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1. Definitions and preliminaries

Legendre polynomials [27] are commonly used to solve ordinary differential equations with specific 
model constraints. Orthogonal polynomials, including Legendre polynomials, also play a significant 
role in approximation theory [17]. One kind of orthogonal polynomials are Gegenbauer polynomials 
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that have a special relationship with the generating function and integral representation of real  
functions. This connection, as stated in [26], has resulted in various valuable inequalities within the 
field of Gegenbauer polynomials.

Quantum calculus, commonly referred to as q-calculus, has drawn the attention of numerous  
scholars because of its extensive applicability in physics and mathematics. The q-calculus increases 
the effectiveness of the conventional complement approach for various orthogonal polynomials mod-
ules and functions. This connection between the equilibrium states of differential formulas and their 
solutions provides an extremely efficient and well-designed technique for examining the character-
istics of individual functions. The pioneers of q-calculus were Euler and Jacobi in the 18th century, 
while Jackson [24, 25] further developed and systematically applied q-calculus. Quantum calculus is 
necessary for Aral and Gupta [14, 15] to construct q-analogue of the Baskakov and Durrmeyer opera-
tor. Check out [4, 6, 7, 8] for some recent uses of the q-operator.

Yamakawa-type bi-starlike functions have attracted considerable interest in the field of complex 
analysis. These functions possess intricate geometric properties, particularly in relation to starlike-
ness. The study of Yamakawa-type bi-starlike functions entails examining their behavior and prop-
erties under different transformations and mappings. This investigation provides valuable insights 
into their analytical structure and applications in various mathematical contexts. Extensive research 
has been conducted on these functions, exploring integral representations, coefficient estimates, and 
other fundamental aspects. This research contributes to the broader understanding of complex func-
tion theory and its practical applications.

Let ∆ represent the set of analytic functions  that are defined in the open unit disk L = Î <{ : }  1  
such that Q Q( ) ( )0 0 0 1= =¢ and . Therefore, each Q DÎ  has a Maclaurin series of the form:
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Also, the set of univalent functions  2 ∆ is indicated by S (for the set S, refer to [20]).
The steady instruments provided by differential subordination of analytic functions are highly 

advantageous to the subject of geometric function theory. Miller and Mocanu [28] presented the first 
differential subordination problem; [29] offers more references. Miller and Mocanu’s [30], which 
includes publication dates, provides a thorough history of the advances in this field.

Every function QÎS� has an inverse –1 that is defined by
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A function is considered bi-univalent in Λ if Q Q( ) ( )  and -1  are univalent in Λ.
Let ∑ be the set of bi-univalent functions in Λ defined by (1). For example, the following functions 
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However, the Koebe function, which is familiar to many, is not included in the set ∑. There are also 
other commonly used functions in Λ, such as:
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They are also not members of ∑.
Askey and Ismail [16] identified a class of polynomials that correspond to the Gegenbauer polynomi-
als in terms of q, where Bq

( ) ( , )À � �  is the notation used to represent these polynomials
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Chakrabarti et al. [19] identified polynomials based on the following recurrence relations:
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Amourah et al. [13] presented new subclasses using q-Gegenbauer polynomials. In contrast, Alsoboh 
et al. [5] presented a new subclass by combining the q-Gegenbauer polynomials with a generalized 
neutrosophic Poisson distribution. Fekete-Szegö inequalities can be established for these subclasses, 
along with the initial coefficient bounds |a2| and |a3|.

Recently, researchers have begun investigating subclasses related to orthogonal polynomials. In 
their studies, they have found estimates for coefficients of these functions. However, the issue of 
determining sharp  bounds for the coefficients a nn , ( , , , ) = 3 4 5  remains unsolved, as indicated by a 
number of sources (see [1]-[3], [9]-[12], [18], [21]-[23], [31]-[39]).

2. Identify and study the class GYS ( , ( , ))( )Ã Gq
¶ � �

Definition 2.1. A function  2 ∑ given by (1) be in the class GYS ( , ( , ))( )Ã Gq
¶ � �  if satisfied
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where  Î( ùû £ £1
2 1 0 1, , , ( )Ã Gq

¶  is given by (5) and g( ) ( )v v= -Q 1  is defined by (4).
We define a new subclass of Yamakawa type by specializing the parameter Ã as follows:
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where  , ( ) ( )v v vÎ = -L Q  and g 1  is defined by (4).
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Example 2.3. For q !1– and Ã =0, we get N GYS S( ) : lim ( , ( , )).( )G G� � �¶ ¶=
® -q q1

0  Thus Q SÎ ( )Gx
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First, let’s provide the coefficient estimates for the class GYS ( , ( , ))( )Ã Gq

¶ � �  as defined in  
Definition 2.1.

Theorem 2.2. Let f 2 ∑ given by (1) be in the class GYS ( , ( , ))( )Ã Gq
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Proof. Let Q SÎGY ( , ( , )).( )Ã Gq
¶ � �  Then, from Definition 2.1, there exists two functions v1, v2 such that 
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In view of (1), (4), from (11) and (12), we obtain 
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It follows from (14) and (16) that
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By adding (15) and (16), we get 
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By applying (13) for the coefficients c2 and d2 and using (6), we obtain
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Thus by applying (6), we conclude that
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Based on the findings of Zaprawa [40], we will now explore the Fekete–Szegö inequality for functions 
in GYS ( , ( , )).( )Ã Gq z¶ �
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Theorems 2.2 and 2.6 lead to the following corollaries, which are similar to Examples 2.2 and 2.3.
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Corollary 2.8. If Q SÎ *YS ( )G�
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Concluding Remark: We have introduced and studied the coefficients bounds associated with a 
new subclass GYS ( , ( , ))( )Ã Gq

¶ � �  of functions in Λ. These specific classes of bi-univalent functions are 
defined in Definitions 2.1. In this class, we have derived estimates for the Maclaurin coefficients |a2| 
and |a3|, as well as solved Fekete-Szegö issues for functions in the subclass GYS ( , ( , ))( )Ã Gq

¶ � � . By 
specializing the parameters, we have obtained several new results. However, obtaining the upper 
bound of a n nn  for  ³ Î4;   for the subclass GYS ( , ( , ))( )Ã Gq

¶ � �  remains an open problem.
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