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This paper presents a new framework referred to as “probabilistic controlled generalized metric
spaces,” extending the theory of probabilistic metric spaces. The aim is to examine the correlation
between this innovative class and the traditional axioms of probabilistic metric spaces. Moreover, the
paper delves into proving the existence of fixed points for the g-probabilistic contraction mapping,
even without the presence of the Hausdorff condition. The paper will also feature illustrative exam-
ples to underscore the practicality and efficacy of the theories and methodologies presented.
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1. Introduction

The inception of probabilistic distance concept is credited to K. Menger [14], a key figure in the
advancement of probabilistic metric space theory. Subsequently, numerous probabilistic adaptations
of the triangle inequality have emerged (refer to [7, 13, 16, 21, 22, 23]), with the examination of these
inequalities playing a pivotal role in the evolution of probabilistic metric space theory. For a more
comprehensive grasp of significant advancements in this domain, consulting [17] is recommended.

Among the array of mathematical theories that make such generalized structures intriguing and
noteworthy, fixed point theory holds prominence. In recent decades, several renowned mathemati-
cians have established numerous well-known metric fixed point theorems within these structures (see
1,2, 4,5,38,9, 10, 11, 12, 15, 18, 19, 20] and the references therein).
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In 2016, MBARKI and Naciri [6] introduced an additional abstraction termed probabilistic gen-
eralized metric space. They investigated diverse topological and geometrical characteristics of these
spaces and illustrated fixed point properties for nonlinear contractions.

This study aims to introduce a novel framework as an extension to the theory of probabilistic gen-
eralized metric spaces. We seek to explore the connections between various concepts within this new
category termed “probabilistic controlled generalized metric space” and the traditional principles of
probabilistic metric space. Additionally, we aim to establish the existence and uniqueness of a fixed
point for the g-probabilistic contraction mapping, even in the absence of the Hausdorff condition.
Furthermore, concrete cases are provided to support the validity of our generalizations.

2. Preliminaries

We will start by presenting some fundamental definitions and terminology that will be utilized
throughout the investigation.

A non-decreasing function Y :[0,1] — [0,1], which exhibits commutativity, and associativity, is des-
ignated as a ¢-norm if it adheres to the subsequent criteria:

(1) Y(y,1)=v, for all ye[0,1],
(2) Y(0,0)=0.

Three illustrations of continuous ¢-norms are presented below:
Y, (0, v)=wv, Y, (0, v)=min(®, v), and Y, (@, v) =max{ow+v —1,0}.
We designate a t-norm Y as being of H-type [3] if the sequence {Y"} exhibits equicontinuity at ¢ = 1,
meaning
Yue(0,1) Jte(0,1):{>1-1=>Y"(E)>1-u forall n>1.

In this context, Y'(c) is defined as Y(c,c), and for every n>2, Y"(c) is expressed as Y(c, Y"(c)).

The t-norm Y, exemplifies a simple instance of a ¢-norm of H-type.

A function g:R" U{e} —[0,1], monotonically non-decreasing, is considered a distance distribution
function provided it meets the following criteria

(1) 9(0)=0 and g(e) =1,
(2) g 1s left-continuous on (0,c0).

The collection of distance distribution functions is denoted by A*. Additionally,
D ={ge A" : ltim g(t) =1}.

An exemplary instance of a distance distribution function within D* is the Heaviside step function.
It’s defined as follows
0 if y<0,
H(y =1, .
1 if y>o0.

2.1. Probabilistic controlled generalized metric space

This section serves to introduce a novel category of generalized probabilistic metric spaces termed
probabilistic controlled generalized metric spaces. Additionally, we delve into the examination of
diverse topological and geometric attributes inherent in these spaces.

Definition 2.1. A probabilistic controlled generalized metric space (abbreviated as pcgms) is defined
as a quadruple OV,S,Y,0) where W is a nonempty set, 3 is a function from W x W into A", Y is a
t-norm, v is a mapping from R* into [1,), and the following conditions are met: for all p,q € W and for
all distinct points a,b € W, each distinct from p and q.
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@ 3,=H
(@1) 3, =H=p=q;
(i) S, =3,
(i) B, (s + V()T + 1) 2Y(F,,(5),1(3,,(1),3,,(1)) for all s, t, t>0.
Recall that a probabilistic generalized metric space is defined as a triple (W, 3,Y) satisfying condi-
tions (i) through (iii), along with the following inequality
i) Ty (s + 1+ 2Y(F,,(5),Y(F,(x),,,())) (Quadrilateral inequality)
This holds true for all distinct € q,a,6€e W and s, ¢, t >0.

