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1. Introduction

It’s commonly recognized that fractional calculus is beneficial in solving numerous real-world prob-
lems spanning various scientific and engineering fields, as evidenced by [1, 16, 20, 25, 28, 31, 39]. The
main advantage of using a non-integer order derivative instead of an integer order derivative is that
the first one is non-local in nature, while the second is local in nature and doesn’t have any memory
terms in the system. So, recently, Numerous studies have appeared focused on fractional differential
equations (FDEs), see [2, 3, 6, 23, 24, 32-35, 37, 38, 40] and the references cited therein.
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In the literature, different types of integral and differential operators have been introduced by
Kilbas et al. [20], including Caputo, Riemann—Liouville, Erdelyi—-Kober, Riesz, and Hadamard opera-
tors. In the same regard, Almeida [5] generalized Caputo’s fractional derivative (FD) to 1-Caputo FD.
This operator appears in various concrete models. For instance, several anomalous diffusions, includ-
ing ultra-slow processes [22], financial crisis [27], random walks [18], Heston model [7] and Verhulst
model [8]. Moreover, the increase in global population via the prism of the y-Caputo boundary value
problem has been investigated in [36]. Therefore, considerable attention has been devoted to the
quantitative and qualitative properties of solutions to various types of differential problems governed
by ¢-Caputo FD [4, 9, 17, 29, 40, 41].

Hybrid differential equations have attracted a considerable amount of interest and investigation
by several researchers. This category of differential systems includes the perturbations of primitive
differential equations in different manners. For example, the authors in [15] discussed the following
coupled system

v 3,(©)
: - 1 ’ 2 ) 0, ,
K (b<c,31<c>,32<g»J AC.303,0), Celo]

0 3,(&)
P - 215 Jradg , 0,1],
°(h<é,31<§>,32<§»] 8(£.3,(0).3,(0). ¢el0.1]

3,(0)=3,(00=0

where ¥ € (0,1) and Dy, is the standard Riemann-Liouville FD.
Baleanu et al. [11] examined the existence of solutions for the following hybrid thermostat differ-
ential model:

&, 3(0))

50)
p[- &) o
[h@,s(g»j"f“

(3O ) 30O )
R3O )T RE3E)

‘D, (&} g(£,3(8) =0, {e[0,1],

where 1<9<2, ne[0,1], D:%,ée R, 1s a parameter, CD(;i and CD(ﬁ_l denotes the Caputo FD of

order 9 and ¥ — 1, respectively, he C([0,1]xR,R\ {0}) and ge C([0,1]xR,R).

Motivated by the above papers and using the main idea of [12, 19, 26], this paper considers the
following coupled hybrid system for the thermostat model involving -Caputo FD:

cDﬂl;w( 31(§)

- MEL30(0), 3,00

i 3,0)
DY 2 3003, o, bl 1
“ [h@,al(é),m(c»]*g(?3<C>3(§)) {eJ=[ab] o

]+g(C,31(C),32(C))=0, ¢eJ =[ab],

and
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R X N TR (R X (5 M Ty
ME.3,(0).3,0) hE,3,().3.0)

échﬂi’I;’” 31 (C) |§:b + 31(@) |§:17 — 0,
‘ h(&,3,(£),3,(0)) h(§,3,(£),3,(5) )=

(R X< M N (R < M -
© 03,0 )T (ME3,0.3.0) )

where for i = 1, 2, 1<, <2, n,€ J =[a,b], (0<a<b<e), D= dC , & 1s a positive real parameter,
CDﬂ * and cDﬂ % denotes the Caputo FD with respect to 1 of order ¥, and 9, -1, respectively. Here
he C(J xR, R N\ {0}), ge C(J xR,R) is a given function fulfilling some hypothes1s that will be indi-
cated later and h({,0,0) # 0 for all { € J,% isincreasing and positive monotone function and %'(¢) > 0.

Numerous physical systems undoubtedly merit an in-depth examination of (1)-(2), for instance,
binary mixture convection [30], geophysical morphodynamics [21] and so on. The above-mentioned
motivational models present notable benefits, but the complexity of their associated mathematical
models often escalates, making it challenging to establish the existence of results. Hence, the inves-
tigation of hybrid coupled systems involving -Caputo type TFD in a Banach algebra has become
important.

The contributions of our paper can be outlined as follows:

e We consider a fractional hybrid system in a general configuration, enabling improvements over
several earlier related papers [10, 11, 15, 19].

e By utilizing Darbo’s fixed-point theorem and the MNC technique in a Banach algebra, we pro-
pose certain sufficient conditions to ensure the existence of solutions.

