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Abstract
This research has explored a novel form of distance known as the T-distance within a b-metric space 
(Π, b, s) which depends on the existed b-metric on Π. Several examples illustrating this concept have 
been provided, along with an examination of fixed point results using this notion. Furthermore, we 
have presented an example as well as an application of the T-distance in the context of fractional 
differential equations.
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1. Introduction

Consider a non empty set Π and a self mapping W P P: .®  A point ¢Îu P  is referred to as a fixed 
point for W W if ¢ ¢=u u .  In the context of a metric d on Π, Ω is considered as a contraction if there is 
h Î[ , )0 1  such that the inequality d d( , ) ( , ),W Wm m h m m1 2 1 2£  for each m m1 2, .ÎP

It is a common understanding within the mathematical community that the cornerstone of fixed 
point theory lies in the Banach contraction principle[1], which guarantees the existence of a unique 
fixed point for every contraction in a complete metric space. Subsequently, numerous mathematicians 
have undertaken various generalizations of Banach’s theorem in multiple directions. These general-
izations involve altering either the distance setting or the condition on the self-mapping as demon-
strated in [2, 3, 4, 5, 6, 7, 8, 9, 10] and the references cited therein.
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2. T-distance

The present study delves into a new idea concerning distance spaces within the context of a b-metric 
space. It is important to first revisit the definition of b-metric spaces, which is outlined as follows.

Definition 2.1. [11] A function b : P P´ ® +[ , )0 ¥  is said to be b-metric if there is sÎ +[ , )1 ¥  such that 
b satisfying:

(1)	 b iff( , ) ,m m m m1 2 1 20= =  
(2)	 b b for all( , ) ( , ), , ,m m m m m m1 2 2 1 1 2= Î   P
(3)	 b s b b for all( , ) [ ( , ) ( , )], , , .m m m m m m m m m1 2 1 2 2 3 1 2 3£ + Î   P

The pair (Π, b) is called a b-metric space.

Definition 2.2. Let b be a b-metric on Π. A function T : [ , ) [ , )0 0¥ ¥´ ´ ®P P  is said to be T-distance over  
(Π, d) if T satisfying:

(T1) T ( , , ) ( , ),t
s
bm x m x> 1

 for all t > 0,

(T2) for each sequences ( ),( )m xn n  in Π and (tn) in (0, ∞), we have

lim ( , ) lim ( , , ) lim .
n n n n n n n n nb s t L t
® ® ®

= = > Þ =
¥ ¥ ¥

m x m x� �T 0 0

In the following, we will present various examples of T-distance functions. To facilitate the discussion 
in the remainder of this document, we will focus on the subsequent two categories of functions.
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¥¥ ¥ q) [ , ) ({ }) { }}.® =-1 01 1

s s is continuous with 

Example 2.3. Let (Π, b) be a b-metric space with constant s ≥ 1, and let T1, T2, T3, T4 : [0, ∞) × Π × Π → 
[0, ∞) be defined as following:

(1)	 T1 1( , , ) ( , ) ( ), ,t b t wheresm x m x h h= + Î  G
(2)	 T2 1 0( , , ) ( , ) , ,t b kt where ksm x m x= + >  
(3)	 T3( , , ) ( ) ( , ), ,t t b wherem x q m x q= Î�   Q
(4)	 T4

1( , , ) ( , ).( )t btsm x m x= +

Then, T1, T2, T3 and T4 are T-distance over (Π, b).
In this context we mean by (Π, b, s) a b-metric space with constant s ≥ 1, T represents a T-distance 

over (Π, b, s), Pseq ( , )W m0  refers to the Picard sequence that generated by m mn n n+ = =1 0 1 2W( ) , , , .�   
Furthermore, FΩ denotes the set of fixed points of Ω within Π.

Definition 2.4. Suppose there is T over (Π, b, s). A self mapping Ω : Π → Π is said to be T-contraction 
if for each m x, ,ÎP  we have
T ( ( , ), , ) ( , ).b

s
bm x m x m xW W £ 1

2 � (1)

Remark 2.5. If Ω : Π → Π is T-contraction, then for each distinct points m x, ,ÎP  we have

b
s
b( , ) ( , ).W Wm x m x< 1

Lemma 2.6. Suppose Ω : Π → Π is T-contraction. If µ, ξ 2 FΩ, then µ = ξ.

Proof. Assume to the contrary; that is µ ≠ ξ. Then, by Remark 2.5, we have
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b b
s
b( , ) ( , ) ( , ),m x m x m x= <W W 1

a contradiction. Hence the result.