Remark 2.2. Each probabilistic generalized metric space can be seen as a probabilistic controlled
generalized metric space when v(y) =1 for all y >0. However, the reverse assertion may not hold true.
The subsequent example elucidates this point.

Example 2.3. Consider W={a,b,c,0}; and v:R'—>[l,4+) where VyeR";0(y)=y’+1. Define
S WxW—A" as follows

H(g) if p=1,
3,.(¢) =1H(s —10) if p,te{a,d} andp %1,
H(c —2) otherwise.

1t is straightforward to confirm that W,3,Y,,,v) forms a (pcgms), however, it does not constitute a
probabilistic generalized metric space due to the following reason:

3,9)=0

<1
=Y (8,,(3), Y, (3, (3),3,(3))).

Definition 2.4. Consider (W, Q) as a probabilistic semimetric space (i.e., satisfying conditions (i), (ii),
and (iii) of Definition 2.1). For any sin W and y> 0, the strong y-neighborhood of < is defined as the set

U.(n={rewW: 3 (r)>1-7}

The collection of strong neighborhoods at < is denoted as Q_={U_(y): v >0}, and the strong neighbor-
hood system for W is the union Q = Ugewgg.

The sequence convergence is described as follows
Definition 2.5. Let {t } be a sequence in a probabilistic semimetric space (W, 3). Then

1. The sequence {t, } is said to converge to x € W if for every n > 0, there exists a positive integer Jn such
that §_ (1) >1-n whenever m >,

2. The sequence it } is termed a Cauchy sequence if for every > 0, there exists a positive integer Jn such
that n, m > J implies F, (n)>1-n.

3. W, Q) is regarded as complete if every Cauchy sequence has a limit.
As a probabilistic generalized metric space is a probabilistic controlled generalized metric space, the
following deduction can be drawn from [6]

Remark 2.6. Let W, 3,Y,v) be a probabilistic controlled generalized metric space. Despite Y being
continuous, the following assertions generally hold
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The notions of convergent sequence and Cauchy sequence are decoupled in OV,3,Y,v).
In general, 3 is not a continuous functional.
. Generally, (W,3,Y,v) equipped with the topology Q is not a Hausdorff topological space.

2.2. ¢-probabilistic contraction in probabilistic controlled generalized metric space

This section examines the g -probabilistic contraction definition and present some lemmas crucial for
subsequent analysis.

Lemma 2.7 ([6]). Let {y,} be a sequence in a probabilistic semimetric space W, 3) and vy € W.

(1) {y,} is convergent to v if either:
. lim, S, (y)=1forall y>0, or
* forevery&>0andc € (0,1), there exists a positive integer J(§, o) such that 3, (§) >1-0 when-
ever m > J(E, o).
(2) {n,} is a Cauchy sequence if either:
+  lim 3, (n=1forall y>0, or

*  for every § > 0 and ¢ € (0,1), there exists a positive integer J(§, o) such that 3., é)>1-0
whenever n, m > J(&, o). o
The symbol ¥ denotes the collection of all functions § :[0,o0) —[0,°) satisfying

0< (r)<r and lim @"(r) =0 for each r > 0.
Definition 2.8 ([6]). Let £:[0,50) —[0,%0) be a function such that #£(y)<7y for y>0, and § be a self-

map of a probabilistic semimetric space W, 3). We say that f is a g -probabilistic contraction if

G, (P(E) 23, (E), Vp,qe W and £ >0. (1)

Lemma 2.9 ([6]). Let g be a distance distribution function in D", if there exists gpe ¥ for which

8(#(0)) 2 g(0) for all o >0,
then g = H.

Lemma 2.10 ([7]). Let pe ¥, {g,} be a sequence of elements from A*, and g € D*. If for all y> 0 and all
neN

8, (@" (1) 2 9(v).
Then lim g (y)=1 for each y > 0.

