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Abstract
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1. Introduction

Fixed point theory is a branch of mathematics that deals with the existence and properties of fixed 
points. In mathematics, fixed point theory is one of the prominent theories and remains a dynamic 
and evolving field, providing essential tools and insights across mathematics and applied sciences. Its 
rich interplay between theory and application underscores its significance and the ongoing interest 
in its development. Metric space theory has extensive applications, not only in mathematics, but in 
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the other area of quantitative sciences. [10] derived fixed point results using real-valued functions 
satisfying integral-type rational contractions, further enriching the literature on metric fixed point 
theory. These works collectively contribute to the ongoing development of fixed point theory in various 
generalized metric spaces and its applications. Many researchers expanded their work in the field of 
fixed point theory [5, 6, 7, 8, 15, 20, 21].

A number of generalizations of metric spaces are familiarized like, D -metric space, b-metric space, 
 -metric space, partial metric space,  -metric space and many more, see [9, 16]. Shukla et al. [19] 
explored fixed point theorems in graphical cone metric spaces and applied their findings to systems of 
initial value problems, demonstrating the utility of their theoretical work. Merging the concept of b
-metric space and  -metric space, [1] bring together the idea of generalized b-metric space. In recent 
years, several researchers have contributed to the advancement of fixed point theory in generalized 
metric spaces. [18] established coupled fixed point theorems in b-metric spaces, extending previous 
results in this framework. [23] investigated coupled coincidence point results for (ψ -φ )-weakly con-
tractive mappings in partially ordered b-metric spaces, broadening the scope of fixed point analysis 
under weak contraction conditions. In a related study, [24] examined the existence of tripled coinci-
dence points in ordered b-metric spaces and provided applications to systems of integral equations, 
linking abstract fixed point theory with practical problems. In 2011, the new notion of complex valued 
metric spaces introduced by [2] and many others obtained common fixed point theorems in complex 
valued metric spaces. [22] made significant contributions by establishing generalized common fixed 
point theorems in complex-valued metric spaces along with their practical applications. [4] presented 
the complex valued b-metric space. [17] gave some contractive results in complex valued  -metric 
spaces. Combining the concept of complex valued metric spaces and b-metric spaces, [11] familiar-
ized the idea of complex valued b-metric spaces and he obtained several elementary properties of 
complex valued b-metric spaces, see [12, 13, 14]. This area continues to grow, with ongoing research 
focusing on deeper properties, more general fixed point theorems, and broader applications.

2. Preliminaries

First, we recollect some basic results of complex valued metric spaces. Take   to be the set of complex 
numbers, a b, ∈ . Take a partial order   on   as below:

a b Re a Re b
Im a Im b

 if and only if
and

( ) ( )
( ) ( )

≤
≤

It concludes that a b  if any one of the next conditions is fulfilled:
1. Re a Re b( ) = ( ) and Im a Im b( ) = ( ),
2. Re a Re b( ) < ( ) and Im a Im b( ) = ( ),
3. Re a Re b( ) = ( ) and Im a Im b( ) < ( ),
4. Re a Re b( ) < ( ) and Im a Im b( ) < ( ).
We write a b

≠
 if a b≠  and any one of (2), (3) and (4) is fulfilled. Also, we will write a b  if only (4) 

is satisfied. Also, the following statements folds:
1. If x y, ∈  with x y≤  then xa ya , for all a∈,
2. If 0  a b

≠
, then a b< ,

3. If a b  and b c , then a c .

Definition 2.1: [2] A mapping dc : � �� �   satisfies the following properties, for every h j, �� : 
1. d h jc ( , ) 0 ,
2. d h jc ( , ) = 0 if and only if h j= ,
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3. d h j d j hc c( , ) = ( , ), 
4. d h j d h x d x jc c c( , ) ( , ) ( , ) + . 
The pair �,dc� �  is known as complex valued metric space.

Definition 2.2: [11] A mapping b : � � �� � �   satisfies the following properties, for every h j k, , �� : 
1. b h j k( , , ) = 0  if h j k= = ,
2. 0 ( , , ) b h h j  with h j≠ ,
3.  b bh h k h j k( , , ) ( , , )  with h k≠ ,
4.  b bh j k h j k( , , ) = ( , , )�� �, where π  is a permutation,
5.   b b bh j k s h x x x j k( , , ) ( , , ) ( , , ) �� �.
The pair �,b� �  is known as complex valued b-metric space.

