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Abstract

Different structures defined on a differentiable manifold M can be lifted to the same type of structures
on its tangent bundle. Many researcher analysed herein obtained results in this vista. In this paper
our aim is to study Lie derivatives in reference to the vertical and complete lifts of generalized almost
r-contact structure in the tangent bundle. We investigate some theorems on induced Nijenhuis tensor
in tangent bundle.
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Introduction

The tangent bundles of a differentiable manifold has imperative effects on the differential geom-
etry because it helps in study several innovative problems of modern differential geometry. Many
researchers [3, 6, 7, 8, 20, 21, 33, 37, 39] have made significant contributions on study of tangent bun-
dles over differentiable manifold. Ocak [4] have studied horizontal and diagonal lifts of tensor of type
(1, 1) on cross-section in cotangent bundle. M. Saxena and others [12, 30, 31, 32, 35] defines some new
structure and studied its several properties. Numerous geometers studied lifts of various structures
and connections in the tangent bundle including [2, 13, 15, 16, 18, 19, 28].

The main purpose of the present paper is to study of Lie derivative of generalized almost r-contact
structure, induced Nijenhuis tensor and cross-section in tangent bundle.
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In Sect.2 we define horizontal, vertical and complete lifts, tangent bundle, generalized almost
r-contact structure and most important Hsu-structure. We defined Hsu-structure in tangent bundle
T(M) in over generalized almost r-contact manifold in Sect. 3. In Sect. 4, we study some formulas on
Lie derivative and about almost analytic vector fields in tangent bundle. In Sect. 5, we proved cer-
tain theorems on induced Nijenhuis tensor of an element J of 3;(7'(M)). Finally, in the last section
we study the behavior of the lifts of Hsu-structure on the cross-section in 7(M) determined by given
vector field in M.

Preliminaries

Let Mbe an n-dimensonal differentiable manifold and 7'M be the tangent bundle over M. Let a function
f, a vector field R, a 1-form 7, (1, 1) tensor field @ and an affine connection V in M and fV,X" ,n",¢",V"
and f¢,X°,n°,¢°,VC are vertical and complete lifts of f,X,n,¢ and V, respectively in 7M. Then by [1,
14, 22, 34] we have

(FR)Y = A7 (FR) = fORY + fVRE, 1)
RVfV =0,87fC =RV =(Rf)",RfC = (Rf)", 2)
n"(f")=0,n"(R) =n“(R") =n(®)" n°(R) =n(X)°, 3)
PVRE = (¢R)",0°R" = (¢R)°, (1)
[X,R]" =[R°,R"]=[R",RL[R,R]" =[x, R, (5)
VERO=(V R, VERY =(V R)". (6)
VEVEKC =(V,R)", VEVSKV =0. @)

Notations: Let 3)(M), 3\ (M), 3V(M), (M) be the set of functions, vector fields, 1-forms and tensor
fields of type (1, 1) in M, respectively. Similarly, let 3o(TM), St (TM), 3 (TM), 3;(TM) be the set of
functions, vector fields, 1-forms and a tensor fields of type (1, 1) in TM, respectively.

Hsu-structure

Let us define n-dimensional manifold M of class C~. If (1, 1) type Tensor field F and class of the tensor
field is of C~ then
F?=qal (8)

where r be any integer, I is the unit tensor field and a is any real or complex number. Under said con-
dition manifold M is endoweded with Hsu-structure [9, 36, 38].

Generalized almost r-contact structure

Consider differentiable manifold M (dim = n) and a (1, 1) tensor field F. Over M a vector field £, and a
1-formn,, pe (1, r] [5, 10, 11, 40].

