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1. Introduction

The realm of mathematical analysis has continuously evolved to accommodate the complexities inher-
ent in multidimensional systems [1, 2]. Within this domain, the integration of q-calculus with the 
study of vector functions of several variables emerges as an innovative and promising field, offer-
ing a fresh perspective on the dynamics of multivariate functions. q-calculus, an extension of tra-
ditional calculus enriched by the parameter q, introduces intriguing variations of derivatives and 
integrals that have shown remarkable applications in diverse scientific disciplines. In this pursuit, 
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the amalgamation of q-calculus with vector functions unveils a rich tapestry of mathematical struc-
tures, unraveling nuanced behaviors, and fostering deeper insights into the behavior of multidimen-
sional systems. By employing q-analogues of derivatives and integrals, this research aims to probe 
the fundamental characteristics of vector functions across multiple variables in a q-analytic setting. 
The investigation seeks to shed light on the unique features and underlying properties inherent in the 
differentiation and integration processes, thereby providing a robust framework for understanding 
the intricate dynamics of vector fields in higher dimensions.

At its core, the exploration of q-calculus within the realm of vector functions of several variables 
is propelled by a confluence of motivations. Traditional calculus techniques, while foundational, 
encounter limitations when dealing with complex, high-dimensional systems prevalent in fields such 
as physics, engineering, finance, and computational mathematics. The introduction of q-derivatives 
and q-integrals offers a fresh lens through which to comprehend and analyze the behavior of multi-
variate functions, empowering researchers to tackle intricate phenomena that evade conventional 
approaches. Moreover, the utility of q-calculus extends beyond theoretical implications; it serves as 
a potent tool for addressing practical challenges encountered in modeling and simulating real-world 
systems characterized by multiple interacting variables. Embracing the capabilities of q-calculus in 
analyzing vector functions of several variables promises advancements in optimization, signal pro-
cessing, data analysis, and the modeling of complex dynamical systems, thus paving the way for inno-
vative methodologies with far-reaching implications across scientific disciplines.

Through analytical investigations, numerical simulations, and empirical validations, this research 
seeks to elucidate the distinct advantages and potential challenges associated with employing  
q-calculus techniques in understanding and manipulating vector fields in multiple dimensions. The 
ultimate goal is to establish a comprehensive understanding of q-analytic techniques applied to vector 
functions, thereby contributing to the development of a powerful mathematical framework for tack-
ling complex multidimensional phenomena encountered across scientific domains.

In this work, we take q Î (0,1)  into consideration. The so-called q-number can be outlined as 
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The q-binomial coefficient and the q-factorial of the number [ ]n q  are defined as follows: 
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The so-called q-Pochammer symbol might be outlined as 
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A significant function of this formula is found in combinatorics. For example, this formula makes 
sense when n = ¥  and x =1  and x a= . 
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If qÎ ¥( )0, , then the infinite product above converges. Herein, we take up the following symbol: 
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Lemma 1. [3] If a and b are any two numbers, we obtain 
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For every real-valued function f, the q-derivative is defined as 
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Obviously, D f xq ( )  goes to f x'( ) , as q ® -1  for which the function f is differentiable.
Two principles Literature is familiar with q-binomial formulae. The following form represents the 

q-Gauss binomial: 
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Conversely, the form of the q-Heine’s binomial formula is as follows: 
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We now obtain two formal power series in x by using the aforementioned equality for the binomial 
formulas of q-Gauss and q-Heine. In other words, we obtain 
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Since these two series were used to define the q-analogue of the exponential function, they are 
extremely helpful in the theory of q-calculus. Based on (2), we can have 
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Likewise, using (1), the definition of the companion q-exponential function is then given as 

1 1
1
1

1
1

0

1 2

2
+( ) =

-
æ
è
ç

ö
ø
÷

-
-

æ
è
ç

ö
ø
÷

-
-

æ

è
ç

ö

ø
÷

=

-( )

åx
q x

q
q
q

q
q

q
j

n
j j

j

¥

/



1
1

1
1 20

1 2

1-
-

æ

è
ç

ö

ø
÷

=
-

æ
è
ç

ö
ø
÷

éë ùû éë ùû éë ù=

-( )

åq
q

q x
q
jj

j

n
j j

j

q

/

ûû
=

-
æ
è
ç

ö
ø
÷

éë ùû
=

=

-å
q j

n

j

q
q

x
q

x
q

j0

11
!

,E

which can be rewritten as 
Eq
x

q
q x= 1 1 .+ -( )( )¥

The two q-exponential functions mentioned above have the following derivatives: 
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This study seeks to explore the distinctive features of q-derivatives for vector-valued functions across 
multiple variables, analyzing their implications for understanding the dynamics and transformations 
of multidimensional systems. Specifically, the research aims to establish a rigorous theoretical frame-
work for q-calculus as applied to vector functions of several variables, defining and analyzing the prop-
erties of q-derivatives in this context. Investigating properties of q-Derivatives by exploring the unique 
characteristics and properties exhibited by q-derivatives of vector functions, including q-analogues  
of differentiation rules and their implications for higher-dimensional systems. Investigating the prac-
tical applications and implications of q-calculus techniques in modeling and analyzing complex mul-
tidimensional phenomena, highlighting the advantages and challenges of utilizing q-derivatives in 
various scientific and applied domains.