Proposition 2.3: [11] In a complex valued  -metric space �,b� � , for each h j k, , �� , it follows that: 
1.   b b bh j k s h h j h h k( , , ) ( , , ) ( , , ) �� �,
2.  b bh j j s j h h( , , ) 2 ( , , ) .

Definition 2.4: [11] A sequence hn� � in �,b� �  is known to be convergent to a point τ  if for each c c∈, 0 ,
there exists a positive integer n0  such that for all m n n h h cb n m, , , ,0� � � �  .

Definition 2.5: [11] A sequence hn� � in �,b� �  is known to be Cauchy if for each c c∈, > 0 , there exists
a positive integer n0  such that for all m n n h h h cb n m, , , , ,0� ≺�� � � .

Definition 2.6: [11] A complex valued b-metric space �,b� �  is complete if every Cauchy sequence is
convergent in it. 

Proposition 2.7: [11] In a complex valued b-metric space, the following are equivalent: 
1. { }hn  is complex valued b-convergent to τ ,
2. b nh h, , 0�� � �  as n ��,
3. b nh , , 0� �� � �  as n ��,
4. b n mh h, , 0�� � �  as m n, �� .

Proposition 2.8: [11] In a complex valued b-metric space, hn� � is a Cauchy sequence if and only if
b n mh h h, , 0



� � �  as m n, ,��. 
The notion of compatible maps in metric spaces is given by [3] in 1986.

Definition 2.9: [3] Two self-mappings H K,  of a metric space ( , )ϒ dc  are said to be compatible if 
n c n nd h h�� � �lim HK KH, = 0 , whenever hn� � is a sequence in ϒ  such that n n n nh h�� ��lim limH K= =� ,

for some � �� . 
The concept of compatible mapps in b  metric space is given by [13]

Definition 2.10: [13] Let �,b� �  be a complex valued b-metric space and H K,  be mappings from
�,b� �  into itself. The mappings H K,  are called compatible if there exists a sequence hn� � such that

n b n n nh h h�� � �lim G HK KH KH, , = 0 or n b n n nh h h�� � �lim G KH HK HK, , = 0, whenever hn� � is a sequence 
in ϒ  such that n n n nh h�� ��lim limH K= =� , for some � �� .

Example 2.11: [13] Let � = [ 1,1]�  and �,b� �  a complex valued b-metric space such that
b h j k h j j k k h( , , ) =| | | | | |2 2 2� � � � � , for all h j k, , �� , where s = 2. Define two self-mappings 

H K, : � ��  by ( ) =h h  and ( ) =
3

h h . Consider a sequence h
nn =
1
2

, we get
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n
b n n n

n
bh h h

n n n�� ��
� � �

�
�

�

�
�lim limG KH HK HK G, , = 1

6
, 1
6
, 1
6

= 0,

and also,

n
n

n
nh

n
h

n n�� ��

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�lim limH H K K= 1

2
= 0 = 1

2
= 1
6

= 0.and

Therefore, mappings H K,  are compatible.

3. Main Results

Theorem 3.1 Consider �,b� �  be a complete complex valued b-metric space with a real number s ≥1
and H K,  are self-mappings of ϒ  satisfying the following conditions: 

1. H K( ) ( )� �� ,
2.  or  is continuous function,
3. G H H H G K K Kb bh j k h j k( , , ) ( , , ) ∆ ,

for every h j k, , ��  with ∆s <1, whenever  and   are compatible mappings, they have a unique 
common fixed point in ϒ . 

Proof. Consider a sequence hn� ���  with an initial point h0 . We can choose h1  such that H Kh h0 1= . 
Choose a sequence hn�� �1  such that �n n nh h n= = , = 0,1,21H K � .

