theory holds prominence. In recent decades, several renowned mathemati-
cians have established numerous well-known metric fixed point theorems within these structures (see  
[1, 2, 4, 5, 8, 9, 10, 11, 12, 15, 18, 19, 20] and the references therein).
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In 2016, MBARKI and Naciri [6] introduced an additional abstraction termed probabilistic gen-
eralized metric space. They investigated diverse topological and geometrical characteristics of these 
spaces and illustrated fixed point properties for nonlinear contractions.

This study aims to introduce a novel framework as an extension to the theory of probabilistic gen-
eralized metric spaces. We seek to explore the connections between various concepts within this new 
category termed “probabilistic controlled generalized metric space” and the traditional principles of 
probabilistic metric space. Additionally, we aim to establish the existence and uniqueness of a fixed 
point for the Ã-probabilistic contraction mapping, even in the absence of the Hausdorff condition. 
Furthermore, concrete cases are provided to support the validity of our generalizations.

2. Preliminaries

We will start by presenting some fundamental definitions and terminology that will be utilized 
throughout the investigation.

A non-decreasing function ¡ : [ , ] [ , ],0 1 0 1®  which exhibits commutativity, and associativity, is des-
ignated as a t-norm if it adheres to the subsequent criteria:
(1) ¡( , ) , [ , ],g g g1 0 1= Î for all 
(2) ¡( , ) .0 0 0=
Three illustrations of continuous t-norms are presented below:

¡ ¡ ¡p M L( , ) , ( , ) min( , ), ( , ) max{ , }w n wn w n w n w n w n�  � �  and �= = = + -1 0 ..
We designate a t-norm ¡ as being of H-type [3] if the sequence {¡n}n exhibits equicontinuity at c = 1, 
meaning

" Î $ Î > - Þ > - ³m i x i x m( , ) ( , ) : ( ) .0 1 0 1 1 1 1¡n nfor all
In this context, ¡1( )c  is defined as ¡( , ),c c  and for every n ≥ 2, ¡n( )c  is expressed as ¡ ¡( , ( )).c cn-1

The t-norm ¡M exemplifies a simple instance of a t-norm of H-type.
A function g : { } [ , ],+ È ¥ ® 0 1  monotonically non-decreasing, is considered a distance distribution 

function provided it meets the following criteria
(1) g g( ) ( ) ,0 0 1= =�and� ¥
(2) g is left-continuous on (0,¥).
The collection of distance distribution functions is denoted by D+. Additionally,

+ +

®
= Î ={ : lim ( ) }.g gD �

t
t

¥
1

An exemplary instance of a distance distribution function within D+ is the Heaviside step function. 
It’s defined as follows
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2.1. Probabilistic controlled generalized metric space

This section serves to introduce a novel category of generalized probabilistic metric spaces termed 
probabilistic controlled generalized metric spaces. Additionally, we delve into the examination of 
diverse topological and geometric attributes inherent in these spaces.

Definition 2.1. A probabilistic controlled generalized metric space (abbreviated as pcgms) is defined 
as a quadruple ( , , , ) Á u¡  where W is a nonempty set, Á is a function from W ´ W into D+, ¡ is a 
t-norm, u is a mapping from R+ into [1,¥), and the following conditions are met: for all p,q 2 W and for 
all distinct points a,b 2 W, each distinct from p and q.
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(i) Á pp = ;
(ii) Á pq p = q= ) ;
(iii) Á Ápq qp= ;

(iv) Á u Á Á Ápq pa ab bqs r)r + t s r t s, r, t( ( ) ( ), ( ), ( )+ ³ ( )( ) >¡ ¡    � �for all 00.
Recall that a probabilistic generalized metric space is defined as a triple ( , , ) Á ¡  satisfying condi-
tions (i) through (iii), along with the following inequality

(vi) Á Á Á Ákq ka ab bqs + r + t s r t( ) ( ), ( ), ( ) (³ ( )( )¡ ¡  Quadrilateral inequaality)
This holds true for all distinct k,q,a,b s, r, tÎ >  and � � 0.

Remark 2.2. Each probabilistic generalized metric space can be seen as a probabilistic controlled  
generalized metric space when u g g( ) .= ³1 0   for all  However, the reverse assertion may not hold true. 
The subsequent example elucidates this point.