The paper is structured as follows: In Section 2, we collect the basic background necessary for sub-
sequent discussions. Section 3 utilizes a version of Darbo’s fixed point theorem to establish new
existence criterion. Finally, our findings are illustrated through an example.

2. Preliminaries

Let J =[a,b], be a finite interval. Consider C(J) the space of continuous functions f:J — R with
the supremum (uniform) norm:

||f||=S§u})|f(§)|,
L'(J) the space of Lebesgue integrable real-valued functions on J equipped with the norm
£ 1=, 1£@©)1dg.
We define
TNJ,R)={¢: ve C(J) and 4'(¢)>0 forall {e T}
For ¥ e T;(J,R) and {,se J, ({ >s), we pose

W&, =) —(s) and ¥(&,9)" =(v(&) ()"

Definition 1. [5, 20] The v-Riemann-Liouville fractional integral of a function fe L'(J) of order 9>0
is given by

T f(§) = @ 0.9 W f)ds, ¢ >a,

with e T (J,R) and T(-) the gamma function.
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Definition 2. [5, 20] Let 0 <9 <1 and ¢ e T.(J,R). The 1)-Caputo FD at order 9 of a function fe C(J)
of order ¥ is defined as

(‘D)) =T M[ ]f(é)

(&) dt

Lemma 1. [5, 20] Let n—-1<9¥<n, ne N, y>0, then

90 y-1 _ I'(y) O+y-1
W T 90 = @)

(2) CDjjww(C,a)k =0 for k <n.

Lemma 2. [5, 20] Let n—1<®<n. Then, the following equality holds
(1) if fe () and y> 0, then T T7*f({) = T2 (L),
@) iffeC(J), then “D*T% f(£) = f({),

3) if feC*(J), then j’“’CD’” (&)= f(&) - zlb(g a)J[ 1 ]f( o).

(&) dt

Now, let us assume that (X,||-||) is a real Banach space and the zero element 0. If V X is non-empty,
then ConvV and V denote the convex hull and the closure of V, respectively. If V < X is a bounded,
diamV represents the diameter of V and

I Vi=sup{|v|l : ve V}

We denote by 91, is the family of all bounded subsets of X and by 91, its subfamily comprising of
the relatively compact subsets. Moreover, v denotes the product of elements u,ve X. Also, UV is the
product of subsets U,V of X i.e., UV ={uv: ue U,ve V}.

Definition 3. [13] We say that A: 9, —[0,e0) isa MNCin X if all the assumptions below are satisfied:

(1) KerA={VeM,, A(V)=0} is non-empty and KerAe N,

(2) UcV=AU)<AW),

3)  AV)=AV) = Alconv(V)),

4 AAV+A-ADHU)<AAV)+A-1)A), for Ae T

() If (V) is a sequence of closed subsets of 9, where V , cV ;n=12,--, and }g}g AV )=0
then V_ = ﬁVn #0

n=1

Observe that V_1is in KerA and A(V_ )< A(V)) for n=1,2,---.

Definition 4. [14] We say that the MINC A in the Banach algebra X satisfies condition (m) if:
AUV) U || AV)+] V]| AD),

forany UV € M, .

Definition 5. [13] Let us fix Ye M, and ¢ >0. For yeY, we denote by @w(y,g) the modulus of con-
tinuity of y; that is,

o(y,c)=supt| ¥({)-y(s)| : {,5e T, | -sl<g}, (3)

Moreover, put
@ (Y,g) =sup{@(y,¢) : ye Y}, (4)
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and
@, (Y) = 13301@(Y,g). (5)

Lemma 3. [15] The MNC @,(Y) on C(J) satisfies condition (m).
We need to introduce the class E of functions:

E= {K’ :(a,) — (0,%0), k is nondecreasing and %133 k"(§)=0 for any { > a.}
where k" denotes the n-iteration of .

Remark 1. [15] Notice that if x € E, then x({)<{, for any { >a. Moreover, if x € E, then x is contin-
uous at §, =a.

Theorem 1. [15, Theorem 13] Let A be an MNC in the Banach space X and V c X be a nonempty,
closed, bounded, and convex. X. Assume that S:VxV —V is a continuous mapping satisfying

A(S(V, xV,)) < k(maxi{A(V), A(V,))), (6)

for any nonempty subsets V., and V, of V, where x € E. Then S possesses a fixed point in V.
Lemma 4. Let p>1, {,,{,€ T with {,>¢, then

W(¢,5,a)" = P(¢,,0) < pp'(O)Y(b, @) I, — 1, |.