Lemma 2.7. Suppose Ω is T-contraction, and m0 ÎP.  Then for the Pseq ( , ),W m0  if μn ≠ μn+1 for each  
n 2 N, then

lim ( , ) .
n n nb
® + =
¥

m m 1 0

Proof. Since μn ≠ μn+1 then from Remark 2.5 we have b bn n n n( , ) ( , ).m m m m+ -<1 1  Hence ( ( , ) : )b nn nm m + Î1 � N  
is a non-increasing sequence in [0, ∞). So, there is r ≥ 0 such that lim ( , ) .

n n nb r
® + =
¥

m m 1  Suppose that r > 0. 
Therefore, by T1 of Definition 2.2, we have

1 1
1 1 1 2 1s

b b
s
bn n n n n n n n( , ) ( ( , ), , ) ( , ).m m m m m m m m+ - + -< £T

So,
r b

s
r

n n n n n£ £
® - +lim ( ( , ), , ) ,
¥

m m m mT 1 1
1

which is a contradiction. Hence the result.

Theorem 2.8. Suppose that (Π, b, s) is complete and there is T-distance T on (Π, b, s). Assume that Ω :  
Π → Π is T-contraction. Then FΩ consists of only one element.

Proof. Let µ0 2 Π be arbitrary and consider the Pseq(Ω, µ0). If there is l ≥ 0 such that m ml l= +1 ,  then 
µl 2 FΩ. So we assume that for each n 2 N, μn ≠ μn+1. Now, we claim that (µn) is a Cauchy sequence 
in (Π, b, s). Suppose not; that is (µn) is not Cauchy. Therefore, there is ϵ > 0 and two sub-sequences 
( ) ( )m mn mk k

 and  of (µn) such that (mk) is chosen as the smallest index for which
b m n kn m k kk k
( , ) , .m m ³ > > � � (2)

This implies that
b n mk k
( , ) .m m - <1  � (3)

Using the triangle inequality, Remark 2.5 and Equations (2),(3) we get
 £ < £ +- - - -b b b bn m s n m n m m mk k k k k k k k

( , ) ( , ) [ ( , ) ( , )].m m m m m m m m1
1 1 1 1

So, depending on Lemma (2.7) we get
 £

®+ -lim inf
k n mb

K k¥
m m( , ).1 � (4)

Also,
b b b bn m s n m n n n mk k k k k k k k
( , ) ( , ) [ ( , ) ( , )]m m m m m m m m- - - - -< £ + <1

1
2 1 2 1 ss b bn n n nk k k k

[ ( , ) ( , )] ].m m m m- - -+ +2 1 1 

Depending on Lemma (2.7) we get
lim sup
k

n mb
k k®+
- £

¥
m m( , ) .1  � (5)

By (4) and (5) we get
lim ( , ) .
k n mb

k k®+ - =
¥

m m1  � (6)
Now, by the same previous argument we have

b
s
bn m n mk k k k

( , ) ( , ).m m m m+ -<1 1
1
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So, we get

lim sup
k

n mb
sk k®+

+ £
¥

m m( , ) .1
 � (7)

On the other hand
 £ £ ++ +b s b bn m n m m mk k k k k k

( , ) [ ( , ) ( , )].m m m m m m1 1

So, we get

s

b
k n mk k

£
®+ +lim inf

¥
m m( , ).1 � (8)

By (7) and (8) we get
lim ( , ) .
k n mb

sk k®+ + =
¥

m m 1
 � (9)

So, using condition 2.1, we get
1 1

1 1 1 2 1s
b b

s
bn m n m n m n mk k k k k k k k

( , ) ( ( , ), , ) ( , ).m m m m m m m m+ - + -< £T

Therefore, lim ( ( , ), , ) ,
k n m n mb

sk k k k® - - =
¥

m m m mT 1 1 2


 and so, lim ( , ) ,
k n mb

k k® - - =
¥

m m1 1 0  a contradiction. Hence, (µn) 

is Cauchy, so there is µ 2 Π such that (µn) converges to some µ 2 Π. Now, by Remark 2.5, we have

b b
s
bn n n( , ) ( , ) ( , ).W W Wm m m m m m+ = <1

1

Therefore, As the value of n approaches to ∞, we obtain b(Ωµ, µ) ≤ 0, and so µ 2 FΩ. The uniqueness 
derived from the insights presented in Lemma 2.6.

Example 2.9. Let Π = [0, 1] and let Ω : Π → Π be defined by Wm m
m

= -
+

1
10

2

2 .  Then Ω has a unique fixed 
point.

Proof. Let Π = [0, 1] provided with the b-metric b v v( , ) | | .m m= - 2  Then

Ω : Π → Π which defined by Wm m
m

= -
+

1
10

2

2 . is a self map. Let T : [0, ∞) × Π × Π →[0,∞) be defined by 

T ( , , ) ( , ).t v t
s
b vm m= +1

Now, for each m, [ , ]vÎ 0 1  we have

b v v

v
v

v

( , )

( )( )

W W W Wm m

m
m

m

= -

= -
+

- -
+

=
+ +

æ

è
ç

ö

ø

2

2

2

2

2

2

2 2

1
10

1
10

11
10 10 ÷÷ - £ æ

èç
ö
ø÷

-

= æ
èç

ö
ø÷

2
2 2 2

2
2

2

4 11
100

11
50

| | | |

( , ).

m m

m

v v

b v

So,

T ( ( , ), , ) ( , ) ( , )

| | | |

b v v b v b v

v v

m m m m

m m

W W W W

W W

= +

= + - - £

1
2

1
2

5
2

112 2 2
2

550
1
4

2
æ
èç

ö
ø÷

£b v b v( , ) ( , ).m m

As a result, Ω satisfies all the conditions specified in Theorem 2.8, and Theorem 2.8 guarantees that 
FΩ consists of a single element.
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Based on Theorem 2.8, we are able to deduce the subsequent corollaries.

