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Approximating non-smooth functions presents a significant challenge due to the emergence of 
unwanted oscillations near discontinuities, commonly known as Gibbs’ phenomena. Traditional 
methods like finite Fourier or Chebyshev representations only achieve convergence on the order of 
O(1). A promising avenue in addressing this issue lies in nonlinear and essentially non-oscillatory 
approximation techniques, such as rational or Padé approximation. A recent and notable endeavor 
to mitigate Gibbs’ oscillations is through singular Padé-Chebyshev approximation. However, a draw-
back of this approach is the requirement to specify the discontinuity location within the algorithm, 
which is often unknown in practical applications. To tackle this obstacle, we propose a localized 
Padé-Chebyshev approximation method. Fortunately, our efforts yield success; the proposed localized  
variant effectively captures jump locations in non-smooth functions while maintaining an essentially 
non-oscillatory character. Furthermore, we employ Padé-Chebyshev approximation within a finite 
volume framework to address scalar hyperbolic conservation laws. Remarkably, the resulting rational 
numerical scheme demonstrates stability regardless of wave propagation direction. Consequently, we 
introduce a central rational numerical scheme for scalar hyperbolic conservation laws, offering robust 
and accurate computation of solutions.
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1. Introduction

In practical scenarios, the need often arises to approximate complex functions with simpler ones, such 
as polynomials or splines. This necessity stems from the inherent challenge of explicitly knowing 
the function, particularly when it arises as a solution to differential equations. While approximating 
smooth functions is a thoroughly explored topic, as evidenced by existing literature [31, 32, 36, 14], 
the task becomes more intricate when dealing with piecewise smooth functions. Despite its complex-
ity, this task holds significant importance across various applications. For example, in weather fore-
casting, considerations must be made for factors like the earth’s atmosphere, air pressure, and terrain 
gradients, especially in hilly regions. Similarly, in space engineering, understanding and predicting 
shock waves in fluid flow are crucial aspects.

Numerous approximation techniques exist for general functions, with linear approximation being 
a classical approach [1, 35]. Examples include truncated Taylor and Chebyshev expansions, Legendre 
polynomial approximation, among others. These methods are renowned for their optimal performance 
and exponential convergence when applied to sufficiently smooth functions [11, 14, 31, 33]. However, 
linear approximations encounter limitations when applied to piecewise smooth functions, resulting in 
accuracy limited to O(1) [8, 2]. Moreover, these approximations often fail to accurately represent the 
function due to the emergence of oscillations, known as Gibbs’ phenomenon.

In a study examining Gibbs’ phenomenon, Shim and Park [37] observed that series representations 
or linear approximations, such as Fourier series, wavelet series, or sampling series using piecewise 
linear splines, are insufficient in fully eliminating Gibbs oscillations. Gottlieb and Shu [17] reviewed 
various techniques aimed at mitigating Gibbs’ oscillations. Tadmor [42] proposed the use of mollifi-
ers and filters to address Gibbs’ oscillations, along with concentrated kernels to detect sharp edges. 
Filtering involves multiplying the coefficients of a series by a rapidly decreasing factor to expedite 
convergence. Kaber and Maday [25] discussed a specific case where filtering is employed with rational 
approximation to enhance the convergence of the approximant towards the target function.

An alternative strategy to mitigate Gibbs oscillations and enhance accuracy involves employing 
nonlinear approximations, where the approximant cannot be expressed as a linear combination of 
a finite number of linearly independent functions. Nonlinear approximation methods play a crucial 
role in addressing challenges in digital image processing and nonlinear partial differential equations. 
These techniques are commonly utilized for post-processing noisy data and image segmentation [12]. 
There are three primary types of nonlinear approximations: (1) Essentially Non-Oscillatory (ENO) or 
Weighted Essentially Non-Oscillatory (WENO) methods [38, 18, 24], (2) rational approximation [16, 
10, 9], and (3) approximations originating from a nonlinear space as defined by DeVore [12, 13, 15].
These approaches offer effective means to reduce oscillations and elevate the accuracy of approxima-
tions, catering to diverse application domains. Non linear approximations are popular in machine 
learning (ML) domain and specifically these approximation techniques can be used in spectral graph 
neural networks [7, 3, 5, 4, 28], an emerging area on ML.