Proof. Let F:R, - R, be the function defined by F({)=1v({,a)’. Then, Lagrange’s Mean Value
Theorem implies that there exists € € [{;,{,]such that

F(Cz)_F(§1) <F’
C2 _C1 - (8)

Then, for € <{, <b, we get

W(&,5,a)" = (&) < pp'(e)i(e, @)’ 1, =& K pi'(B)(b,a)" 1L, =, |

3. Main Results

Before stating our result, we need to present the auxiliary lemma.

Lemma 5. Let 1<® <2. Suppose that he C(TXRxR,RX\{0}), g€ C(J) such that for all
e d, g()#0. Then the solution of the following problem

c:Dﬂl;'z/) 31(§)
h(¢,3,(£),3,(8))

ot

J+§(C)=0, e J =[ab], (7

and

3,¢) L —o
(=a™ >
1(¢,3,(£),3,(0))
écpj_w[ EX(9) ]@{ 3,0 ]g:,,l:o, ®

h¢,3,(6),3,(0)) ME,3,(6),3,(0))

satisfies the following integral equation

3,0)= h<c,31<c>,32<c>>{— O gy [L UM gy e[ omeds | o)
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Proof. Applying the operator Iji ¥ to both sides of (7), by Lemma 2, one gets
3,0) 3,(@) 1 d[ 3,0) J

- - — ,a) =-I""g({).
MC 3,005,080 @3 (@) 3@) @) | hE,3,0).3,0) e eV =1 8E)

By using the condition D[ 3(6) ] r=a=0, we get

&, 3,(6),3,(0))

50 ee
MC3(0) 5,0 L BE T

3,(a)
h(a,3,(a),3,(a)

3,0)=M¢,3,(0).3,0)(-278() +¢,), ¢, €R. (10)
Then, by using Lemmas 1, we have

e -l 31(§)
h(£,3,(£), 3,(8))

where ¢, =

Thus, the solution of (7) is

ot

]lgbz _Iiiwg(b) = _J.:QZ) '(S)E(S)ds,

and

m P'(8)p(m,,8)"
¢ I'(®,)

st
hE,3,(8),3,(0) g(s)ds +c,

which, together with the boundary condition

eyt -1 31(4,) | + 31(4’) | o
PR (L3003, )T REL 30,3, [

( 31(4) J|§=nl — _I:iﬂ/lg(nl) te, = _J.

implies that

m P'()p(m,,8)" "
‘ I'(@,)

¢, =T Bm) + &I EB) = | g@)ds +& [ ¥ (9)(E)ds.

Substituting the value of ¢ in (10) we get (9).
Let us introduce the following assertions:

(H1) ge C(JxRxR,R) and he C(J xRxR,R\_{0}) where g(£,0,0)#0 for all { € J;
(H2) The functions h and g verifies

|h(§,u17u2)_h(c7vl9vg) |S Kl(max{lul _Ul |7|u2 _U2 I}):

lg(§,u,,u,)—8(l,v,,v,) K k,(max{|u, —v, |,lu, —v, |}),
for any { € J, and v,,v,,u,,u, € R, where «,,k, € E, and k, are continuous.
(H3) There exists a constant K > 0 such that
(1, (K) + 1) (x,(K) + &) 2 max{u(b,0)" } + &, 0(b,a) < K, (11)

and
(koK) + &) @maxiy(b,a)" } +&,,4(b0,a) <1,

where: {  =max{}.

1<i<2
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Notice that hypothesis (H1) gives us the existence of two constants g* h* > 0 such that
| 2(£,0,0)I<g" and |h({,0,0)I<Ah’, for any { e J.

Theorem 2. Assume that (H1)-(H3) hold. Then the system (1)-(2) admits at least one solution defined
in C(J)xC(T).

Proof. We equip the Banach algebra P = C(7)x C(J) with the norm
1(3;,3,) Ib=max{ll 3, II,II 3 II},

for all (3,,3,)€ P. Now, from Lemma 5, we introduce an operator ¢/ : P — P as follows:

(U3,,3,)(8) = (U (3, 3)(E), (U (3,,3,))(E)), (12)
where, U, : P — C(J), i =1,2 are defined by:

U3, 0,30 = 3,0, 3,00 [ D — (6.3, 3,0

NIACTL

a @) 8(5,3,(5), 3,(s))ds + §ijz¢'(8)g(s,31(8),32 (s))ds |. (13)

Clearly, the fixed points of the operator U coincide with the solutions of problem (1)-(2). We introduce
the operators H =(H,,H,) and L=(L,L,) as follows (for i =1, 2):

H(3,(0),3,() = (g, 3,0, 3,0, (14)
and
RO (SO
£,(3,6).3,n=-]" Ty 4633, 60ds
. 1”'(3);”((1’;:;3)%4 £(5,3,(9),3,()ds +& [V (9)g(s.3,(6).3,(Nds.  (15)
for all (3,,3,)e P and any { € J. Then,
U(3,,3,) =H,(3,.3,) £:3,.3,). (16)

Clearly, the fixed point of operator U coincides with the solution of the problem (1)-(2).
For K > 0, we define the ball

Br =131,3.)€ P 11(3,,3,) b= K}

It’s clear that B, is closed, bounded and convex in P.
Step 1. The operator U« maps P into C(7).