Corollary 2.10. Suppose that (Π, b, s) is complete and θ 2 Θ. Suppose Ω : Π→Π is a self map satisfies

s b b
b

2 ( , ) ( , )
( ( , ))

.W Wm x m x
q m x

£ � (10)
Then FΩ consists of one element.

Corollary 2.11. Suppose that (Π, b, s) is complete and Ω : Π → Π is a self map satisfies

sb b
b

( , ) ( , )
( , )

.W Wm x m x
m x

£
+
�

1
� (11)

Then FΩ consists of one element.

Corollary 2.12. Suppose that (Π, b, s) is complete and h ÎG.  Suppose Ω : Π→Π is a self map satisfies

b
s
b s b( , ) ( , ) ( ( , )).W Wm x m x h m x£ -1 � � (12)

Then FΩ consists of one element.
The subsequent theorem can be proven using the identical technique employed in Theorem 2.2.

Theorem 2.13. Suppose (Π, b, s) is complete and Ω : Π → Π is a self map satisfies the following con-
dition for all µ, ξ ∈ Π
T ( ( , ), , ) ( , ).b

s
bW W W Wm x m x m x£ 1

2 � (13)
Then Ff consists of one element.

3. Application

The exploration of resolving fractional differential equations and integral equations through the appli-
cation of fixed point theory has emerged as a central focus in contemporary academic investigations. 
We suggest that those with a keen interest delve into reputable references [12, 13, 14, 15, 16, 17, 18, 
19, 20, 21, 22] for deeper understanding and valuable perspectives on this subject matter.

Let E C= [ , ]0 1  be the set of continuous functions and consider the b-metric b on E as follows:
b g h g h g h( , ) max ( ) ( ) .

[ , ]
= - = -

Î¥ m
m m2

0 1

2

Then (E, b, 2) is a complete b-metric space with s = 2.
Consider the following boundary fractional differential equation
Da m m m m ag g
g g

( ) ( , ( )) , ,
( ) ( ) ,

+ = £ £ < <
= =

ì
í
î

L 0 0 1 1 2
0 1 0

�� �
� (14)

where Dα is the Caputo fractional derivative of order a  and L : [ , ]0 1 ´ ®R R  is a continuous 
function.

The Green’s function associated to (14) is defined as:

G( , )
( ) ( ) , ,

( )
( )

, .
m x

m x m x x m
m x

a
m x

a a

a=
- - - £ £ £
- £ £ £

- -

-

1 0 1
1 0 1

1 1

1

��

G

ìì

í
ï

î
ï

Theorem 3.1. Suppose that

L L( , ) ( , ) | |, ,m mz z k z z k1 2 1 2
1 4

2
1
4

- £ - - <�

for all µ 2 [0, 1] and z z1 2, .Î R  Then,
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g G g d( ) ( , ) ( , ( )) ,m m x x x x= ò 0

1
L � (15)

for all µ ∈ [0, 1] and g 2 E has a unique solution.

Proof. The solution of 15 is equivalent to the fixed point the operator S E E: ®  which defined as:

S g G g d( ( )) ( , ) ( , ( )) ,m m x x x x= ò 0

1
L

For any g h E, Î  we have

S g S h G g h d

G

( ( )) ( ( )) ( , )( ( , ( )) ( , ( )))

( ,

m m m x x x x x x

m

- = -

£

ò

ò

2

0

1 2

0

1

L L

xx x x x x x

m x x x x

)| ( , ( )) ( , ( ))|

( , ) | ( ) ( )|

L Lg h d

G k g h d

-( )
£ - -
æ
ò

2

0

1 1 4
2èè

çç
ö

ø
÷÷

£ - - æ
èç

ö
ø÷

£ -
Î
ò

2

2

0 1 0

1
21 4

2
1 4

2

k g h G d

k g

 



¥
m

m x xsup ( , )
[ , ]

-- h ¥
2 .

Hence,
S g S h k g h( ( )) ( ( )) .m m

¥ ¥
- £ - -2 21 4

2

Define T T: [ , ) [ , ) ( , , ) ( , ) , .0 0 1
2

0 1
4

¥ ¥´ ´ ® = + < <E E t g h b g h kt k by �  Therefore,

Theorem 2.8 guarantees the existence of one and only one fixed point for S.

Conclusion

This research has introduced a novel form of distance spaces that are equipped with a b-metric. This 
enables us to establish a fresh set of contractions and present fixed point results. Furthermore, we 
reinforce our findings by providing an example and demonstrating an application.
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