In this article, we aim to employ specific nonlinear approximation techniques tailored for functions 
exhibiting singularities [10, 9, 12, 13]. Our focus primarily lies on rational approximations. Existing lit-
erature indicates that in nearly all methods for mitigating Gibbs’ phenomenon, knowledge of the jump 
location is crucial. This information is typically required in the form of a smoothness indicator [18, 39]  
or weak truncated local error [27, 26], enabling adaptive or post-processing techniques. However, we 
propose a rational approximation-based scheme that circumvents the need for jump location informa-
tion entirely. The numerical scheme based on Padé-Chebyshev approximation, which we advocate, 
eliminates these complexities. It effectively captures shocks while preserving a non-disturbing solu-
tion profile.

We aim to investigate the effectiveness of nonlinear approximations compared to linear approxi-
mations for discontinuous functions. Harten et al. [21, 22] proposed finite volume essentially nonoscil-
latory (ENO) schemes, which utilize adaptive stencils based on the local smoothness of the function. 
These schemes achieve higher-order accuracy in smooth regions while maintaining a less oscillatory 
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profile near discontinuities. ENO schemes are essentially modified total variation diminishing (TVD) 
schemes [19, 20]. Shu and Osher [40, 41] introduced finite difference ENO schemes. Liu et al. [29] 
introduced an enhanced version of ENO schemes known as Weighted Essentially Non-Oscillatory 
(WENO) schemes. WENO schemes utilize a nonlinear convex combination of candidate stencils to 
increase accuracy in smooth regions and reduce Gibbs’ phenomenon near discontinuities. Specifically, 
a WENO scheme constructed using an r-th order ENO scheme achieves (r+1)-st order accuracy. Shu 
and Jiang [23] proposed a new smoothness indicator to assess the smoothness of numerical solutions, 
leading to the construction of third (for r = 2) and fifth (for r = 3) order WENO schemes. Despite their 
computational expense, these schemes find widespread use across numerous applications.

We introduce a numerical scheme founded on piecewise rational approximation of the function. 
This innovative nonlinear approach is specifically designed to formulate a numerical scheme for scalar 
conservation laws. In this scheme, we employ cell averages for reconstructing the solution, departing 
from the conventional use of point values of the function.

2. Padé-Chebyshev Approximants

Padé approximation, introduced by Henri Padé in 1890, is a rational approximation method for a 
given function. It has been observed that rational approximations outperform typical truncated series 
expansions. By rearranging a series expansion into a ratio of two finite-degree polynomials, signif-
icant acceleration can be achieved. Padé-Chebyshev approximation is one such rearrangement of 
truncated Chebyshev series.

2.1. Chebyshev series expansion

The Chebyshev series of a function represents an expansion of the function in terms of Chebyshev 
polynomials, which are a significant family of orthogonal functions in numerical analysis. For n ≥ 0, a 
Chebyshev polynomial of degree n is defined as [31]:

T t cos n tn( ) ( ), [ , ],= Î -q 1 1  (1)
where q = -cos ( ).1 t

For a given function f : [ , ] ,- ®1 1   where f LÎ -2 1 1[ , ],  the Chebyshev series expansion of f is given 
by [30]
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For some functions like Signum function, see [30], one can exactly evaluate the Chebyshev coefficients 
cn but for a general function evaluation of the integral (3) accurately is difficult. Hence we use the 
Gauss Chebyshev quadrature rule to approximate the integral numerically and evaluate the coeffi-
cients cn approximately. The approximated Chebyshev coefficients we denoted by cn,m
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are the m roots of a Chebyshev polynomial Tm(t) and are called as Chebyshev points. Here we use the 
Gauss Chebyshev quadrature rule to approximate the integral numericallyand evaluate the coeffi-
cients cn approximately.
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Notations: Let us denote the truncated Chebyshev series expansion of degree d of a function f by
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2.2. Padé Approximation