Example 2.3. Consider  = { }a,b,c, d ;  and u : [ , )+ +¥! 1  where " Î = ++g u g g ; ( ) .3 1  Define 
Á : ´ +!D  as follows

Á V
V r t

V r t r t
V

rt ( )
( ) ,

( ) , � ,
( )

=
=

- Î{ } ¹
-

H
H
H

if
if and

otherwis
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2
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It is straightforward to confirm that ( , , , ) Á u¡M  forms a (pcgms), however, it does not constitute a 
probabilistic generalized metric space due to the following reason:

Á

Á Á Á

ad

ab bc cd

( )

( ( ), ( ( ), ( ))).

9 0

3 3 3
1
=

=
<
¡ ¡M M

Definition 2.4. Consider (W, Á) as a probabilistic semimetric space (i.e., satisfying conditions (i), (ii), 
and (iii) of Definition 2.1). For any & in W and g > 0, the strong g-neighborhood of & is defined as the set 

V Vtg t Á g g( ) { : ( ) }.= Î > - � 1

The collection of strong neighborhoods at & is denoted as WV V g g= >{ ( ) : }, � 0  and the strong neighbor-
hood system for W is the union W W= ÎV V .

The sequence convergence is described as follows

Definition 2.5. Let {xn} be a sequence in a probabilistic semimetric space (W, Á). Then

1. The sequence {xm} is said to converge to x 2 W if for every h > 0, there exists a positive integer Jh such 
that Á h hx xm

( ) > -1  whenever m ≥ Jh.

2. The sequence {xm} is termed a Cauchy sequence if for every h > 0, there exists a positive integer Jh  such 
that n, m ≥ Jh implies F

n mx x ( ) .h h> -1
3. (W, Á) is regarded as complete if every Cauchy sequence has a limit.
As a probabilistic generalized metric space is a probabilistic controlled generalized metric space, the 
following deduction can be drawn from [6]

Remark 2.6. Let ( , , , ) Á u¡  be a probabilistic controlled generalized metric space. Despite ¡ being 
continuous, the following assertions generally hold
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• The notions of convergent sequence and Cauchy sequence are decoupled in ( , , , ) Á u¡ .
• In general, Á is not a continuous functional.
• Generally, ( , , , ) Á u¡  equipped with the topology W is not a Hausdorff topological space.

2.2. Ã-probabilistic contraction in probabilistic controlled generalized metric space

This section examines the Ã-probabilistic contraction definition and present some lemmas crucial for 
subsequent analysis.

Lemma 2.7 ([6]). Let {ym} be a sequence in a probabilistic semimetric space (W, Á) and y 2 W.
(1) {ym} is convergent to y if either:

• lim ( ) ,m m
for all or®¥ = >Á g gy y 1 0    

• for every x > 0 and s 2 (0,1), there exists a positive integer J(x, s) such that Á x sy ym
( ) > -1  when-

ever m ≥ J(x, s).
(2) {ym} is a Cauchy sequence if either:

• lim ( ) ,,m n m n
for all or® = >¥ Á g gy y 1 0    

• for every x > 0 and s 2 (0,1), there exists a positive integer J(x, s) such that Á x sy ym n
( ) > -1  

whenever n, m ≥ J(x, s).
The symbol Y denotes the collection of all functions Ã : [ , ) [ , )0 0¥ ® ¥  satisfying

0 0 0< < = >
®

Ã Ã
¥

( ) lim ( ) .r r r r
n

n and  for each 

Definition 2.8 ([6]). Let Ã : [ , ) [ , )0 0¥ ® ¥  be a function such that Ã g g g( ) ,< >    for and0 f  be a self-
map of a probabilistic semimetric space (W, Á). We say that f is a Ã-probabilistic contraction if 

Á Ã x Á x xfpfq pq p,q( ( )) ( ), .³ " Î > �and� 0  (1)

Lemma 2.9 ([6]). Let g be a distance distribution function in D+, if there exists ÃÎY  for which 
g g( ( )) ( ) ,Ã s s s³ >   for all 0

then g = H.

Lemma 2.10 ([7]). Let ÃÎY , {gn} be a sequence of elements from D+, and g 2 D+. If for all g > 0 and all 
n 2 N

g gn
n( ( )) ( ).Ã g g³

Then lim ( ) .
n n for each
®+

= >
¥

g gg 1 0�  �

3. Main Results

Let’s start by establishing two fundamental lemmas crucial for our main theorem’s proof.