3. Main Results

Let’s start by establishing two fundamental lemmas crucial for our main theorem’s proof.

Lemma 3.1. Let peW¥, f be a self-map of a probabilistic semimetric space (W, 3) where

Ran(3)c D', and let {y } be a sequence of elements from W defined by v, W and fy, =1v,., such that
p, #n,, for all ne N'. Suppose that
S, . @EN23  (§) VneN and ¢ >0. (2)

Then vy # v _for all distinct n,m € N.

Proof. Suppose there exist n, m € N such that y =y and n < m. In this situation, our objective is to
prove thaty =y . Firstly, let’s establish through induction that for every n € N and { > 0, we have
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Sn,,ﬁnnm (PENz3,, (§)forallj=1. (3)

From Equation (2), we have §, =~ (£({))23,  (§), thus Equation (3) is valid for j = 1. Assume
Equation (3) holds true for j > 1. '

Sy PENZS, (@) 28, (PE)23,, )

nn+j+lnn+j+2

Thus, Equation (3) holds for every integer j > 1. Substituting j = m — n, we find
Ty @E)=3 (P2, , (&) for each ¢ >0.

According to Lemma 2.9 and condition (i1) specified in Definition 2.1, this leads to the conclusion that
I)n = 1,)n+1'

Lemma 3.2. Let pe ¥, f denotes a self-map of a probabilistic controlled generalized metric space
W, 3,Y,0) equipped with a t-norm Y of H-type, where Ran(8)c D" and v is an increasing mapping.
Let {y } be a sequence of elements from W defined by y,€ Wand fy_=v ., such that vy # n, for all distinct
i, j € N. Suppose that

Dnt(m-n)Dn+(m-n)+1

Snnﬂnmn (W(Y)) 2 snnnm (7/)’ vm7n € N and ’}/ > 07 (4)
then the sequence {y } is Cauchy.

Proof. To prove the sequence {y } is Cauchy. To illustrate this, consider the sequence {G } consisting of
elements from A* defined as follows

G,=3,, forallneN.
By referring to (4), it’s evident that for every i € N and for every £ >0
G (E)=3,, (P'E)
>3, (97©)

>3, ©).

Given that the range of S is contained within D*, we can infer from Lemma 2.10 that
Lli?i 3, (&) =1forall £>0. (5)
Likewise, we demonstrate that
lim3,, (&)=1for all £ >0. (6)
Subsequently, we establish by induction that for every & > 0 and for all n > 1
g, =1 (C,(&)) for all m > n, (7

where

D | (£ _ () \ ’Snnnm (

Let’s confirm that (7) holds for m € {n + 1, n + 2}. Indeed, leveraging the monotonicity of 3 and consid-
ering @ (&) <&, we observe the following
Form=n+1
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snnnm (5)28%% ( 2 )anmm @ =T Snnnnﬂ v(%) 1

e E-p(©)
=2\ Snnnm U(:-—WT@) ’snnnmz( IZ )

=Y(C,(£),1) 2Y'(C,(E)).

Form=n+2

§-p(&) E-p(&) E-p(&) e
Snnnm (&)= snnnmz ( g ): T(Snnnm ( Jz )’1) Y Snnnm (%)’Snnnm #@))

= Sn,,,nw @ ’Snnnm( IZ )

=C,(©)
=Y(C,(6),)2Y*(C,(©&)).

Consequently, (7) remains valid for m € {n + 1, n + 2}. Let’s assume that (7) holds for m > n + 2.

S-9(8)

3‘7n‘3m+1 (5) = Snnﬂmﬂ [élg(é) tv ( éiﬁ(é)) 5—240(.5) + ﬁ(é)]

v(757)

e E-p(©) E-p©&)
> —§2 2 2
_30n9m+1 2 +0 U(&_‘Z(@) U(g_lz(é)) +ﬁ(§)
E-p®)
E-p 2
2T Snnnmz ( 2 ) ’ Y 3‘3n+z‘7n+1 v ( E-p(&) ) ]’ 3"n+1‘7m+1 ((W(g))
2
E-p(8)
E-p&) 2
2 Y 30n0n+2 ( 2 ) ’ Y 8‘3n+20n+1 W[U (5—!0(5) ) ] ’ 30n+1nm+1 (‘W(é ))
2
t ) E-p&)
- 2
= 3nnnn+z ( 2 )’Y Snnnnn ) ( §7‘{0(§)) ’Snnnm (5)
2
) E-p&)
-p 2
2T Snnnmz ( 2 )’Y Snnnm U(é—p(é)) ’S“n"m ©)
2