To demonstrate that U(3,,3,)e C(J), it suffices to show that H/(3,,3,),£(3,,3,)e C(J), for all
(3,,3,) € P. Since the product of continuous functions is continuous.

Obviously, hypotheses (H1), ensure that if (3,,3,)€ P, then H,(3,,3,)€ C(J).
Next, we will demonstrate that if (3,,3,)e P then £(3,,3,)e C(J). To do so, let { e J be fixed

and consider a sequence {{,} in J such that {, —{ as n— . Without loss of generality, we may
suppose (n>(. Thus, we obtain:
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1£,(3,,3,)(8,) — £,(3,,3,)(0))|
fawwgwwwwﬂl
«  T()

U e
Ty 8 B, s — [T (. 3,(5). 3, (s

¢ P ()Y(E,9)"
(@)

<

8(5,3,(9),3,()ds [ 2(s,3,(5),3,(s))ds

IA

+J?%lgﬁggﬁligwxxwaAka—ijiﬂﬁggﬁllg@;x@ngﬁxk

rm> 8" =09 09|53, (5), 3,00 ds

F(ﬁ)J W(OYE,8)" |g(s,3,(5), 3, ()| ds.

In view of hypothesis (H1), g is bounded on the compact set J X[l 3, ILIl 3, I]x[=1I 3, IlIl 3, l] Denote
by
N =sup{|g(s,3,,3,)|: s€ T, 3,€[-113, ILI13, 1], 3, €[~ 113, LI 3, 1]

From the last estimate, we obtain

[F0uE, 9" ds.

D= L3300 S e [ 9 s +

1"(19) (@) 7«
Taking into account that 1<®¥ <2 and §, > {, we infer that

|1£,(313)(,) = £,(3,,3,)()| < (9" =09 )Y (s)ds

F(ﬂ )7e

jwwww@“d_

P(&,.a)" (¢, a)”
rw) '

nw[ ), )

From the above inequality, we conclude that £(3,,3,)({,) = £(3,,3,)({) as n —e. Therefore,
£.(3,,3,)€ C(J).

Step 2. Estimate || U(3,,3,) | for (3,,3,)e P.

Let us fix (3,,3,)e P, for all { € J, we have

(3,3, =[H(3,, 3,433, i=1.2. (17)
On one hand, by using hypothesis (H1) and (H2), we get

17 (3153, (O] =]1(£,3,(0),3,(0)| £[h(£,3,(£),3,(£)) ~ h(£,0,0)|
<K (max{|31(§)| ,|32(§)|})
+h<x (max {3, 13, 1)+ <, (1(3,.3,) )+ 2, =12, (49

Similarly, we obtain

|2(5,3,(5),3,(9)| <2 (5,3,(),3,(5)) — 8(5,0,0)| +]£(5,0,0)| < &, (11 (3,,3,) Ib) + &' 1=1,2.
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On the other hand,

1,313 = (k.01 (3,.3,) ||p>+g*)( | j%dﬁ [ ‘”'(sﬁ((gf;s)

v(¢.a)" | P,
e +1 I@+1)

2¢(b,a)”
'@, +1)

ds+&| Zw'(s)ds}

g(’2<n<31,32>m>+g*)( +5"¢(b’a)J

< (15,011 (3,,3,) ||P>+g*)[ +5iw<b,a>} (19)

Therefore, from (17), (18) and (19) and by I'(8% +1) >1 for 1 < ¥ <2, we have

2¢(b,a)”
'@ +1)

1243, 30 1< (5,31(3,,3) 1) + 7 ) (1,31 (3,03, 1) +g*)( +éiw<b,a)]

< (101G 3) 1)+ 1) (15,01 Gy 3, 1) + &) (2max{v(6,@)" |+ &, 0(b,0)).