By using Condition (3), we get

G H H H G K K K G H H Hb n n n b n n n b n n nh h h h h h h h h, , , , = , ,1 1 1 1 1� � � � �� � � � � � � ��.
Continuing like this, we can show that 

G H H H G H H Hb n n n
n
bh h h h h h, , , , .1 1 0 1 1� �� � � � �

For every n m N n m, , <∈ , we have 

  



b n m m b n' n n b n n n

b

s s

s

� � � � � � � � �

�

, , , , , ,1 1
2

1 2 2

3

� � � � � � �
�

� � � � �

nn n n
n
b

n
bs s

s

� � �
�

� � �
� � � � �

�

2 3 3

0 1 1
2 1

0 1 1
3

, , ,
, , , ,

� �

� � � � � �



 � �

�

 
nn

b
� � � �2

0 1 1, , , � � � 

we have,

 b n m m

n

b
s
s

� � � � � �, ,
1

, , .0 1 1� �
�

� � �
�

b n m m� � �, ,� � tends to zero, as n m,  tends to infinity. This implies that �n� � is a Cauchy sequence. By 
completeness property of complex valued b-metric space, there is a sequence which is convergent to 
a point � ��  such that n n��� �lim � �=  and n n n n n nh h�� �� �� �lim lim lim� �= = =1H K . As  or   is 
continuous function. Suppose,  is continuous and 

n n n nh h�� �� �lim limKH KK K= =1 � .
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Further,  and   are compatible. Therefore, n b n n nh h h�� � �lim G HK KH KH, , = 0. This implies that 
n n n nh h�� ��lim limHK KH K= = � .

Again,

G HK H H G KK K Kb n n n b n n nh h h h h h, , , , .� � � � �

Taking limit n tends to infinity, we get

G K G Kb b( , , ) ( , , ).� � � � � � �

This is not possible, as ∆ < 1 <1
s

.Therefore, ϕ ϕ= .
Moreover,

G H H H G K K Kb n b nh h, , , , .� � � �� � � � �

Taking limit n tends to infinity gives,

G H H Gb b( , , ) ( , , ).� � � � � � �

Hence, we get ϕ ϕ=  and H Kϕ ϕ ϕ= = . Thus, mappings H K,  has ϕ  as their common fixed point.
Uniqueness: Consider θ  as another common fixed point of H K,  with � �� .

G G H H H G K K K Gb b b b( , , ) = ( , , ) ( , , ) = ( , , ),� � � � � � � � � � � � � �

which is not possible. Therefore, � �= . 

Example 3.2: Let � = [ 1,1]�  and b h j k h j j k k h( , , ) = (| | | | | |)2� � � � � , for every h j k, , �� . It is a com-
plete complex valued b-metric with s = 2.

Define ( ) =
4

h h  and ( ) =
3

h h . Here, we note that  is continuous and H K( ) ( )� �� . Also,

G H H H G K K Kb bh j k h j k( , , ) ( , , ) ∆  holds for every h j k, , ��  and 1
4

< 1
2

� � . Here, mappings  and   
has 0 as their common fixed point.

Theorem 3.3: Consider �,b� �  be a complete complex valued b-metric space with a real number s ≥1
and H K,  are self-mappings on ϒ  satisfying the following conditions:

1. H K( ) ( )� �� ,
2.  or  is continuous function,
3. G H H H G H K K G K H K G K K Hb b b bh j k h j k h j k h j k( , , ) ( , , ) ( , , ) ( , , ) � �� � � ,

for every h j k, , ��  with ( ) < 1
3 2� �� � �
s

.

Then,  and   have a unique common fixed point, provided  and   are compatible mappings.

Proof. Consider a sequence hn� ���  with an initial point h0 . We can choose h1  such that

H Kh h0 1= . Choose a sequence hn�� �1  such that �n n nh h n= = , = 0,1,21H K � .