2. Functions of several variables

Let f be an arbitrary function of two variables. By partial q-derivative we mean 
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For example, the function f z w z wn m( , ) =  has q-partial derivatives such as 
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Let f be an arbitrary function, the kth-order partial q-derivative of f is defined to be 
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for any k =1,2,3, . Consequently, the second order partial q-derivatives or simply second q-patrials 
are defined to be 
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2.1. The q-Gradient and directional q-derivatives

Naturally, it’s not necessarily to have the same partial q-derivatives on two different coordinates. 
However, this can be treated by taking the maximum of qj over all coordinates. Despite of that, we 
define the local q-derivative of a function of several variables as follows: 

Definition 1. We say that f n:  ®  is (locally) q-differentiable provided that there exists a unique 
vector G zq ( )  such that 
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where qÎ( )0,1 . If such vector G zq ( )  exits then it’s unique. We call this unique vector the q-Gradient 
of f and denote it by Ñ ( )q f z .

The definition of q-Gradient is just a vector whose components are the local partial qj-derivatives 
on each coordinates. By setting q q

j
j= max{ } , we then unify the partial derivatives in each coordinate, 

and thus  the total q-derivative (which measures the q-average of change of a function f in each coor-
dinate in direction of unit axes) or the q-Gradient of f is defined to be: 

f qz f z G z q z qq( ) - ( ) ( ) × -( ) Î= 1 , (0,1).for all fixed  (7)
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The following result holds immediately. 
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Definition 2. Let f be locally q-differentiable function. The directional q-derivative of f at the point z0 
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Theorem 1. If f is q-differentiable then the first q-partial derivatives are exist and 
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and this completes the proof. 

Remark 1. A more general presentation of Theorem 1 is given as follows: For qÎ( )0,1 , if f has contin-
uous first qj-partial derivatives (1 )£ £j n , then f is q-differentiable and 
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Setting q = qj for all j we refer to the Theorem 1. 

Remark 2. Since for each unit vector u we have 
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This means that the q-derivative of f at the specified direction is equal to the scaler projection of the 
q-Gradient onto that direction. Moreover, if Ñ ( ) ¹q f z 0 , then 
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2.2. q-Mean value theorems

Firstly, we need to recall the q-Mean Value Theorem (q-MVT) given in [4], it states that: 

Lemma 2. For a continuous function g defined on [ , ]a b  (0 < < )a b , there exist h Î ( , )a b  and q Î (0,1)  
such that 

g b g a D g b aq( ) - ( ) ( ) -( )= h  (8)

for all q qÎ( ) ,1 . 
Other closely related MVTs for real valued functions of several variables was proved in [5] and [6].
In the following content, we aim to generalize Theorem 1 for the multivariable case. 

Theorem 2. If f is differentiable at each point in the line segment ab , then there exists q Î (0,1)  and a 
point c on ab  (between a and b) such that f b f a f c b aq( ) - ( ) Ñ ( ) × -( )= , for all q q qÎ( ) È -
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g g f b f a f a t b a b a f c b aq q1 0 = = =0( ) - ( ) ( ) - ( ) Ñ + -( )( ) × -( ) Ñ ( ) × -( )
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Remark 3. If f a f b( ) ( )=  in Theorem 2, then Ñ ( ) ×q f c c = 0  which means that Ñ ( ) ^q f c c , where c is 
the vector joining the points a and b. 

Let f be differentiable on an open connected set U such that Ñ ( )f z = 0 , for all z UÎ  then f is con-
stant. This is famous fact in the classical theory of functions of several variables. A similar result for 
q-Calculus of several variables is considered as follows:
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 and this shows that f c f c f c f cn n0 1 1= = = =( ) ( ) ( ) ( )- . Since a and b are arbitrary two 
points in U then f must be constant. 

2.3. Mixed q-partials

Theorem 4. (q-Rolle’s Theorem) Let a b c d, , , Î  with 0 < <a b  and 0 < <c d , and let 
f a b c d: := [ , ] [ , ]D ´ ®   satisfy the following:  

(1) For each fixed w c d0 [ , ]Î , the function given by x f z w , 0( )  is continuous on [a,b], q-differentiable  
on (a,b) and has continuous q-derivative.

(2) For each fixed z a b0 [ , ]Î , the function given by y z yq

q

f
x

¶
¶ ( )0 ,  is continuous on [c,d], q-differentiable  

on (c,d ) and has continuous q-derivative.
(3) f a c f b d f a d f b c( , ) ( , ) = ( , ) ( , )+ + . 

Then, there exists ( , ) ( , ) ( , )0 0z w a b c dÎ ´  such that ¶
¶ ¶ ( )q

q q

f
w z z w

2

0 0, = 0 . 

Proof. Let f : ,a béë ùû®   defined by f x f x d f x c( ) ( ) - ( )= , , . Then f is continuous on [a,b], q-differen-

tiable on [a,b], has continuous q-derivative, and f f( ) = ( , ) ( , ) = ( , ) ( , ) = ( )a f a d f a c f b d f b c b- - . Hence, 

by q-Rolle’s Theorem in one variable (Lemma 2; when g b g a( ) ( )= ), there is z a b0 ( , )Î  such that 
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D zqf( ) = 00
, that is 

¶
¶

( ) ¶
¶

( )q

q

q

q

f
x
z d

f
x
z c0 0, = , . Now, consider the mapping Ã : [ , ]c d ®   defined by 

Ã y
f
x
z yq

q
( ) ¶

¶
( )= ,0 . Then Ã is continuous on [c,d], q-differentiable on (c,d), has continuous q-derivative 

and Ã Ã( ) = , = , = ( )0 0c
f
x
z c

f
x
z d dq

q

q

q

¶
¶

( ) ¶
¶

( ) . Hence by Lemma 2 there is w c d0 ( , )Î  such that D wq ( ) = 00 , 

that is ¶
¶ ¶

( )q

q q

f
y z

z w
2

0 0, = 0 .