Hence, by (H3), we get
| U(3,,3,) = max{|| U (3,,3,) LI 4y, (3,,3,) I} < K.
We deduce that the operator & maps B, into itself, Moreover, from the last estimates, it follows that

I HB X By IS (K, (K) + 7))l £(By x By ) I (1,(K) + g7 ) (2max{4(b,0)" } +&,,,4(b,a).  (20)

Step 3. The continuity of the operators # and £ on B,.

Firstly, we demonstrate that the operator H is continuous on B,. To do so, fix ¢ > 0 and take
(31732),(}’1,3’2)6 EK such that

1(3,535) = 0y, 2D 1= (3 = 31, 3, = vo) II= max {Il 3, = v, LIl 3, - v, I} <.
Then, for { € J, one has
H,(31,3,)(0) = H (3, 3,00 =&, 3,(£), 3,(8)) = W&, 3,(§), 3,(8))]
<, (max{l 3,(5) = 1O 1,13,() =5, })
<, (max{ll 3, - 3 1Ll 3, - v, I}) < k() <.
where we have used Remark 1. Then
1H(3,,3:) = H(» ) II< 6.

The above inequality entails the continuity of the operator # on B,.
Now, the operator £ is continuous on B,. In fact,

1 ¢ ' v-1 _
Y [T (s00,5)" |a(s,3,(5), 3,(s))ds - &(s,3,(5), 3,(5))| ds

Bﬂ/} ()9(1;,8)" 7 [g(s,3,(5), 3,())ds — g(5, (), ,(5))|ds

£330 = £, 2| <

1
+ —
(@)

+& [ 4'()]2(5.3,(5), 3,(5)) ~ (5.2, (5)., 3, (5))| .
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By (H2), we get

¥)(©)| < 16, (max{|| 3, = v, 1111 3, — 3, II})

CPEPE,9)" ()P, "
[ [ =y ds+][" ) ds+& [ 4 (s)ds}

122

<&, (max {3, = 1Ll 3, - ¥, II})(M+§iw(b,a)j

T@ +1)
20(b, )" 2¢:(b,)"
< (W + é;w(b’ a) JKZ (g) < (W + gzw(b’ a) Jg

Therefore,

14,353, = £, 2) 1€ (2max {u(b,0)" } + £, 06,0) 5.

Thus, the preceding inequality demonstrates that the operator £ is a continuous operator on B,.
Consequently, we conclude that U is a continuous operator on B,.

Step 4. For all subsets V| and V, of B,. We must solely examine the condition (6).

To accomplish this, we fix ¢>0, {,{,€J with |{,-{,I<¢ and (3,,3,)e VxV,. Then, based on
hypothesis (H2), we obtain

[H.(3,,3,)(8,) = (34, 3,)()| = (8553, (£2), 3.(8,)) = (&1, 3,(61), 3,(8))|
<|(E5,3,(8,),3,(8,)) = (8,5, 3,(81), 3,(8)|
+[A(E 553,515 3,(8) = 1§, 3,(61), 3,(8))]
<1, (max{3,(£,) -3, 1,1 3,(8,) - 3,(&) ) +@(h,g)
<K, (max{w(Bl,g),ai(32,g)}) +o(h,g), 1=1,2,

where @(h,s) denotes the quantity

ﬁ(h,g) :Sup{|h(C2’31’32)_h(g1’31’32)| . CpCz € j’l gz _é,l IS §,31,32 € [_K7K]}-
Thus,
@ (1, (V, xV,),6) < & (max{@(V;,6),@(V,,0)}) +@(h,g), i=1,2.

Note that the function A({,3,,3,) is uniformly continuous on the set J x[-K,K]x[-K, K]. Therefore,
we infer that @(h,5) — 0 as ¢ — 0. Thus, The above inequality implies

B, (H(V, xV,) <lim , (max {@(V;,6).0(V,,0)}), i=1,2.
By (H2) and since «, is continuous, we get
B, (H(V, xV,)) <, (max{@,(V,).6,(V,)}), i=12. @

Next, we estimate @, (L (V,; xV,)), i=1,2.

Fix ¢>0,(,,{,eJ with |{, - |<¢ and (3,,3,)e V,xV,, we can suppose that ¢, <{,; Then,
according to hypothesis (H2), we obtain
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|£,(3,,3,)(8,) - £,(3,,3,)(5))|

. jcz BN, 9" 9"

2(5,3,(),3,(s)ds - | 2(s,3,(5), 3,(s)ds

1) 1"(19) 1—‘(191)
& o
l“(ﬁ) 8)" 7 [8(5,3,(5), 3,(s))|ds
F(ﬁ) )" (L, 5)" 1‘1,/) ()|g(s,3,(5), 3,(s))|ds, i=1,2.