A rational function with numerator degree np and denominator degree nq
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is called a Padé approximant of order [ / ],n np q  where n np q, .Î +  The Padé-Chebyshev approxi-
mant of a function f can be calculated by rationalizing the truncated Chebyshev series expansion 
Cd m f z f i e, [ ]( ) , . ., of
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such that
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where d n np q= + .  To find the Padé approximant R( )z  we need to calculate the coefficients of Pnp  and 
Qnq

 in such a way that
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where d(P) denotes the degree of a polynomial P and O(P) denotes the order of a polynomial P, i.e., the 
degree of the first nonzero term in P. The last inequality in (13) indicates that the coefficients in the 
series Q f Pn d m nq p

C , [ ] -  with index < + +n nqp 1  vanishes.
Conditions (13) leads to two linear systems (14) and (15) in polynomial coefficients. The coefficients 

of the denominator Qnq
can be computed by solving the following system of linear equations of size 

n nq q´ +( )1  [16]
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and the coefficients of Pnp  are computed by the following matrix vector multiplication
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As Re( ) cos( )e1q q=  for any q Î,  from (9) we observe that the Padé approximation of the function f 
is the sum of the real part of the approximation of the function Cd m f z, [ ]( )  and Cd m f z, [ ]( )-1 . Since the 
real part of Cd m f z, [ ]( )  and Cd m f z, [ ]( )-1  are same, the Padé approximation of f(t) is the real part of the 
approximation of the function Cd m f z, [ ]( ) .

Following is a result on the uniqueness of the Padé approximant to a function f.

Theorem 2.1. [25] Let R1(t) and R2(t) be two Padé approximants to a function f, such that,
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R R1 2( ) ( ).t t=

3. Local Padé-Chebyshev Reconstruction

The Local Padé-Chebyshev method (LocPCM) is a straightforward technique for accurately approxi-
mating non-smooth functions with reduced computational complexity. Unlike many recent approxi-
mation methods, LocPCM does not necessitate prior knowledge of the jump location, as highlighted in 
various literature [16, 43, 44]. In this study, we provide numerical examples and compare LocPCM to 
Singular Padé-Chebyshev approximations.

3.1. Local Chebyshev Approximation

Consider a bounded piecewise smooth function f defined on a bounded interval [a, b], which has iso-
lated singularities. Let us first discretize the domain into N cells with cell boundaries { , ,..., }.x x xN1 2  
Assume that the function values are known at cell boundaries, denoted by { , ,..., }.f f fN1 2  The aim is to 
approximate the function at the point

t = x + xi
i i+1

2
for i N= ¼ -1 2 1, , , ,  using truncated Chebyshev series expansion. We do this through the following 
steps:

1. Consider a stencil S x xi i n i n= ¼
- - + -{ , , }

( ) ( )1
2

1
2

 of size n, where n is an odd integer.

2. Generate n Chebyshev points in the reference interval [–1,1], denoted by s ,s , ,sn1 2 ... .
3. Consider the bijection map G : [ , ] [ , ]- ®1 1 x y  given by
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4. To approximate the function f at a point t = x + xi
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2
 in each stencil Si, for i = , , ,N1 2 1... - , we 

need its Chebyshev series expansion in Si . The Chebyshev series expansion of the function f is 
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 Note: For a given n = m+2 1 , where m= , , , , ,1 2 3 4 5 6 , and equidistant points in an interval [a,b] 
along with n Chebyshev points in [–1,1], not a single scaled Chebyshev point falls between three 
consecutive equidistant points. Therefore, we can compute the function values at any scaled 
Chebyshev point using linear interpolation. The challenge arises when we have function values 
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 but for a local Chebyshev expansion, we require function values 
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Hence C f td,n
i éë ) ( )  is the desired local Chebyshev series expansion which approximate the function f  

at ti.