Considering the induction hypothesis, we deduce

3,0, ) 2Y(C,(5), Y™ (C,(E)) =Y"""(C, (&)
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This suggests that (7) holds for all m > n. Let 9 > 0 and 6 € (0,1). Given that Y is a ¢t-norm of H-type,
let A € (0,1) be such that

If&E>1-AthenY"(§)>1-0 foralln>1. (8)
Utilizing the continuity of Y at (1,1), along with (5) and (6), we deduce

n—>+oo 20 ( ﬂ*@(ﬂ) ) 2

lim Y Snnnnu [w}snnnm (M) =T0D=1.

Thus, there exists 9, € N for which
C,(9)>1-Aforalln=$,. 9)

This inference from (7) and (8) suggests that
§,, @>1-6forallm>nz9,.

Therefore, {y } forms a Cauchy sequence in W.
Now, we are prepared to present and establish the main fixed-point theorem of this paper.

Theorem 3.3. In a probabilistic controlled generalized metric space (pcgms) W, 3,Y,v) with a t-norm
Y of H-type, where Ran(8)c D' and v is an increasing mapping, let f: W — W be a -probabilistic
contraction with ge ¥ ; then

(1) f possesses a unique fixed point v.
(2) lim §{"x =y, for all xe W.

Proof. Let v € W be given, and let’s define the sequence {y } as follows
p, =f"y, for ne N.
If there is some i € N where vy, =, then f(y)=1, and the proof is complete.

Now, let’s assume that y, #v,,, for all n € N. Then, according to Lemma 3.1, we deduce that y,#y,
for all i, j € N where i #j. In this context, referring to (1), we observe

S, @@E)=z3, (S foralln,me N and all §>0.

By Lemma 3.2, we deduce that {y } forms a Cauchy sequence in W. As W is complete, there exists
y € W for which

n—>+oo

Next, we aim to demonstrate that f(y) = . Consider ¢ > 0, & € (0,1), and n € N. Given that o) < ¢,
and leveraging the monotonicity of 3 alongside (1), we deduce

3w @23, [ (@@) =3, (@©®) 23, ©).
As {y } converges to v, there exists $; € N for which
§,,®)>1-0 forall n2 9,
Thus, we have
ﬂnmm () >1-0 foralln>9,.
Consequently,

limy, , =fn. (11)
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Applying the quadrilateral inequality, we derive

&
%ﬁ»am;_ij{ﬂﬁaﬂ R [ T

f9
o) 200 () 1))
3 3 3
27| S, (Y[S,, (.8, Q) || a2)
31)(5)

foralle>0,n>1.
Taking the limit as n — o in (12) and utilizing (10), (11), along with the fact that {y } is a Cauchy
sequence, we conclude that

3, (e) 21 for all € > 0.

This remains valid unless 3, =H, which implies fy = n. Consequently, f possesses a fixed point.
Finally, let’s establish the uniqueness of the fixed point. To establish this, let’s assume that § pos-
sesses another fixed pointr € W.
Consider & > 0, then from (1), we can derive

I (@2(8) =T (2(8) 2 5,.(5).

Thus, based on Lemma 2.9, we can infer that y = .
To wrap up this study, we will showcase the applicability of Theorem 3.1 through two consecutive
examples.

Example 3.4. Let W ={a,b,c,0,¢} and S : WxW — A" defined by

H(E) if p=q,
3, ={HE-4) if(p,0)e (6,0, (0,0} pa,
H(¢ —1) otherwise.

Now, let’s establish the mapping V:R" —[1,+e0) using the formula v(t) = 4t+1.

It’s evident that (W,3,Y,,,v) constitutes a probabilistic controlled generalized metric space.
Furthermore, (W,3,Y,,,v) is complete because any Cauchy sequence in W must eventually become
constant.

Let’s consider the function f: W — W defined as f(y)=¢ for y e W.