Theorem 5. (q-Mean Value Theorem) Let a b c d, , , Î  with 0 < <a b  and 0 < <c d, and let 
f a b c d: := [ , ] [ , ]D ´ ®   satisfy the following:  

(1) For each fixed w c d0 [ , ]Î , the function given by x f z w , 0( )  is continuous on [a,b], q-differentia-
ble on (a,b) and has continuous q-derivative.

(2) For each fixed z a b0 [ , ]Î , the function given by y z yq

q

f
x

¶
¶ ( )0 ,  is continuous on [c,d], q-differentia-

ble on (c,d), and has continuous q-derivative. 

Then, there exists ( , ) ( , ) ( , )0 0z w a b c dÎ ´  such that 

b a d c
f
y z

z w f b d f a d f b c f a cq

q q

-( ) -( ) ¶
¶ ¶

( ) ( ) - ( ) - ( ) + ( )
2

0 0, = , , , , .

Proof. Let t Î  and define the mapping F z w f z w f a c f x c f a y t x a y c, = , , , ,( ) ( ) - ( ) - ( ) - ( ) - -( ) -( ) . 
Observe that F b c F a d F a c, = , = , = 0( ) ( ) ( ) . Choose 

t
f b d f b c f a d f a c

b a d c
=

, , , ,( ) - ( ) - ( ) + ( )
-( ) -( )

so that F b d, = 0( ) , then we have F a c F b d F a d F b c( , ) ( , ) = ( , ) ( , )+ + . So by Theorem 4 there is z w0 0,( )  
and q Î( )0,1  such that ¶

¶ ¶ ( )q

q q

F
w z z w
2

0 0, = 0 , that is ¶
¶ ¶ ( )q

q q

f
w z z w t

2

0 0, =  for all q q qÎ( ) È ( )-
 ,1 1,

1
 and this 

yields the desired result. 

Corollary 1. Let the assumptions of Theorem 5 hold. If there exist M m, > 0  such that 
m z w Mq

q q

f
y z£ ( ) £¶

¶ ¶

2

0 0,  for all ( , ) ( , ) ( , )0 0z w a b c dÎ ´ , then 

m b a d c f b d f a d f b c f a c M b a d c-( ) -( ) £ ( ) - ( ) - ( ) + ( ) £ -( ) -( ), , , , .

Proof. The proof is an immediate consequence of Theorem 5. 
We are now ready to prove the equality of mixed second-order partial q-derivatives provided one of 

them is continuous. 

Theorem 6. Let U Í 2  be an open set and let ( , )0 0z w  be any point of D. Let f D: ®   be such that 

both ¶
¶
q

q

f
z  and ¶

¶
q

q

f
w  exist and continuous on D. If either ¶

¶ ¶
q

q q

f
w z

2

 or ¶
¶ ¶

q

q q

f
z w

2

 exists on D and is continuous at 

( , )0 0z w , then both ¶
¶ ¶

q

q q

f
w z z w

2

( , )0 0  and ¶
¶ ¶

q

q q

f
z w z w
2

( , )0 0  exist and 

¶
¶ ¶

¶
¶ ¶

q

q q

q

q q

f
w z

z w
f

z w
z w

2

0 0

2

0 0( , ) = ( , )
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Proof. Assume that ¶
¶ ¶

q

q q

f
w x

2

 exists on D and is continuous at z z w0 0 0= ( , ) . Let  > 0 , by continuity there 

is a d > 0  such that 

¶
¶ ¶

-
¶

¶ ¶
Î ( )q

q q

q

q q

f
w z

u v
f

w z
z w u v N z

2 2

0 0 0( , ) ( , ) < ( , ) whenever d

By the Rectangular q-Mean Value Theorem (Theorem 5), there is c d N z, 0( )Î ( )d  such that 

f qz qw f qz w f z qw f z w q z w
f
y
q

q
0 0 0 0 0 0 0 0

2
0 0

2

, , , , = 1( ) - ( ) - ( ) + ( ) -( ) ¶
¶ ¶qqz

c d, .( )

The left-hand side of the above equation can be written as F z qw F z w( , ) ( , )0 0 0 0- , where 
F w w: ( , )0 0- + ®d d   is defined by F y f qz y f z y( ) := ( , ) ( , )0 0- . Consequently 

F z qw F z w
q z w

f
w z

z w
f

w z
zq

q q

q

q q

0 0 0 0
2

0 0

2

0 0

2, ,
1

, =( ) - ( )
-( )

-
¶

¶ ¶
( ) ¶

¶ ¶ 00 0

2

, , < .w
f

w x
c dq

q q
( ) - ¶

¶ ¶
( ) 

Since ¶
¶
q

q

f
w  exists on D, the function F is differentiable at w0 and 

d F
d y

f
y
qz w

f
y
z wq

q

q

q

q

q

= , ,0 0 0 0
¶
¶

( ) - ¶
¶

( )

Hence, 
¶
¶

¶
¶

¶
¶

¶( ) - ( )
-( )

( ) -q

q

q

q

q

q

q

q

qf
w

f
w

d F
d y w

fqz w z w

q z w

w0 0 0 0
2

0 0

0, ,

1
= ¶¶ ( )( )

-( )
qz
z w

q z w
0 0

2
0 0

,

1
< 

Since  > 0  is arbitrary, we conclude that ¶
¶ ¶

q

q q

f
z w z w
2

( , )0 0  exists and is equal to ¶
¶ ¶

q

q q

f
y z z w
2

( , )0 0 . 