@ F'=a'l+e) & ®n,

p=1

(b) FS,=0
(¢ n,°F=0

a’ .,
(d) np(gp)z_?aq7paq=172""r7 (9)
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where a, € # 0 are complex numbers. Differentiable manifold M is a generalized almost r-contact man-
ifold and structure defined as (F ,np,ép,a,e)-structure.
The (1, 1) tensor field F'is said to be a Hsu-structure if [17, 26, 29]

F=al (10)

Induced Structure on the Tangent Bundle
Considering complete lifts of equation (9) we get [23, 24, 25]:
(a) FC(SX :O,F'Cﬁjij =0

r

) (FO =a'l+ey {& ®nf+& ®n)}
p=1
ar
© n(&)=n/(&)=0n,&)=n& )= ~— 0
(d) ny°F°=0n,°F"=0n,°F°=0n°F" =0 (11)
Now consider the element o of 3}(T'(M)) by
6 r

J=FC+ 5 (8 on +&; on)) (12)

p=1

reference to equation (11), it is evident that
JPRE =a'RE,J*RY =a'RY
s0, o 1s Hsu structure defined over tangent bundle T(M).

Theorem 1. If M be a differentiable manifold endowed with (F,n,,§,,a,¢)-structure. Then J, given by
(12) becomes a Hsu-structure on the tangent bundle T(M).

Considering equation (12),

@) JRY =(FX)" +— 2{(np(x))vcf§}

ar/2
B IR =(FR)° + = 3 {0, ()" E) +n, (%)} (13)
VX e 3L(M). 3
In particular n,(X) =0, we have
(a) Jég/ _ ar/Z ;/,Jgf _ ar/Z 51‘7/
€ €
(b) JR" =(FR)",JR =(FR)° (14)

X being an arbitrary vector field in M such that n (X)=0.

Lie Derivatives with Respect to Complete and Vertical Lifts
Now we define lie derivative which represents as £ F and lie derivatiove is operated on a (1, 1) tensor
field F with respect to a vector field X is given as [7].
& F)=[X,FR] - F[X,R]
also [,] is the Lie bracket [14, 17].
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Theorem 2. VX,Re 3 (M), then

(@ £,f"=0,

b) £.f° =&/

© £.f =&N",

@ £.f°=€N",

Theorem 3. VX,Y € 3, (M), then

(@) £.R"=ER)",

(0) £, % = (g, %)

© £, =0,

d £,%R°=ER",

(16)

17

Theorem 4. For the vector field R, J e 3, (T(M)) £, the Lie derivation with respect to vector field

defined by (12) and 1,(R) =0, we have the following postulates

(@ €, )R =0

®) €. HR =(E€FR)" r/22<<£ n,)R)’ &

© € R =(E€FR)" ,/zz«ae )% &

@ (€ IR = (&, R’ Zn €N - (n, €M) & (18)
Proof. The proof can be obtained from equations (11), (13), (15) and [7].
Corollary 5. If we put R =& i.e. 1, (5 )=n, (Zj )= On (é_f )=n, (Zj )———rﬁ has condition (12), then
we get different results

@ €, N =-a"Y €8

b) €, NE =a”Y (8, F)E,)

© €D =(@F)E) +— 3 (€m,)z,) & ~a™ (€50

d) & S =& F)E,) —a™ , (£.8,) + e 2((55 n,)E,) & - —= 2((55 n,)é, ) £ (19

p=1 p=1 p=

Theorem 6. Let M be a differentiable manifold endowed with (F,n,,& ,a,¢)-structure. Then the verti-
cal lift XY of a vector field X given in M is almost analytic with respect to the Hsu-structure J defined by

(13) in T(M) iff the conditions
£F=0, £n,=0, £¢ =0
are satisfied in M.

Proof. In view of (18a), (18b), (19a) and (19b), then
£.J=0
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is equivalent to
£F=0, £n,=0, £¢ =0.

Theorem 7. Let M be a differentiable manifold endowed with (F,n,,¢ ,a,¢)-structure. Then the com-

plete lift RC of a vector field R given in M is almost analytic with respect to the Hsu-structure J defined
by (12) in T(M) iff the conditions

€ €
§F =0, &n,=-—5n, £¢,=—7¢,

are satisfied in M.