Lemma 3.1. Let ÃÎY , f be a self-map of a probabilistic semimetric space (W, Á) where 
Ran( ) ,Á Ì +  and let {yn} be a sequence of elements from W defined by y fy y0 1Î = +   and n n  such that 
y yn n for all n¹ Î-

*
1 �  �  .  Suppose that

Á Ã z Á z zy y y yn n n n
n and

+ -
³ " Î >*

1 1
0( ( )) ( ) .�� � �  (2)

Then yn ≠  ym for all distinct n,m 2 N.

Proof. Suppose there exist n, m 2 N such that yn = ym  and n < m. In this situation, our objective is to 
prove that yn+1 = yn. Firstly, let’s establish through induction that for every n 2 N and z > 0, we have
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Á Ã z Á zy y y yn j n j n n
j

+ + + +
³ ³

1 1
1( ( )) ( ) .�for all�  (3)

From Equation (2), we have Á Ã z Á zy y y yn n n n+ + +
³

1 2 1
( ( )) ( ),  thus Equation (3) is valid for j = 1. Assume 

Equation (3) holds true for j ≥ 1.
Á Ã z Á z Á Ã z Áy y y y y y yn j n j n j n j n j n j n+ + + + + + + + + +

³ ³ ³
1 2 1 1

( ( )) ( ) ( ( ))  yyn+1
( ).z

Thus, Equation (3) holds for every integer j ≥ 1. Substituting j = m – n, we find
Á Ã z Á Ã z Á zy fy y y y fyn n n m n n m n n n

( ( )) ( ( )) ( )
( ) ( )

= ³
+ - + - +1

 for each zz > 0.

According to Lemma 2.9 and condition (ii) specified in Definition 2.1, this leads to the conclusion that 
yn = yn+1.

Lemma 3.2. Let ÃÎY , f denotes a self-map of a probabilistic controlled generalized metric space 
( , , , ) Á u¡  equipped with a t-norm ¡ of H-type, where Ran( ) ,Á Ì +  and u is an increasing mapping. 
Let {yn} be a sequence of elements from W defined by y0 2 W and fyn = yn+1 such that yi ≠ yj for all distinct 
i, j 2 N. Suppose that

Á Ã g Á g gy y y yn m n m
m n

+ +
³ " Î >

1 1
0( ( )) ( ) , ,,� �and�  (4)

then the sequence {yn} is Cauchy.

Proof. To prove the sequence {yn} is Cauchy. To illustrate this, consider the sequence {Gn} consisting of 
elements from D+ defined as follows

G Nn n n
n= Î

+
Áy y 1

�for all� .
By referring to (4), it’s evident that for every i 2 N and for every x > 0

i
i i

i
i i

i i

( ( )) ( ( ))

( ( ))

( ).

Ã x Á Ã x

Á Ã x

Á x

=

³

³

+

-

-

y y

y y

y y

1

1

0 1

1



Given that the range of Á is contained within D+, we can infer from Lemma 2.10 that
lim ( ) .
i i i®+ +

= >
¥
Á x xy y 1

1 0�for all�  (5)
Likewise, we demonstrate that

lim ( ) .
i i i®+ +

= >
¥
Á x xy y 2

1 0�for all�  (6)
Subsequently, we establish by induction that for every x > 0 and for all n ≥ 1

Á x xy yn m

m n
n m n( ) ( ) ,³ ( ) >-¡  �for all�  (7)

where

n n n n n
( ) ( )

( )
,x Á x Ã x

u x Ã x
Á x Ã= -
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Let’s confirm that (7) holds for m 2 {n + 1, n + 2}. Indeed, leveraging the monotonicity of Á and consid-
ering Ã(x) < x, we observe the following
For m = n + 1



Mbarki A, Elberkani M, Results in Nonlinear Anal. 7 (2024), 35–44 40

Á x Á Á
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For m = n + 2

Á x Á Á Áx Ã x x Ã x
y y y y y y y yn n n n n n n n+ + + +

³ ( ) = ( )( ) ³- -
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Consequently, (7) remains valid for m 2 {n + 1, n + 2}. Let’s assume that (7) holds for m > n + 2.
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Considering the induction hypothesis, we deduce
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This suggests that (7) holds for all m > n. Let # > 0 and d 2 (0,1). Given that ¡ is a t-norm of H-type, 
let l 2 (0,1) be such that

If� �then� �for all�x l x d> - > - ³1 1 1¡n n( ) .  (8)
Utilizing the continuity of ¡ at (1,1), along with (5) and (6), we deduce

lim ( ) ,
( )