From 1<¢9<2and ¢, >{,, we can find

£33 = £:31, 30| € = [0 0G5 (5, 3,(6), 3,(9)| ds

F(ﬁ )Y ¢

+rw> (9,9 (G, 9 ) (5) (5. 3, (5), 3, ()| ds, =12,

Since ge C(JxXxRxR,R) is bounded on the compact subsets of JxRxR, particularly, on
JIX[-K,K]x[-K,K]. Put

L=sup{g(¢,3,.3,)|: (T, 3,3, [-K.KI}.
Then,

[ u, 9" ds

)—Q(SI,SZ)(CI)I

T\l

@) ¢

w) (09" = 9(E,.9)" ) ()ds
< L w(é,Q’a)l%_d)(Cpa)ﬂi < L
- T(@,) v, . TT®)

1 12

$'(O)(b,a)" " 15, ¢, |

%@b(b)?ﬂ(ba) ¢, 1=1,2.

Using Lemma 4, one has

B(L(V xV,),¢) < 2 (b?(”g’) TN

From this, it follows that
o, (L(V,xV,))=0, i=12. (22)

After that, by Lemma 3, and using (20), (21), and (22), with i = 1, 2, we have:
@, (UV,xV,)) =@, (H(V, xV,)- LV, xV},))
< H(V, XV 1@, (L (V, x V) + | LV, x V) 1@, (K (V, xV,))
N H,By XB) 10, (L,(V, x V) + | LBy xB) |0, (H,(V, xV},))

<(1,(K) + ) (2max{v(b,0)" } + &, 0(b,0) | 5 (max{@, (V,),@,(V,)}).

Since

(1, (K) + ") (2max{p(b,a)" } + £, (b, 0)) <1
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From (H3), we deduce from the most recent estimate that
@, (UV, xV,)) <Kk, (max{(ﬁo(Vl),wo(Vz)}), 1=1,2.
and
@, (U, xV,)) = max{@, (U (V, xV,)).®, (U (V, xV,))} < &, (max{@,(V,),@,(V,)}).
Finally, by employing Theorem 1, we deduce that U possesses at least one coupled fixed point in B,.
Therefore, problem (1)-(2) admits at least one solution in B,.
4. An example

In this section, we give examples to illustrate the usefulness of our main results. Consider the follow-
ing coupled system :

CD%;; 133,(¢) +1+31(§) 13,(0)| _0, Ceg=[0.2],
O | 5+arctan|3,({)1+3,(0) 91 91(1+13,(5) 1)

C,D%;C 1332@,) +1+31(C)+ |32(C)| =0, Cej:= [0’2] (23)
O | 5+arctan|3,(£)+3,() 91 91(1+13,(5) 1)

and

133,(0) o=D 133,(6) |0 =0
5+arctan | 3,(5)1+3,(C) < | 5+arctan|3,(0)[+3,(5) |

- Y

1 ¢ 133,(£) oo + 133,(¢)
91 | 5+arctan|3,(£)[+3,(¢) 7 | 5+arctan|3,(0)1+3,(8) J|¢=2

=0 (24)

é — V.
3

1 opa® 133,($) ot 133,($)
10 | 5+arctan|3,(5)[+3,(0) ¢=2 5+arctan| 3,({)+3,(8) )j¢=
Corresponding to the problem (1)-(2), we have that

1 3 4
J =[a,b]=[0,2], TP(C) C 51 ) 5 _57 771—191—5, n2—l92—§,
and
h({,31,32)——(5+arctan|3 143,), 8(0,3,3,) =+ 413

91 91 91+13,1)’
It is evident that hypotheses (H1) hold, and

h' :sup{|h({,0,0)| = .7}:—

. 1
g =sup{|g(§,0,0)| : Cej}:a
Moreover, for { € J and u,,u,,v,,v, € R, we have

1
|h((:,u1,u2)—h(é’,vl,vz)|SE(Iarctanlu1 | —arctan |v, | [+]u, —v, |)
1
<—(arctan | |u, |—lv, | [+]uy, —v, |)
13
1
< E(arctan( lu, —v, D+lu, —v, |)

13(G(Iu —u, D+0o,(lu, —v, 1)),
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where o,(u) = arctan(uv) and o,(u) =u, then

1 1
|h(C7u17u2) _h(C7U1?UQ)| Sﬁllrélag?{o-l}(lul _Ul |)+Elgla£§{6l}(lu2 _vz |)

2
<Er£%x{c Hmax{lu, —v, |,lu, —v, [}).

Therefore, k,(§) = %max(al(éj),%({)) and k;, € E. .