Proof. In view of (18¢), (18d), (19¢) and (19d), then
£,.J=0

1s equivalent to

Nijenhuis Tensor

Let us define a tensor field S of type (1, 2) by
S(R,R) = N(X,R) + (X1, (R)) - R(n,, (X)) -1, ([R,R])S, (20)
VR, Re 3 (M), N being the Nijenhuis tensor of F.

Theorem 8. If n,(X) =0, n,(R) =0, then we have

(@) S(X,R)=[FX,FR]+a'[X,R] - F[FR,R] - F[X, FR]
) (S8, =a’[x,n,]" —(FIFRnD,D"
© (SX,E,) =a’[x,n,]" —(FIFR R, (21)

Proof. Since n,(X8) =0, n,(R) =0, from (20) we have

(23a): S(R,R) =[FR, FR]+ F’[R,R] - F[FR,R] - F[R, FKR]
S(X,R) =[FR, FR] + ¢’ [R,R] - F[FR,R] - F[R, FR].

(23b): (S(X,E,)" =(N(R,E,))" + (R, (&,) - R, (X)) -n,(X,E,DE,)"
= (N, + (XM, - Rm,®))" -, (x,E,DE,)"
=(N(R,E,))",

=[FX,FE] +a’[R,E]" —(FIFR,E, D" —(FIX,FE )"

=a'[X,E, 1" - (FIFR,E, D" by QD).

(230): (S(®,E,)" =(N(R,E, ) + (XM, (E,) - R, (X)) —n,([X,§,DE,)°
=(NR,E,) +(X@, (&N =R, @) -0, ([R,E,DE,)°
=(N(X,E,)",

=[FX,FE 1" +a'[R,E,]° —(FIFR,E,D — (FIX, FE,1)°

=a'[R,E, ] —(FIFR,E,D by A1).
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Theorem 9. Let us define tensor fields S,, S, and S,

€

@) S(X,R)=—7n, ([(FRR]+[X,FR])
a
(®) S,(X)=a"([&,, FR]-F[&,.X])
© S,(X)=-n,¢E,.X] (22)

VR, Re 3, (M). Let H be the Nijenhuis tensor of J defined by (12). Then VR, Re 3, (M) such that
n,(8) =n,(R) =0, we have

(a) HR",R")=0,

(b) H(R",R) = (S(X,R)" - (S,(X,R)"¢E7,

(© HER"R) = (SR - (S,(X,R)"EY — (S, (X, R)°EY,

@ H(RY,E))=(S,(X)" = (S,(X))" &Y,

(€ H(X',5\)=(S(X,5,)" —(S,(X,8,)"Er,

() HX,E)=(S,(R)+(S(R,E,)" +(S,(R)VES - (S,(R,&,) & —(S,(X)°EY,

(® HE} &) =0. (23)
Proof. The proof can be obtained from equations (11), (12), (13), (14) and [7, 27].

Theorem 10. Let H be the Nijenhuis tensor of J defined by (12), the condition H = 0 is equivalent to
the condition

and hence to the condition S = 0.
Proof. As the consequence of (23), we equate the components of both sides of (23), we get
S(R,R)=0, S,(X,R)=0, S,(X)=0, S,(X)=0
S(x,&,)=0, S, (8,£,)=0.

since S and S, are skew symmetric then
S(¢,.¢,)=0, S,(,.5,)=0.
substitute X = <§p in equations (22b) and (22c), we get

S,(€,)=a"(¢,. F&,1- FI§,.£,1=0),
S,(6,)=-n,¢,.5,1=0.
as F&,=0,[£,.¢,1=0
Therefore the conditions of (23) are equivalent to conditions
S§S=0, §,=0, S,=0, S,=0
=S5=0

because
S=0=S=0, S,=0, S,=0.
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