( )

n n n n n®+ -
-

+ +

-

( )
æ

è
ç
ç
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ø
÷
÷ ( )

æ

¥ J Ã J
J Ã JÁ J Ã J

u
Á¡ y y y y1 22 2

2

èè

ç
ç

ö

ø

÷
÷
= =¡( , ) .1 1 1

Thus, there exists H0 Î  for which
n n( ) .J l> - ³1 0�for all� H  (9)

This inference from (7) and (8) suggests that
Á J dy y H

n m
m n( ) .> - > ³1 0�for all�

Therefore, {yn} forms a Cauchy sequence in W.
Now, we are prepared to present and establish the main fixed-point theorem of this paper.

Theorem 3.3. In a probabilistic controlled generalized metric space (pcgms) ( , , , ) Á u¡  with a t-norm 
¡ of H-type, where Ran( )Á Ì +  and u is an increasing mapping, let f: W ! W be a Ã-probabilistic 
contraction with ÃÎY ; then

(1) f possesses a unique fixed point y.
(2) lim , .

n
nx for all x

®+
= Î

¥
f y    

Proof. Let y0 2 W be given, and let’s define the sequence {yn} as follows
y f yn

n n= Î0 �for� .

If there is some i 2 N where yi+1 = yi, then f(yi)= yi, and the proof is complete.
Now, let’s assume that yn ≠ yn+1 for all n 2 N. Then, according to Lemma 3.1, we deduce that yi ≠ yj  

for all i, j 2 N where i ≠ j. In this context, referring to (1), we observe
Á Ã x Á x xy y y yn m n m

n m
+ +

³ Î >
1 1

0( ( )) ( ) , .�for all� �and all�

By Lemma 3.2, we deduce that {yn} forms a Cauchy sequence in W. As W is complete, there exists  
y 2 W for which

lim .
n n®+

=
¥
y y  (10)

Next, we aim to demonstrate that f(y) = y. Consider # > 0, d 2 (0,1), and n 2 N. Given that Ã(#) < #, 
and leveraging the monotonicity of Á alongside (1), we deduce

Á J Á Ã J Á Ã J Á Jy fy y fy fy fy y yn n n n+ +
³ = ³

1 1
( ) ( ( )) ( ( )) ( ).

As {yn} converges to y, there exists H0 Î  for which
Á J dy y H

n
n( ) .> - ³1 0�for all�

Thus, we have
Á J dy fy H

n
n

+
> - ³

1
1 0( ) .�for all�

Consequently,
lim .
n n®+ + =¥
y fy1  (11)
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Applying the quadrilateral inequality, we derive
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for all e > 0, n ≥ 1.
Taking the limit as n ! ¥ in (12) and utilizing (10), (11), along with the fact that {yn} is a Cauchy 

sequence, we conclude that

Á e efyy( ) .³ >1 0�for all�

This remains valid unless Á fyy = ,  which implies fy = y. Consequently, f possesses a fixed point.
Finally, let’s establish the uniqueness of the fixed point. To establish this, let’s assume that f pos-

sesses another fixed point x 2 W.
Consider x > 0, then from (1), we can derive

Á Ã x Á Ã x Á xyx fyfx yx( ( )) ( ( )) ( ).= ³

Thus, based on Lemma 2.9, we can infer that y = x.
To wrap up this study, we will showcase the applicability of Theorem 3.1 through two consecutive 

examples.

Example 3.4. Let   = ´ ® +{ } :a,b,c, d,e   and Á D  defined by

Á x
x
x
x

pq

p = q

p,q c,e e,c p q( )
( ) ,
( ) ( ) {( ), ( )} ,
(

= - Î ¹
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4
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ì
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ï

î
ï 1)�� .otherwise

Now, let’s establish the mapping u : [ , )+ ® +¥1  using the formula u(t) = 4t+1.
It’s evident that ( , , , ) Á u¡M  constitutes a probabilistic controlled generalized metric space. 

Furthermore, ( , , , ) Á u¡M  is complete because any Cauchy sequence in W must eventually become 
constant.