Then, by condition (3), we have 

G H H H G H K K G K H Kb n n n b n n n b n n nh h h h h h h h h, , , , , ,1 1 1 1 1� � � � � �� � � � � � � 11 1 1

1 1

, , ,
, , ,

� � � � �
� � � �

� �

� �

�

�

G K K H

G H H H G H H
b n n n

b n n n b n n

h h h
h h h h h ,, , , .1 1H G H H Hh h h hn b n n n� � � � �� ��

(3.1)

From rectangle inequality and preposition (2.3), we have
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G H H H G H H H G H H Hb n n n b n n n b n n nh h h s h h h s h h h� � � � �� � � � �1 1 1 1 1, , , , 2 , , �� �� �. (3.2)

Using equation (3.2) in equation (3.1), we get

G H H H

G H H H G H H

b n n n

b n n n b n n

h h h

s h h h s h h

, ,

( ) , , 2 , ,
1 1

1 1

� �

� �

� �
� � � � �



� HH

G H H H G H

h

s s h h h s h
n

b n n n b n

�

� � �

� ��� ��

� � �� � � � � �

1

2 2
1 1

,

1 2 2 , , ( )� � 11

1 1 1

, , ,

, , , , ,

H H

G H H H G H H H

h h

h h h h h h
n n

b n n n b n n n

� �
� � � �� � ��

where �
�

= ( )
1 2 2

< 1 <1
2 2
� �

� � �� �
�

s s s
.

Continuing like this, we obtain,

G H H H G H H Hb n n n
n
bh h h h h h, , , , .1 1 0 1 1� �� � � ��

By using the same steps as used in Theorem 3.1, we can show that �n� � is a Cauchy sequence. By 
completeness property of complex valued b-metric space, there is a sequence which is convergent to 
a point � ��  such that n n��� �lim � �=  and n n n nh�� ��lim lim� = =  n nh�� �lim  1 = � . As  or   is 
continuous function, suppose  is continuous, then

n
n nh h

��
�limKH KK K= = .1 � (3.3)

Further,  and   are compatible. Thus, n b n n nh h h�� � �lim G HK KH KH, , = 0, which implies that 

n
n nh h

��
limHK KH K= = .� (3.4)

Again, from condition (3) of this theorem, we get

G HK H H G HK K K G KK H K

G KK
b n n n b n n n b n n n

b

h h h h h h h h h, , , , , ,� � � � � � � �
�

 �

� hh h hn n n, , .K H� �
Taking limit n tends to infinity, we get

G K G Kb b( , , ) ( ) ( , , ),� � � � � � � �� � �

this is not possible as � �� � � <1. Hence, ϕ ϕ= .
Again using the condition (3), we have

G H H H G H K K G K H K G K K Hb n b n b n b nh h h h, , , , , , , ,� � � � � � � �� � � � � � � � � � � � � ..

Taking limit n tends to infinity,

G H H G G H G Hb b b b( , , ) ( , , ) ( , , ) ( , , ).� � � � � � � � � � � � � �� � �

Using Preposition 2.3, we get,

G H H G H G H Hb b bs( , , ) ( ) ( , , ) 2 ( ) ( , , ).� � � � � � � � � � � � �� �

This implies that ϕ ϕ= . Therefore, H Kϕ ϕ ϕ= = . Thus, mappings  and   has ϕ  as their common 
fixed point.

Uniqueness: Consider θ  as another common fixed point of H K,  with � �� .
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G G H H H G H K K G K H K
G K

b b b b

b

( , , ) = ( , , ) ( , , ) ( , , )
( ,
� � � � � � � � � � � �

�
 �

�
� � �

KK H
G

� �
� � �

, ),
= ( ) ( , , ),� �� � � b

this is not possible. Therefore, � �= . Hence, uniqueness follows. 

Example 3.4 Let ϒ =   and b h j k h j j k k h i h j k( , , ) =| | | | | | | |� � � � � � � � , for every h j k, , �� . It is a 

complete complex valued b-metric with s = 2. Define ( ) =
2

h h  and ( ) =
3

h h . Here, we note that  is

continuous with H K( ) ( )� ��  and hence compatible.

G H H H Gb bh j k h j h h j j h h h i h j h( , , ) =
2
,
2
,
2
=
2 2 2 2 2 2 2 2 2

,�

�
�

�

�
� � � � � � � � �

GG H K K Gb bh j k h j k h j j k k h i h j k( , , ) =
2
,
3
,
3
=
2 3 3 3 3 2 2 3 3

�

�
�

�

�
� � � � � � � � � ,,

( , , ) =
3
,
2
,
3
=
3 2 2 3 3 3 3 2

G K H K Gb bh j k h j k h j j k k h i h j k�

�
�

�

�
� � � � � � � � �

33
,

( , , ) =
3
,
3
,
2
=
3 3 3 2 2 3 3 3

G K K H Gb bh j k h j k h j j k k h i h j�

�
�

�

�
� � � � � � � � �

kk
2
.