3.2. Local Padé-Chebyshev Approximation

For local Padé-Chebyshev approximation of a bounded piecewise smooth function f, we need to ratio-
nalize the local truncated Chebyshev series expansion in each stencil, which is explained in Section 
3.1. Consider the Chebyshev series expansion (18) in a stencil Si, for i = , , ,N1 2 ...  and as explained in 
Section 2.2, we rationalize the truncated local series expansion (18) as
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2
 for all 1 , and np, nq ≥ 1 are the degrees of numerator and denominator 

polynomials of the PC approximation
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Recall that the coefficients pj, j = , , ,np1 2 ...  and qj, j = , , ,nq1 2 ... , are obtained by solving the systems 
(14) and (15). We construct the PC approximation of the function f in each stencil Si, for i = , , ,N1 2 ... .  
Hence R f tn

i éë ùû( )  is the required local Padé-Chebyshev approximation of the function f at ti.

4. Numerical Scheme: LocPCM for Conservation Laws

In this section, we outline a reconstruction process for the numerical flux employing local Chebyshev 
and local Padé-Chebyshev approximation methods. Our approach utilizes a finite volume framework 
to construct a numerical scheme utilizing LocPCM. Consider the general form of conservation laws.
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where xj are the Chebyshev points defined in (5), Dx = x xj j j- -1  for j = , ,m1 . Upon differentiating 
(22) with respect to x, we get
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Thus (21) can be written as
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Here the right hand side expression of (24) is an exact representation of the derivative of the flux 
function f in space variable and not the central difference approximation.

4.1. Chebyshev and Padé-Chebyshev reconstruction in FVM

We will use truncated Chebyshev and Padé-Chebyshev approximation to approximate the unknown 
function h and call the approximant H. By replacing h by H, we can reduce (24) to an ordinary differ-
ential equation of the form

du
dt x
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Note that, H can be taken as polynomial interpolation, spline approximation or any other approxima-
tion of h. In our study we will use truncated Chebyshev and Padé-Chebyshev approximation.

To approximate a function we need to know the function values at some points, for example in 
polynomial interpolation we need to know the function values at nodes. Similarly, in our case we need 
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the values of h at Chebyshev points. But as we can see in (22), h is an implicit function and we do not 
know the value of h at any point. To overcome this difficulty we introduce a new function F, defined as

F x = h d .
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for j = 1, ..., m–1. Since h is an unknown function, F is also unknown. However, the expression (25) 
shows that the value of F can be obtained at Chebyshev points in terms of the values of the flux func-
tion f at these points.

Now we approximate the derivative of F to compute the approximation of the function h, as F is the 
primitive function of h. We do this by applying the above discussed truncated Chebyshev and Padé 
technique on the differentiated Chebyshev series expansion of the function F. Finally we denote this 
approximation by H ≈ F ′, thus

h H» .

We can see that this is nothing but the approximation of the flux function f.
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differentiating the above equation, we get
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Thus, we have
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for some fixed t > 0.
Using the approximation H, we get a semi-discrete scheme in space
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4.2. LocPC Reconstruction in FVM
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and the maximum cell size is denoted by
D Dx x
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Given a function u to be approximated and let u−i denotes its cell average on the cell Ii
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We assume that the cell averages u−i for all i = , , ,N1 2 ...  are known. Our aim is to approximate the 
function u at any given point, say x

i+1
2

,  with an order of accuracy k.

Consider a stencil S I I I I Ii i i i i i= - - + +{ , , , , }2 1 1 2  and assume that Ri x( )  is the rational approximation of 
order [ / ],n np q  which approximates the function u = ui S|  on the stencil S.
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is the cell average. We approximate (29) by the following conservative scheme
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where u ti ( )  is the numerical approximation to the cell average u x ti( , ),  and the numerical flux f i
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where ¢ = - - - +S I I I I Ii i i i i{ , , , , }.3 2 1 1  The function h satisfies 

(34)

1. h is a monotone flux.
2. h(u,v) is non-increasing in second argument v and is non-decreasing in first argument u.
3. h(u,v) is a Lipschitz continuous function in u as well as v.
4. h(u,v) is consistent, that is, h u u f u( , ) ( ),=  where f is the physical flux.