Example 2. For the function f : 2 ®  given by 

f z w
zw z w

z w

z w
z w, =

, , 0,0
0 , = 0,0

2 2

2 2( ) ( ) ¹ ( )
( ) ( )

ì
í
ï

îï

-
+

,

it is clear that ¶
¶
q

q

f
z , ¶

¶
q

q

f
w , ¶

¶ ¶
q

q q

f
w z

2

 and ¶
¶ ¶

q

q q

f
z w

2

 exist on 2 {(0,0)}\ . Moreover, ¶¶ -q

q

f
z w w(0, ) =0 0  and ¶

¶
q

q

f
w z z( ,0) =0 0  

for all z w, Î . Hence, ¶
¶ ¶

¶
¶ ¶- ¹q

q q

q

q q

f
w z

f
z w

2 2

(0,0) = 1 1 = (0,0) . Thus by Theorem 6, it follows that neither ¶
¶ ¶

q

q q

f
w z

2

 

nor ¶
¶ ¶

q

q q

f
z w

2

 can be continuous at (0,0). 

Theorem 7. (Multivariate q-Mean Value Theorem (q-MMVT)) Let D nÌ   and D° denote the interior  
of D. Suppose z0,z1 are distinct points of D such that H z t z z t Dn= : 0,10 1 0+ -( )Î Î( ){ } Í  . Let 
u u un= , ,1 ( )  be a unit vector given as u z z

z z= 1 0

1 0

-
- 

 and let f D: ®   be a continuous function such that 

D fu
q  exists at each point of H for all q Î (0,1) . Then there is c H0 Î  such that 

f z f z z z D f cu
q

1 0 1 0 0=( ) - ( ) - ( )
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where q q qn= , ,1 ( )  such that qj
z qt z z

z t z z

j j j

j j j= 0 0 1 0

0 0 1 0

( ) ( ) ( )

( ) ( ) ( )

+ -( )
+ -( ) ; j n=1, ,

, t0 (0,1)Î  and q ¹ qj for all j. 

Proof. Let qÎ( )0,1  be any point and z z z n
0 0

1
0= , ,( ) ( )( )  and z z z n

1 1
1

1= , ,( ) ( )( )  be distinct points of D. 
Consider the function F : [0,1] ®   defined by 

F t f z t f z t z z f z t z z z n( ) ( )( ) + -( )( ) + -( ) +( ) ( ) ( ) ( )= = = , ,0 1 0 0
1

1
1

0
1

0 tt z zn n
1 0 .( ) ( )-( )( )

Clearly, F is continuous on [0,1]. So that, for any t0 (0,1)Î  with t ¹ t0, we have 

z t z t z z t t z z z t tj
j j j j j j( ) + -( ) + -( ) -( ) + -(( ) ( ) ( ) ( ) ( ) ( )= =0 1 0 0 1 0 0 0 )) -z z uj1 0

for all j n=1, ,

.
Hence, 

F qt q t F t
q t t
+ -( )( ) - ( )
-( ) -( )
1

1
0 0

0
=

, ,0
1

1
1

0
1

0 1 0 0f z t z z z t z z f z t

q

n n n( ) ( ) ( ) ( ) ( ) ( )+ -( ) + -( )( ) - ( )( )
-



11 0( ) -( )t t

=
, ,0

1
0 1 0 1 0 0 1 0 1 0f z t t z z u z t t z z u f z tq n q

nj
( ) ( ) ( ) ( )+ -( ) - + -( ) -( ) - (( ) ( )( )

-( ) -( )
, ,

1
.

0

0

 z t

q t t
n

Multiplying both denominator and numerator by z z1 0-  we get that 

d F t
d t

z z
f z t

z
d z t
d t

uq

q t t j

n q
j

j

q
j

j

q j

q
j

( )
-

¶ ( )( )
¶

( )å
= 0

1 0
=1

0
0=

= 1 0
=1

0
0

=1
z z

f z t

z
d z t
d t

e u
j

n q
j

j

q
j

j

q j

q
j

j

n
-

¶ ( )( )
¶

( )æ

è

ç
ç
ç

ö

ø

÷
÷
÷
×å å jj je
æ

è
ç

ö

ø
÷

= 1 0 = 0
z z f z t uq t t
- Ñ ( )( ) ×

= 1 0 = 0
z z D f z tu

q
t t

- ( )( )

where q q qn= , ,1 ( )  such that qj
z qt z z

z t z z

j j j

j j j= 0 0 1 0

0 0 1 0

( ) ( ) ( )

( ) ( ) ( )

+ -( )
+ -( ) , j n=1, ,

.

Thus, by the classical MVT applied to F, there is s Î (0,1)  such that F F d F s
d t
q

q
1 0 = 1 0( ) - ( ) -( ) ( ) . 

Therefore, there is a c c c z s z sn n0 1 1= , , = ( ), , ( ) ( ) ( )  which is a point in H satisfies that 

f z f z z z D f cu
q

1 0 1 0 0=( ) - ( ) - ( )
and this completes the proof. 

Corollary 2. Assume the assumptions of Theorem 7 are hold. Then there is c H0 Î  such that 

f z f z z z
f

z
c

j

n qj

qj j
1 0 1 0

=0
0=( ) - ( ) -

¶

¶
( )å
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where q qj j

n=
=1( )  such that qj

z qt z z

z t z z

j j j

j j j= 0 0 1 0

0 0 1 0

( ) ( ) ( )

( ) ( ) ( )

+ -( )
+ -( ) ; j n=1, ,

, t0 (0,1)Î  and q ¹ qj for all j. 

Proof. The proof is straightforward. 

3. Chain Rule.

We recall that, if f is continuously differentiable in an open set U and  = t( )  is differentiable curve lies 
in U then the composition f � �  is differentiable and d

dt f t f t t  ( )( ) Ñ ( )( ) × ( )= ' . Does the same result 
hold for multivariable q-calculus? Roughly, the answer is yes, however we have different formula. 