For anyp, g € W, and &> 0, it’s evident that 3 (£(&)) =1, which implies 3 (2(&)) 2 3, (§). Thus,
f constitutes a g@-probabilistic contraction for any g e ¥ . All prerequisites outlined in Theorem 3.1 are
met, and ¢ stands as a fixed point of f. However, it’s important to note that we cannot apply the results
from [6] in this instance, as (W, 3, Y, ) does not qualify as a probabilistic generalized metric space since
it fails to satisfy the Quadrilateral inequality:

ssonfa o o5
3 3 3

Example 3.5. Let K ={0,3} and V = {% ‘ne N*}, with W=KuUV.
Define S: WxW — A" as follow
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H(S) if =1,

H(E -3) if ¢t and l are in K £ #1,
H( -1) if ¢tand lareinV =1,
H(E -¢) if e K and te V.

su(é) =

Consider the function v:R" —[1,+) given by v(t) = 4.

It can be easily demonstrated that OV, 3 ,Y,,,0) constitutes a pcgms space. Indeed, it’s apparent that
conditions (i) through (iii) are satisfied by 3. To verify condition (iv), let a, b, ¢, 0 denote distinct points
in W, and s, t, t > 0, we need to show that

S (s+tu(r)+t) 2min(F,(s),3,.(v), 3, (V).

If
min(3,,(s), 3, (1), 3, (1)) =O0.
Then
S (s+to(r)+t) 2min(F,(s),3,.(v), 3, (V).
If

min (3,,(s),5,.(t), 3, (1) =1.

We examine the following cases:

Case 1: If a, b, ¢, 0 are all in V, then we have s+v(v)r+t>4, implying §_(s+v(t)r+t)=1.
Case 2: If either {a, b} or {b, ¢} or {c, 0} is a subset of K, then we obtain s+v(x)v+t>3, implying
J.(s+v(r)r+t)=1.
Case 3: If b, c are both in V, we have v > 1, thus s+v(v)r +t>3, implying S_(s+v(v)v+t)=1.
Case 4: Ifb e Vand c € K, thend € Vandt > difa € K.
s+u(t)r+t>0and S (s+v(v)v+t)=1.
If a € V, we haves > 1, hence s +v(v)t+t>1and I (s+v(r)r +t)=1.
Case 5: Ifb e Kandc € V,thena € Vands > aifdo € K.
s+u(t)r+t>aand 3 (s+v(r)e +t)=1.

Ifo € V, we have t > 1, thus s+v(v)t+t>1and 3 (s+v(t)r+1t)=1.

Consequently, from all the aforementioned cases, we conclude that 3 (s +v(v)t+t) =1, then

S(s+to(r)+t) 2min(F,(s),3,.(v), 3, (V).

Thereby fulfilling condition (iv). Hence, (W,3,Y,,,0) constitutes a pcgms space, with Y, being
continuous, and there exists no § > 0 where U, (§) nU, (&) =0. Consequently, W,3,Y,,,v) equipped
with the topology S does not constitute a Hausdorff topological space. Also, OV,3,Y,,,0) is considered
complete due to the property that every Cauchy sequence in W must eventually become constant.

Now, let’s examine the function §f: W — W given by f(y)=3 for y e W. For any p, q € Wand s > 0,
S (@(8)) =1, whichimplies S (#(s)) 2 3, (s). Hence, fisa @-probabilistic contraction forany ge ¥ .
All prerequisites outlined in Theorem 3.1 are met, and 3 stands as a fixed point of . Nonetheless, we
cannot apply the findings from [6] in this scenario, as (W, 3, Y,) does not qualify as a probabilistic
generalized metric space due to its failure to adhere to the Quadrilateral inequality:
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_0<Y? 1 31 312
su-0ers 3, ()0, (25, (2]

3

In conclusion, this paper contributes to the field of probabilistic (fuzzy) metric spaces by introducing
the concept of probabilistic controlled generalized metric spaces and establishing its connection to
classical probabilistic metric spaces. Moreover, it provides a significant theoretical result regarding
the existence and uniqueness of fixed points for the g -probabilistic contraction mapping, even with-
out imposing the Hausdorff condition. This research paves the way for further exploration and appli-
cation in the realm of probabilistic (fuzzy) metric spaces.
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