On the other hand,
lu, | vl | lw—ol_ 1] lul=lo, | | lu -y,
U, U, v,V - + <— + 1
g (€u,u) - 8(E,0,0.)] < 91 1+|u| 1+]v, || 91 91|(1+|u DA+ v, |)| 91
Si lu, —v, | +Iu1—1)1|S63(|u2—02|)+0'2(|u1—vll)
911+ |u, v, | 91 91 91 ’

where o,(u) = L, then
1+u

|8(¢ u;,uy) — 8(C,v,,0,)| <—11%1a<x{0' }(max{l u, —-v l,lu, -v, I})

2
Thus, k,(§) = EmaX(G2 (£),0,({)) and «, € E. Hence, hypothesis (H2) is fulfilled.

Lastly, note that hypothesis (H3) is equivalent to

3max(aucctan(K),K)+5/13 2 max K, K 11701 (2°*+1/5)<K,
13 91 1+ K

and
2 ax K,L +1/91 (25/2+1/5)s1
91 1+ K

which is verified by K, = 1. Therefore, all hypotheses of Theorem 2 are met, and as a result, the
problem (23)-(24) admits at least one solution (3,,3,)€ P such that max {II 3, 1L11 3, II} <1.

5. Concluding

This paper presents existing results for the coupled 1-Caputo hybrid fractional thermostat system.
Our analysis is based on the MNC technique along with Darbo’s fixed-point theorem. Additionally, we
investigate future research directions regarding the extension of this system within the v-Hilfer FD
framework.

References

[1] M. Abu Hammad, Conformable Fractional Martingales and Some Convergence Theorems, Mathematics, 2022, 10, 6.

[2] M. Abu Hammad, S. Alsharif, A. Shmasnah and R. Khalil, Fractional Bessel differential equation and fractional
Bessel functions. Ital. J. Pure Appl. Math. 47 (2022): 521-531.

[8] M. Abu Hammad, A. Awad, R. Khalil, E. Aldabbas, Fractional distributions and probability density functions of
random variables generated using FDE, J. Math. Comput. Sci., 10 (2020), 522—-534.

[4] M. Abu Hammad, O. Zentar, Sh. Alshorm, M. Ziane, I. Zitouni, Theoretical analysis of a class of ¥-Caputo fractional
differential equations in Banach space, AIMS Mathematics, 2024, 9(3): 6411-6423.

[6] R. Almeida, A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci.
Numer. Simul. 44, (2017) 460—481.

[6] S.Alshorm, I. M. Batiha, I. Jebril and A. Dababneh. Handling Systems of Incommensurate Fractional Order Equations
Using Improved Fractional Euler Method. In 2023 International Conference on Information Technology (ICIT),
pp. 657-660. IEEE, 2023.



Hammad AM, et al. Results in Nonlinear Anal. 7 (2024), 163-176 176

(7]

(18]
(19]
(20]

(21]
(22]

(23]
(24]
(25]
(26]
(27]

(28]
(29]

(30]
(31]

(32]
(33]
(34]
(35]
(36]
(37]
(38]

(39]
(40]

[41]

H. Arfaoui, New numerical method for solving a new generalized American options under -Caputo time-fractional
derivative Heston model, To appear in Rocky Mountain J. Math.

M. Awadalla, N. Yameni, Y. Yves and K. Asbeh, Psi-Caputo logistic population growth model. J. Math. 2021, Article
ID 8634280, 9 p. (2021).

7. Baitiche, C. Derbazi, J. Alzabut, M. E.Samei, M. K. Kaabar, Z. Siri, Monotone iterative method for v-Caputo frac-
tional differential equation with nonlinear boundary conditions. Fractal Fract. 2021, 5(3), 81.

Z. Baitiche, K. Guerbati, M. Benchohra, Y. Zhou, Boundary value problems for hybrid Caputo fractional differential
equations. Mathematics. 7, 282 (2019).

D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value
conditions. Bound. Value Probl. No. 64, pp. 1-16 (2020).

D. Baleanu, V. Hedayati, S. Rezapour, M.M. Al Qurashi, On two fractional differential inclusions. SpringerPlus, 5,
(2016) pp. 1-15.

J. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, Lectures Notes in Pure and Applied
Mathematics, 50, Marcel Dekker, New York, 1980.

J. Banas and L. Olszowy, On a class of measures of noncompactness in banach algebras and their application to non-
linear integral equations,Z. Anal. Anwend. 28(6), (2009), 475-498.

dJ. Caballero, M. Darwish, K. Sadarangani, W. Shammakh, Existence results for a coupled system of nonlinear fractional
hybrid differential equations with homogeneous boundary conditions, Abstr. Appl. Anal. Article ID 672167, 10 p. (2014).
K. Diethelm, The analysis of fractional differential equations, in Lecture Notes in Mathematics, Springer, New York,
2010.