Theorem 8. Let f is continuously q-differentiable in an open set U and  = t( )  (0 < )a t b£ £  is strictly 
q-increasing and q-differentiable curve lies in U then the composition f � �  is q-differentiable and 

d
d t

f t f t
d
d t

t
t
f t

d
d t
rq

q
q

q

q j

n qj

qj

q

q

   ( )( ) Ñ ( )( ) × ( )
¶

¶
( )( )å= =

=1
jj t( )  (9)

where qj
r qt
r t
j

j
= ( )

( ) , 1 £ £j n  and q qj j n
=

1( )
£ £

. 

Proof. Let 
 t r t e

j

n
j j( ) ( )å= =1

 be strictly q-increasing and q-differentiable curve lies in an open set U.

Now, let f z f z z zj n( ) ( )= , , ,1    such that z r tj j= ( ) . But f is continuously q-differentiable, therefore 

¶

¶ ( ) ( ) ( )( )qj

qjt j nf r t r t r t1 , , ,   =
, , , , , ,1 1f r t r t r t f r t r t r tj n j

r qt
r t n
j

j
( ) ( ) ( )( ) - ( ) ( ) ( )( ( )

( )    ))
-( ) ( )

-( ) ( )
-( )( )

( )

( )
( )

1

1

1r qt
r t j

r qt
r t j

j

j

j

j

r t

r t

q t

=
, , , , , ,1 1f r t r t r t f r t r t r tj n j

r qt
r t n
j

j
( ) ( ) ( )( ) - ( ) ( ) ( )( ( )

( )    ))
-( ) ( ) ( )( )

( )

( )- ( )
-( )1 1r qt

r t j

r t r qt
q tj

j

j j

r t

= ,¶

¶ ( )( ) ( )qj

qj

q

qt
d
d t jf t r t

where qj
r qt
r t
j

j
= ( )

( ) , 1 £ £j n . Summing up over j from 1 to n, we get 

d
d t

f t
t
f t

d
d t
r t

t
f tq

q j

n qj

qj

q

q
j

j

n qj

qj

  ( )( )
¶

¶
( )( ) ( )

¶

¶å å= =
=1 =1

(( )( )
æ

è

ç
ç

ö

ø

÷
÷
× ( )
æ

è
çç

ö

ø
÷÷åe

d
d t
r t ej

j

n
q

q
j j

=1

= Ñ ( )( ) × ( )q
q

q

f t
d
d t

t 

Remark 4. As q ®1  we have qj
r qt
r t
j

j
= 1( )

( ) ®  for all j, and so 

Ñ ( )( ) × ( ) ( )( ) ® ( )( ) Ñ ( )( ) ×q
q

q

q

q

f t
d
d t

t
d
d t

f t d
dt
f t f t d

dt
t     = = (( ).
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Example 3. Let us find dd t
q

q
f t ( )( )  given that  t ti t j t k( ) + += 2 3  and f z z w z( ) + += 3 3 3 . The first step 

is to find qj. Simply, qj
r qt
r t
j

j
= ( )

( )  so that q q1 = , q q2
2=  and q q3

3= . The second step is determine Ñ ( )q f z ,  

which is 

Ñ ( )
¶

¶
( ) +

¶

¶
( ) +

¶

¶
( )q

q

q

q

q

q

q

f z
x
f z i

y
f z j

z
f z k= 1

1

2

2

3

3

= 3 3 3
1

2

2

2

3

2éë ùû + éë ùû + éë ùûq q q
z i w j z k

= 3 3 3 .2
2

2
3

2éë ùû + éë ùû + éë ùûq q q
z i w j z k

The third step is to find dd t
q

q
t ( ) , which is 

d
d t

t i t j t kq

q
q q

 ( ) + éë ùû + éë ùû= 2 3 .2

Using (9), we have 
d
d t

f t f t
d
d t

tq

q
q

q

q

  ( )( ) Ñ ( )( ) × ( )=

= 3 3 3 2 32
2

4
3

6 2éë ùû + éë ùû + éë ùû( ) × + éë ùû + éë ùû( )q q q q q
t i t j t k i t j t k

= 3 2 3 3 3 .2
2

4
3

6éë ùû + éë ùû éë ùû + éë ùû éë ùûq q q q q
t t t

Consequently, the q-derivative of f t ( )( )  is the directional q-derivative of f in the direction of  
q-tangent vector D tq ( ) . 
Proposition 2. Let f be continuously q-differentiable on an open set U. If  = t( )  (0 < )a t b£ £  is  
continuous and q-differentiable curve that lies in U, then f � �  is q-differentiable. Moreover, there exists 
c(t) between l(qt) and l(t) such that 

d
d t

f t f c t D tq

q
q q ( )( ) Ñ ( )( ) × ( )= ,  (10)

for all q qÎ( ) ,1  and some q Î (0,1) . 

Proof. It is sufficient to show that there exists c(t) between l(qt) and l(t) such that (10) holds. But this 
follows by Theorem 8, i.e., there exists c t qt s t qt( ) = 0  ( ) + ( ) - ( )éë ùû  for some s0 (0,1)Î  such that 

f qt f t f c t qt tq   ( )( ) - ( )( ) Ñ ( ) × ( ) - ( )éë ùû= ( )

for all q qÎ( ) ,1  and some q Î (0,1) . Dividing both sides by q t-( )1  we get 

f qt f t
q t

f c t
qt t
q tq

 
 ( )( ) - ( )( )

-( ) Ñ ( ) × ( ) - ( )
-( )

é

ë
ê
ê

ù

û
ú
ú1

= ( )
1

.