We will use Lax-Friedrichs flux,

h u v f u f v v u( , ) [ ( ) ( ) ( )],= + - -1
2

a  (35)

where a = ¢max | ( )|,u f u  with LocPC reconstruction of u.
By using a finite difference approximation for time we can get a fully discrete scheme in time as 

well as in space.
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5. Numerical Results

We apply the aforementioned approximation techniques within the finite volume method to solve both 
linear and nonlinear scalar conservation laws. Specifically, we present results obtained for nonlinear 
Burgers’ equations through numerical experiments, demonstrating the effectiveness of the scheme in 
accurately computing solutions.The rationale behind transitioning from polynomial to rational func-
tions can be readily understood and observed.

In Figure 1(a), we observe that employing a polynomial reconstruction for the numerical flux 
function in the finite volume setup leads to rapid solution blow-up, even with a small CFL number. 
Conversely, in Figure 1(b), we note that utilizing Padé-Chebyshev approximation ensures stability, 
although it fails to mitigate the Gibbs phenomenon. To address this challenge, we explore a local 
scheme employing local Padé-Chebyshev approximation. Figure 1(c) presents the solution obtained 
using local Padé-Chebyshev approximation.

Example 5.1. A well-known example of nonlinear scalar conservation law is the inviscid Burgers’  

equation with flux function f u = u( )
2

2
, which is given by 

¶
¶

¶
¶t

u
x
u+
æ

è
ç

ö

ø
÷ =

2

2
0,  (36)

with the initial condition 
u x e xx( , ) , .0 2

= Î-   (37)

We employ Padé-Chebyshev approximation for approximating the space derivative, while the time 
derivative is approximated using Euler forward and fourth-order Runge-Kutta discretization. The 
respective degrees of the numerator and denominator, denoted as np and nq are specified in the caption. 
We utilize a total of N = 500 nodes for approximating the Chebyshev coefficients.
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Figure 1: Comparison of all three methods on Burgers’ equation.
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In Figure 1, we compare all three proposed schemes for conservation laws and apply them to Burgers’ 
equation. We depict the initial condition and the approximate solution for the Burgers’ equation using 
Euler forward discretization in time.

In the first plot, we utilize truncated Chebyshev series approximation to reconstruct the numerical 
flux. It is evident from this plot that the solution becomes unbounded even after a few time steps.

In the second plot, we employ Padé-Chebyshev approximation to reconstruct the flux. In this case, 
we observe stability up to two shock lengths, indicating that the approximate solution does not blow 
up. However, numerically, we find that the proposed numerical scheme fails to eliminate oscillations.

In the third plot, we employ LocPC reconstruction of the solution u at each time level. In this sce-
nario, we successfully mitigate oscillations from the solution.

6. Conclusion

We propose a non-linear local approximation algorithm, namely the Local Padé-Chebyshev (LocPC) 
algorithm, designed for functions with discontinuities. This algorithm effectively approximates the 
function with minimal Gibbs’ oscillations. We provide numerical results to support our approach. 

Furthermore, we successfully apply the LocPC algorithm to formulate a numerical scheme for 
scalar hyperbolic conservation laws. To the best of our knowledge, this marks the first attempt to 
utilize non-linear approximation in numerical schemes for solving hyperbolic partial difference equa-
tions (PDEs).

Considering the superior [34, 6] performance of non-linear functions over linear functions in approx-
imating non-smooth functions, we anticipate promising outcomes for future numerical schemes for 
PDEs. Our future study direction involves the following analytical investigations:

1. Analysis of local Padé-Chebyshev approximation of non-smooth functions.
2. Exploration of the relationship between the order of accuracy and various parameters, such as 

numerator degree, denominator degree, number of cells, etc.

These endeavors aim to further elucidate the efficacy and potential applications of non-linear approx-
imation techniques in the realm of numerical methods for PDEs.
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