Let’s consider the function f: W ! W defined as f e( ) .c c= Î�for� 
For any p, q 2 W, and x > 0, it’s evident that Á Ã xfpfq( ( )) =1 , which implies Á Ã x Á xfpfq pq( ( )) ( ).³  Thus, 

f constitutes a Ã-probabilistic contraction for any ÃÎY . All prerequisites outlined in Theorem 3.1 are 
met, and e stands as a fixed point of f. However, it’s important to note that we cannot apply the results 
from [6] in this instance, as (W, Á, ¡M) does not qualify as a probabilistic generalized metric space since 
it fails to satisfy the Quadrilateral inequality: 
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Example 3.5. Let K = {0,3} and V N K V= Î{ } = È*1
n n: , .�with�

Define Á ´ ® +:  D  as follow
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Consider the function u u: [ , ) ( ) .+ ® +¥ =1 4   given by t
It can be easily demonstrated that ( , , , ) Á u¡M  constitutes a pcgms space. Indeed, it’s apparent that 

conditions (i) through (iii) are satisfied by Á. To verify condition (iv), let a, b, c, d denote distinct points 
in W, and s, r, t > 0, we need to show that

Á u Á Á Áad ab bc cds r r t s r t( ( ) ) min ( ), ( ), ( ) .+ + ³ ( )
If

min ( ), ( ), ( ) .Á Á Áab bc cds r t( ) = 0

Then
Á u Á Á Áad ab bc cds r r t s r t( ( ) ) min ( ), ( ), ( ) .+ + ³ ( )

If
min ( ), ( ), ( ) .Á Á Áab bc cds r t( ) =1

We examine the following cases:

Case 1:  If a, b, c, d are all in V, then we have s r r t+ + >u( ) ,4  implying Á uad s r r + t( ( ) )+ =1 .
Case 2:   If either {a, b} or {b, c} or {c, d} is a subset of K, then we obtain s r r t+ + >u( ) ,3  implying 

Á + =ad s r r + t( ( ) ) .u 1
Case 3:  If b, c are both in V, we have r > 1, thus s r r t+ + >u( ) ,3  implying Á uad s r r + t( ( ) ) .+ =1
Case 4:  If b 2 V and c 2 K, then d 2 V and t > d if a 2 K.

s r r t d s r r + tad+ + > + =u Á u( ) ( ( ) ) .  and 1
   If a 2 V, we have s > 1, hence s r r t s r r + tad+ + > + =u Á u( ) ( ( ) ) .1 1  and
Case 5:  If b 2 K and c 2 V, then a 2 V and s > a if d 2 K.

s r r t a s r r + tad+ + > + =u Á u( ) ( ( ) ) .  and 1

    If d 2 V, we have t > 1, thus s r r t s r r + tad+ + > + =u Á u( ) ( ( ) ) .1 1  and
Consequently, from all the aforementioned cases, we conclude that Á uad s r r + t( ( ) ) ,+ =1  then 

Á u Á Á Áad ab bc cds r r t s r t( ( ) ) min ( ), ( ), ( ) .+ + ³ ( )
Thereby fulfilling condition (iv). Hence, ( , , , ) Á u¡M  constitutes a pcgms space, with ¡M being  
continuous, and there exists no x > 0 where  0 3( ) ( ) .x xÇ =;  Consequently, ( , , , ) Á u¡M  equipped 
with the topology Á does not constitute a Hausdorff topological space. Also, ( , , , ) Á u¡M  is considered 
complete due to the property that every Cauchy sequence in W must eventually become constant.

Now, let’s examine the function f: W ! W given by f( ) .c c= Î3�for�   For any p, q 2 W and s > 0, 
Á Ãfqfp( ( )) ,s =1  which implies Á Ã Áfqfp pq( ( )) ( ).s s³  Hence, f is a Ã-probabilistic contraction for any ÃÎY .  
All prerequisites outlined in Theorem 3.1 are met, and 3 stands as a fixed point of f. Nonetheless, we 
cannot apply the findings from [6] in this scenario, as (W, Á, ¡M) does not qualify as a probabilistic 
generalized metric space due to its failure to adhere to the Quadrilateral inequality:
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In conclusion, this paper contributes to the field of probabilistic (fuzzy) metric spaces by introducing 
the concept of probabilistic controlled generalized metric spaces and establishing its connection to 
classical probabilistic metric spaces. Moreover, it provides a significant theoretical result regarding 
the existence and uniqueness of fixed points for the Ã-probabilistic contraction mapping, even with-
out imposing the Hausdorff condition. This research paves the way for further exploration and appli-
cation in the realm of probabilistic (fuzzy) metric spaces.
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