Thus, we can have 
D f t f c t D tq q q ( )( ) Ñ ( ) × ( )= ( ) ,

which ends the proof.
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Remark 5. We note that, as q tends to 1, c t qt s t qt( ) = 0  ( ) + ( ) - ( )éë ùû  tends to l(t) and since Ñq f  is 
continuous then Ñ ( ) ®Ñ ( )( )1 1f c f t  and (10) reduces to the classical version, that is 

d
dt
f t f t t'
  ( )( ) Ñ ( )( ) × ( )= .

Despite of there is no closed formula to evaluate the d
d t
q

q
f t ( )( ) , it could be handled by utilizing the 

directional q-derivative as follows: 
D f z f z uu
q

q( ) Ñ ( ) ×= .

Substituting z t=  ( )  and u td
d t
q

q
=  ( )  therefore 

D f t f t
d
d t

tu
q

q
q

q

  ( )( ) Ñ ( )( ) × ( )= .  (11)

Remark 6. In general, it is not true that 
d
d t

f t D f tq

q
u
q

 ( )( ) ( )( )= . But, we will take this as convention 
or allegory. 

4. Higher order Partial q-derivatives 

Let f : 3 ®  and  : 3 ®  such that f f z w z= , ,( )  and    t s t i t j t k, = 1 2 3( ) ( ) + ( ) + ( ) . Then the 
composition f � � :  ®  is well defined and its derivative is given by 

d
d t

f t f t
d
d t

f

x
d x
d t

f

y
q

q
q

q

q

q

q

q

q

q

q

� �
�

�

�

�

�

�
( )( ) Ñ ( )( ) ×

¶

¶
+
¶

¶
= = 1

1

2

2

dd y
d t

f

z
d z
d t

q

q

q

q

q

q

+
¶

¶
�

�

3

3

,  (12)

where q x qt
x t



1
( )
( )= , q y qt

y t


2
( )
( )=  and q z qt

z t


3
( )
( )= .

In general, for f : 3 ®  and 
 : 2 3 ®  such that f f z w z= , ,( )  and 
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where q q q q   

1 1,1 1,2 1,3= , ,( ) ( ) ( )( )  and q q q q   

2 2,1 2,2 2,3= , ,( ) ( ) ( )( ) .
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Example 4. Let  t s ts i t s j t sk, = 2 2 3 3( ) + +  and f z z w z( ) + += 3 3 3 . Then 

q
qt s
t s

q q
qt s
t s

q q� �
�

� �
�

�
1,1

1

1
1,2

2

2

2
1,3=

,
,

= , =
,

,
= ,( ) ( )

( )
( )

( )
( ) (( )

( )
( )=

,
,

= ,3

3

3�
�
qt s
t s

q

q
t qs
t s

q q
t qs
t s

q q� �
�

� �
�

�
2,1

1

1

2
2,2

2

2

3
2,=

,
,

= , =
,
,

= ,( ) ( )
( )
( )

( )
( ) 33

3

3

=
,
,

= .( )
( )
( )

�
�
t qs
t s

q

Moreover, we obtain 

Ñ ( )
¶

¶
( ) +

¶

¶
( ) +

¶

¶
( )q

q

q

q

q

q

q

f z
x
f z i

y
f z j

z
f z k= 1

1

2

2

3

3

= 3 3 3 ,
1

2

2

2

3

2éë ùû + éë ùû + éë ùûq q q
z i w j z k  (15)

where ¶

¶
¶
¶

éë ùû ( )( )

( )

q

q

q

q
q

f

x
f
x

z q q




1,1

1,1

2
1= = 3 , = ,

¶

¶

¶

¶
éë ùû ( )( )

( )

q

q

q

q
q

f

y

f

y
w q q





1,2

1,2

2

2
2

2
2

2= = 3 , = ,

¶

¶

¶

¶
éë ùû ( )( )

( )

q

q

q

q
q

f

z

f

z
w q q





1,3

1,3

3

3
3

2
3

3= = 3 , = .
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y
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k

m
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=1

, where z mÎ  and t nÎ . If 
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q
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then the q-chain rule is given by 
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where q  is the m n´ -matrix q
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é
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.

Definition 3. A map S n m:  ®  is said to be q-differentiable if there is a linear map  q
n mS( ) ®:    

such that 
S qz S z q z S
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Similar to the classical calculus the q-Jacobian matrix is given by 
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To analyze the q-derivative of the composition of two mappings, namely S z( )  and z t( ) , in higher 
dimensional spaces such that S m p:  ®  given by S z S z S zm( ) ( ) ( )( )= , ,1   and z n m:  ®  defined 
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for each i p=1,2, , . Each term represents the component of jth-unit base vector ej, and so it gives the 
q-gradient for each Si, i.e., 
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Putting this in n-rows for each i p=1, , , then the general q-Jacobian matrix is given by 
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On the other hand, the Hessian matrix can be defined as: 
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Moreover, q-Tensors The Hessian matrix is defined as 
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for all 1 £ £i p  such that 
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T

Theorem 9. Let f be nonconstant and continuously q-differentiable on an open set U. If Ñ ¹q f 0  at each 
point of U then Ñq f  is perpendicular to the level curve of f that passes through that point. 