We can choose � �, ,�  such that ( ) < 1
3 2� �� � �
s

 and

G H H H G H K K G K H K G K K Hb b b bh j k h j k h j k h j k( , , ) ( , , ) ( , , ) ( , , ). � �� � �

By above theorem, mappings  and   has 0 as their common fixed point.

Theorem 3.5 Consider �,b� �  be a complete complex valued b-metric space with a real number s ≥1
and H K,  are self-mappings on ϒ  satisfying the following conditions, for every h j k Y, , :∈  

1. H K( ) ( )� �� ,
2.  or  is continuous function,

3. G H H H
G K K H G H H K
G K K K G Hb
b b

b b
h j k h j j h j j

h j k h
( , , ) ( , , ) ( , , )

( , ; ) ( ,
 �

�
� KK H

G K K K
k k

h j kb, )
( , , ), 

with ∆s <1.
Then,  and   have a unique common fixed point in ϒ , provided  and   are compatible.

Proof. Consider a sequence hn� ���  with an initial point h0 . We can choose h1  such that H Kh h0 1= . 
Choose a sequence hn�� �1  such that �n n nh h n= = , = 0,1,21H K � . By condition (3) of this theorem, we 
have

G H H H

G K K H G H H K
b n n n

b n n n b n n n

h h h
h h h h h h
, ,

, , ,
1 1

1 1 1 1

� �

� � � �

� �
� � � � �

��
� � � � � �

� � � �
� �G K K K G H K H

G K K K
b n n n b n n n

b n n nh h h h h h
h h h

, , ,
, ,

1 1 1 1
1 1 ��.

We get, G H H H G H H Hb n n n b n n nh h h h h h, , , ,1 1 1� � �� � � � � .
Continuing like this,

G H H H G H H Hb n n n
n
bh h h h h h, , , ,1 1 0 1 1� �� � � � � (3.5)
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By using the same steps as used in Theorem 3.1, we can show that �n� � is a Cauchy sequence. By 
completeness property of complex valued b-metric space, there is a sequence which is convergent to 
a point � ��  such that n n��� �lim � �=  and n n n nh�� ��lim lim� = =  n nh�� �lim  1 = � . As  or   is 
continuous function, suppose  is continuous, then n n n nh h�� �� �lim limKH KK K= =1 � .

Further,  and   are compatible. We have,

n b n n nh h h�� � �lim G HK KH KH, , = 0, this implies that n n n nh h�� ��lim limHK KH K= = � .

From condition (3) of this theorem,, we have
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We get, G HK H H G KK K Kb n n n b n n nh h h h h h, , , ,� � � � � .
Taking limit n tends to infinity,

G K G Kb b( , , ) ( , , ),� � � � � � �

this implies that ϕ ϕ= .
Again, consider
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Taking limit n tends to infinity, we have ϕ ϕ= . Therefore, H Kϕ ϕ ϕ= = . Thus, ϕ  is a common 
fixed point of the mappings  and  .

Uniqueness: Consider θ  as another common fixed point of H K,  with � �� .
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This implies  b b( , , ) ( , , )� � � � � � � , but this is not possible. Therefore, � �= . Hence, the unique-
ness is proved.

Example 3.6 Let ϒ =   and b h j k h j j k k h i h j k( , , ) =| | | | | | | |� � � � � � � � , for every h j k, , �� . It is a 

complete complex valued b-metric with s = 2. Define ( ) =
2

h h  and ( ) =
3

h h . Here, we note that  is

continuous with H K( ) ( )� ��  and hence compatible.
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We can choose ∆  such that ∆s <1 and
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G K K H G H H K
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By above theorem, mappings  and   has 0 as their common fixed point.