A. El Mfadel, S. Melliani, M. Elomari, Existence results for nonlocal Cauchy problem of nonlinear -Caputo type
fractional differential equations via topological degree methods, Advances in the Theory of Nonlinear Analysis and its
Application, 6(2)(2022), 270-279.

Q. Fan, G-C. Wu, H. Fu, A note on function space and boundedness of the general fractional integral in continuous
time random walk. JJ. Nonlin. Math. Phys. 29(1), 95-102, (2022).

K. Hilal, A. Kajouni, Boundary value problems for hybrid differential equations with fractional order. Adv. Difference
Equ., Paper No. 183, 19 p. (2015).

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-
Holland Mathematics Studies, 204, Elsevier, Amsterdam, Netherlands, 2006.

N. L. Komarova, A. C. Newell, Nonlinear dynamics of sand banks and sand waves, J. Fluid Mech. 415, 285-321, (2000).
T. Kosztotowicz, A. Dutkiewicz, Subdiffusion equation with Caputo fractional derivative with respect to another func-
tion, Phys. Rev. E, 104 (2021), 014118.

P. Kumar, M. Vellappandi, Z. A. Khan, S. M. Sivalingam, A. Kaziboni, V. Govindaraj, A case study of monkeypox dis-
ease in the United States using mathematical modeling with real data. Math. Comput. Simul. 213, 444—465 (2023).
P. Kumar, S. M. Sivalingam, V. Govindaraj, Forecasting of HIV/AIDS in South Africa using 1990 to 2021 data: novel
integer and fractional-order fittings. Int. J. Dynam. Control (2023). p 1-17.

R. Magin, Fractional calculus in bioengineering, Crit. Rev. Biom. Eng. 32 (2004), 1-104.

J.J. Nieto, J.Pimentel, Positive solutions of a fractional thermostat model. Bound. Value Probl., Paper No. 5, 11 p. (2013).
F. Norouzi, G. N'Guérékata, A study of ¢-Hilfer fractional differential system with application in financial crisis,
Chaos Solitons Fractals: X 6, 100056, (2021).

K. B. Oldham, Fractional differential equations in electrochemistry. Adv. Eng. Soft. 41, 9-12 (2010).

R. Poovarasan, M. E. Samei, V. Govindaraj, Study of three-point impulsive boundary value problems governed by
1-Caputo fractional derivative. J. Appl. Math. Comput. (2024).

H. Riecke, Self-trapping of traveling-wave pulses in binary mixture convection, Phys. Rev. Lett. 68, 301-304, (1992).
J. Sabatier, R.P. Agrawal, J.T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications
in Physics And Engineering, Dordrecht: Springer, 2007.

A. Salem, F. Alzahrani, B. Alghamdi, Langevin equation involving two fractional orders with three-point boundary
conditions. Differ. Integral Equ., 33(3-4), 163—180 (2020).

S. M. Sivalingam, P. Kumar, V. Govindaraj, A novel optimization-based physics-informed neural network scheme for
solving fractional differential equations. Engineering with Computers 40, 855-865 (2024).

S.M. Sivalingam, K. Pushpendra, V. Govindaraj, A Chebyshev neural network-based numerical scheme to solve
distributed-order fractional differential equations. Comput. Math. Appl. 164, 150-165, (2024).

J. Tariboon, S. K. Ntouyas, W. Sudsutad, Fractional integral problems for fractional differential equations via caputo
derivative. Adv. Differ. Equ., 2014, 181 (2014).

0. K. Wanassi, D. F. M Torres, An integral boundary fractional model to the world population growth. Chaos Solitons
Fract. 168, 113151 (2023).

0. Zentar, M. Ziane, S. Khelifa, Coupled fractional differential systems with random effects in Banach spaces, Random
Oper. Stoch. Equ. 29(4), 251-263, (2021).

Y. Zhao, S. Sun, Z. Han, Q. Li, The existence of multiple positive solutions for boundary value problems of nonlinear
fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(4), 2086—-2097 (2011).

Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

M. Ziane, O. Zentar, M. Al Horani, On the v-tempered fractional differential systems of Riemann—Liouville type.
J. Anal. pp. 1-20 (2024).

O. Zentar, M. Ziane, M. Al Horani and I. Zitouni, Theoretical study of a class of {-Caputo fractional differential equa-
tions in a Banach space, J. Appl. Anal. Comput. 14(5), 2808-2821, (2024).