Proof. Pick a point z z zn0 0
1

0= , ,( )  in U and assume Ñ ( ) ¹q f z0 0 . The level curve of f that passes 
through that point is f z f z c( ) ( )= =0 . Obviously, by implicit function theorem this curve could be 
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parameterized in neighborhood of z0 by a curve  t r t e
j

n

j j( ) ( )å=
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 which continuously q-differentiable 

for all t in some interval I such that D tq ( ) ¹ 0 .
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Theorem 10. (Multivariate q-Taylor Theorem) Let q Î (0,1) . Let U nÌ   and U° denotes the interior 
of U. Suppose z z z n

0 0
1

0= , ,( ) ( )( )  and z z z n
1 1

1
1= , ,( ) ( )( )  are distinct points of U such that 

H z t z z t Un= : 0,1 .0 1 0+ -( )Î Î( ){ } Í 

Let u u uq n= , ,1 ( )  be a unit vector given as uq
z z

z z q= 1 0

1 0

-

- ( ) . Let n be a nonnegative integer and f U: ®   

be such that D fu
k q,  exist and continuous for all k n= 0,1, ,

 and furthermore, D fu
n q+1,  exists at every 

point of H and for all q Î (0,1) . Then there is c H z z0 0 1{ , }Î \  such that 

f z r
j

D f z r
n

D f c
j

n j

q
u
j q

n

q
u
n q

1
=0

,
0

1
1,

0=
! 1 !( )

éë ùû
( ) ( ) +

+éë ùû
( )å

+
+ (( )  (17)

where r z z q= 1 0- ( )  and q qj j

n=
=1( )  such that q

z qt z z

z t z z
j

j j j

j j j
= 0 0 1 0

0 0 1 0

( ) ( ) ( )

( ) ( ) ( )

+ -( )
+ -( ) ; j n=1, ,

, and for all t0 (0,1)Î . 
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Proof. For j n= 0,1, ,

, define S Ui : ®   by S D fj u
j q= ,  and Fj : [0,1] ®   by F t S z tj j( ) = ( )( )  for 

t Î[0,1] . Define f H z zn+ ®1 0 1: { , }\   by f D fn u
n q

+
+

1
1,=  and Fn+ ®1 : (0,1)   by F t f z tn n+ + ( )1 1( ) = ( )  for 

t Î (0,1) .
By definition of directional q-derivative and as in the proof of q-MMVT, if n ≥ 1 then F F:= 0  is 

q-differentiable on (0,1) and 
D F t rD f z t rS z t rF t tq u

q( ) ( )( ) ( )( ) ( ) " Î= = = (0,1).0,
1 1

Similarly, if n ≥ 2, then F1 is q-differentiable on (0,1) and F t rF t1 2( ) = ( )  for all t Î (0,1]) . Hence F F:= 0  
is twice q-differentiable on (0,1) and 

D F t rD F t r F t tq q
2

1
2

2= = (0,1).( ) ( ) ( ) " Î

Continuing in this way, we see that for j n= 0,1, , , the j-th order q-derivative of F exists on (0,1) 
and D F t r F tq

j j
j

( ) ( ) = ( )  for all t Î (0,1) . Moreover, the (n+1)-th order q-derivative of F exists on (0,1) 
and D f t r F tq

n n
n

( 1) 1
1( ) = ( )+ +

+  for all t Î (0,1) . Applying the q-Taylor’s theorem of one-variable on F, there 
exists h Î (0,1)  such that 

F
D F
j

D F
nj

n
q
j

q

q
n

q

1 =
0
! 1 !

.
=0

1

( ) ( )
éë ùû

+
( )

+éë ùû
å

( ) +( ) h

In other words, there is c H z z0 0 1{ , }Î \  such that (18) holds, and this proves the required result. 
Now, given any h k, Î , we define the partial q-differential operator h k

q
,  as follows: 

h k
q q

q

q

q

h
z

k
w, := .

¶
¶

+
¶
¶

Clearly, h k
n q
,
,  transforms a real-valued function of two variables to another real-valued function of two 

variables.
The operator notation h k

q
,  has the property that we can consider successive q-composites of h k

q
,  

and these allow us to consider a combination of the n-th order partial q-derivatives at once. Therefore, 
for any n Î  we define 

h k
n q q

q

q

q q

n

j

n

q

n j j q
n

h
x

k
w

n
j
h k,

,

=0
:= :=

¶
¶

+
¶
¶

æ

è
çç

ö

ø
÷÷

é

ë
ê
ù

û
ú

¶
¶å -

qq
n j

q
jz w- ¶

Namely, for open subset U of 2  and function f U: ®   has continuous partial derivatives of order 
£ n  at every point of U, then h k

n q U,
, : ®   is the function defined by 

h k
n q

j

n

q

n j j q
n

q
n j

q
jf z w n

j
h k

z w
z w,

,
0 0

=0
0 0, := ,( ) ( ) é

ë
ê
ù

û
ú

¶
¶ ¶

(å -
- ))

where ( , )0 0z w  varies over U. For instance, the second successive q-composites is 

h k
q q

q
q

q

q
j
q

f z w h
f
z

z w hk
f

z w,
2,

0 0
2

2

2 0 0

2

2, := , 2( ) ( ) ¶
¶

( ) + éë ùû
¶

¶ ¶- jj
q

q

z w k
f
w

z w0 0
2

2

2 0 0, , .( ) + ¶
¶

( )

Bivariate q-Taylor Theorem via the partial q-differential operator h k
n q
,
,  
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Corollary 3. (Bivariate q-Taylor Theorem) Let q Î (0,1) . Let U nÌ   and U° denotes the interior of U. 
Suppose z z z n

0 0
1

0= , ,( ) ( )( )  and z z z n
1 1

1
1= , ,( ) ( )( )  are distinct points of U such that 

H z t z z t Un= : 0,1 .0 1 0+ -( )Î Î( ){ } Í 

Let u u uq n= , ,1 ( )  be a unit vector given as uq
z z

z z q= 1 0

1 0

-

- ( ) . Let n be a nonnegative integer and f U: ®   

be such that D fu
k q,  exist and continuous for all k n= 0,1, ,

 and furthermore, D fu
n q+1,  exists at every 

point of H and for all q Î (0,1) . Then there is c H z z0 0 1{ , }Î \  such that 

f z w
j

f z w
nj

n

q
h k
n q

q
h k
n

1 1
=0

,
,

0 0 ,
1,, = 1

!
, 1

1 !( )
éë ùû

( ) ( ) +
+éë ùû

å +  qq f c d( ) ( ),  (18)

where h x z= 0- , k y w= 0-  and r z z q= 1 0- ( ) . 