Theorem 3.7 Consider �,b� �  be a complete complex valued b-metric space with a real number s ≥1
and H K,  are self-mappings on ϒ  satisfying the following conditions, for every h j k Y, , :∈

1. H K( ) ( )� �� ;
2.  or  is continuous function;
3. 

G HH HJ HK

G H K K G H K K
G H K K G H

b

b b

b b

j j j h h j
j k k h

( , , )

( , , ) ( , , )
( , , ) ( ,



�
�
� KK K

G K K K

G K H K K K H
G H K H

h k
j j k

k h j G j j h
j j h

b

b b

b

, )
( , , )

( , , ) ( , , )
( , , )

��
�
��

�
�

G H H K
G K K H

G H K K G K K H
G H

b
b

b b

b

j j k
h j j

h k k k j k
h

( , , )
( , , )

( , , ) ( , , )
(

�
,, , ) ( , , )

( , , )

( , , ) ( , ,
K K G K K H

G K K H

G K H K G K K K

j j k k j
h j k

k h j j j
b

b

b b

�

�
�

�
kk

j j h j j k
h j j

b b
b

)
( , , ) ( , , )

( , , )
G H K H G H H H

G K K K
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
��
�
�
�
�
�
�
�

with � � �, , , 0� �  with s2( ) < 1
3

� � �� � � � .

Then,  and   have a unique common fixed point in ϒ , provided  and   are compatible. 

Proof. Consider a sequence hn� ���  with an initial point h0 . We can choose h1  such that H Kh h0 1= .  
Choose a sequence hn�� �1  such that �n n nh h n= = , = 0,1,21H K �  and using condition (3) of this 
theorem, 
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So, we get

 b n n n b n n n� � � � � �, , ( ) , , .1 1 1 1� � � �� � � � � � � (3.6)

By using rectangular inequality and preposition (2.3), we have
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Using equation (3.7) in (3.6), we get

  b n' n n b n n' n b n' n ns s� � � � � � � � �� � � � �� � � � � � � � ��1 1 1 1 1, ( ) , , 2 , � ��
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1 2( )
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Continuing like this,

 b n' n n
n
b n n' n� � � � � �� � �� � � �1 1 1, , , . 

Using the same steps as used in Theorem 3.1, one can show that �n� � is a Cauchy sequence. By 
completeness property of complex valued b-metric space, there is a sequence which is convergent to 
a point � ��  such that n n��� �lim � �=  and n n n nh�� ��lim lim� = =  n nh�� �lim  1 = � . As  or   is 
continuous function, suppose  is continuous, then n n n nh h�� �� �lim limKH KK K= =1 � .

Further,  and   are compatible. Thus,

n b n n nh h h�� � �lim G HX KH KH, , = 0 , this implies that n n n nh h�� ��lim limHK KH K= = � .
By using condition (3) of this theorem,, we have
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Taking the limit n tends to infinity,
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This is not possible as � � �� � < 1
3 2s

. Therefore, we have, ϕ ϕ= .
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Again, from condition (3) of this theorem, we have
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Taking the limit n tends to infinity,

G H H G H G H Hb b bs( , , ) ( ) ( , , ) 2 ( ) ( , , ),� � � � � � � � � � � � �� �

this is again contradiction as ( ) < 1
3 2� � �
s

. Therefore, we have H Kϕ ϕ ϕ= = . Thus, ϕ  is a common 

fixed point of  and  .
Uniqueness: Consider θ  as another common fixed point of H K,  with � �� .
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 b b( , , ) ( ) ( , , )� � � � � � � � �� � , which is not possible. Therefore, � �= .

Example 3.8 Let ϒ =   and b h j k h j j k k h( , , ) =| | | | | |� � � � �  for every h j k, , ∈. It is a complete 

complex valued b-metric. Define ( ) =
2

h h  and ( ) =
4

h h . Here, we note that  is continuous with

H K( ) ( )� ��  and hence compatible.
By taking � � �= = = = 1

16
�  and s =1 condition s2( ) < 1

3
� � �� � � �  is satisfied. Also, condition 

(3) of Theorem 3.7 is satisfied. Hence, by above theorem, mappings  and   has 0 as their common 
fixed point.

Conclusions and Future Works

In this paper, some common fixed point theorems of compatibility by using rational inequality incom-
plete complex valued b-metric space are proved. Our results will help new researches to obtain new 
results in complex valued b-metric space and in other extensions of complex valued metric space.
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