Proof. The proof is similar to that one given in proving Theorem 10. 
The partial q-differential operator h k

q
,  can be generalized to a formal linear N-th order partial 

q-differential operator in n variables as follows: 

P z I zq
N

q, =¶( ) ( )¶
£
å
a

a
a

where a a a a= , , ,1 2 0 n
n( )Î , ¶ ¶ ¶ ¶q q q q

na a a a= 1 2
 , a a a= 1 + + n  and I z I z I z

na a a( ) ( ) ( ):=
1

  are  
functions on some open domain in n-dimensional space.

For instance, the the k-th order partial q-derivatives 

j

n

j
q

q j

k

k q

q

q

h
z

k h
z=1 =

=å å
¶
¶

æ

è
çç

ö

ø
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é

ë
ê
ù

û
ú

¶
¶a

a
a

aa

where z z z znn
a a a a= 1

1
2

2
  and k

k k

q

q

q q n q

q

q
a a a a a
é

ë
ê
ù

û
ú

éë ùû
éë ùû éë ùû éë ùû

éë ùû
éë ùû

=
!

! ! !
=

!
!1 2 

, such that k =| | 0a Î .

5. q-Maximum-Minimum problems with applications

Definition 4. Suppose that f is function of several variables and z0 is a point in the domain.  

(1) The function f is said to be has a local q-maximum at a point z0 provided that f z f qz0 0( ) ³ ( ) . If 
f z f qz( ) ³ ( )0  for z in the domain of f then z0 is called absolute q-maximum point.

(2) The function f is said to be has a local q-minimum at a point z0 provided that f z f qz0 0( ) £ ( ) . If 
f z f qz( ) £ ( )0  for z in the domain of f then z0 is called absolute q-minimum point. 

Theorem 11. If f has local q-extreme value at z0, then Ñ ( )q f z0 = 0  or Ñ ( )q f z0  does not exists. 

Proof. The proof is similar to classical case of multivariable Calculus. 
In general, the interior points of the domain at which the q-gradient is zeros of does not exists 

are called q-critical points. In particular, q-critical points at which the q-gradient is zeros are called  
q-stationary points and those do not give rise to local q-extreme values are called q-saddle points.

For example, the function f z w z w xy y, = 2 72 2( ) + - -  has a q-gradient 
Ñ ( ) +( ) -éë ùû + +( ) - -éë ùûq f z w q x y i q y x j, = 2 1 1 7 . To find the q-stationary points we set Ñ ( )q f z w, = 0.  
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This gives xq q
= 7

2 1 12+( ) -
 and yq

q

q
= 14 1

2 1 12
+( )

+( ) - . So, the point x yq q,( )  is the only q-stationary point. Furthermore, 

it can be shown that x yq q,( )  is a local q-minimum value of f such that f x yq q
q q q

q q
, = 98 2 4 2 1

2 4 1

3 2

2 2( ) -
+ + -( )
+ +( )

.

On the other hand, as q ®1 we then refer to the original problem in classical calculus, i.e., 
Ñ ( ) -éë ùû + - -éë ùûf z w x y i y x j, = 4 2 7  with stationary point ( , ) = (1,4)1 1z w , however this point gives rise 
to local minimum value f z w1 1, = 14( ) - .

Theorem 12. Suppose f has a continuous second partial q-derivatives in a neighborhood of a point 
z z w0 0 0= ,( )  and Ñ ( )q f z0 = 0 . Set 

A
f
z

z B
f

w z
z C

f
w

zq
q

q
q

q

q q
q

q

q

= , = , =
2

2 0

2

0

2

2 0
¶
¶

( ) ¶
¶ ¶

( ) ¶
¶

( )

and for the discriminant D A C Bq q q q= 2- , if  
(1) Dq < 0 , then z0 is a q-saddle point.
(2) Dq > 0 , then f has  

(a) a local q-minimum at z0 whenever Aq > 0 .
(b) a local q-maximum at z0 whenever Aq < 0 . 

Proof. Consider the matrix M
A B
B C
q q

q q

=
æ

è
çç

ö

ø
÷÷ . If Dq < 0 , then M is negative definite, i.e., 

x y
A B
B C

x
y

z wq q

q q
( )

æ

è
çç

ö

ø
÷÷
æ

è
ç
ö

ø
÷ < ¹0 0 0if ( , ) ( , )

that is, A z B xy C wq q q
2 22 < 0+ + .

6. Further Studies and Recommendations 

In this work, we introduce and study q-Calculus for functions of several variables by presenting the 
main concepts and analyses. This foundational study paves the way for further considerations and 
elaborations on other related concepts in q-Calculus. An important extension of this work involves 
the study of double, triple, and line integrals. In light of this study, we plan to investigate the Green 
and Stokes theorems within the framework of q-Calculus. It should be noted that this is the first sys-
tematic study that facilitates and advances the understanding of differential q-Calculus, bringing it 
closer to practical applications and deeper theoretical insights.
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