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We consider an R-group G, where R is a (right) nearring. We introduce the notions relative uniform 
and strictly relative uniform ideals (or R-subgroup) which are not uniform, in general. We prove 
important properties and obtain a characterization for an R-subgroup to have finite Goldie dimension, 
in terms of strictly relative uniform R-subgroups. We provide the necessary examples.
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1. Introduction

The concept of uniform dimension in modules over rings is a generalization of the dimension of a 
vector space over a field. A module in which every non-zero submodule is essential is called uniform. 
Uniform submodules play a significant role in establishing various finite dimension conditions in 
modules over associative rings. Goldie [15] provided a characterization of equivalent conditions for a 
module to possess finite uniform dimension. In Bhavanari [4], the notion of uniform dimension was 
extended to modules over nearrings, (also known as, R-groups), with a characterization established 
for an R-group to have finite Goldie dimension (in short, f.G.d). Subsequently, aspects of Goldie dimen-
sion in modules over nearrings have been extensively explored by the authors [23, 7, 9]. However, 
the study of finite Goldie dimension in modules over rings, specifically in terms of pseudo uniform 
submodules, which do not necessarily adhere to the uniformity condition, was undertaken in [14].  
In case of a module over a matrix nearring, the authors [10] introduced the concepts of essential ideals 
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and uniform ideals, providing a characterization for a module over a matrix nearring to have f.G.d. 
Further exploration of prime and semiprime aspects in connection with f.G.d. in R-groups and matrix 
nearrings was conducted by the authors in [13, 16].

A (right) nearring (R, +, .) is an algebraic system (Pilz [22]), where R is an additive group (not 
necessarily Abelian), and a multiplicative semigroup, satisfying only one distributive axiom (say, 
right): ( )p p p p p p p1 2 3 1 3 2 3+ = +  for all p p p R1 2 3, , .Î  In a right nearring, the properties such as 
0 0p p q pq= - = - and ( )  holds for all p q R, ,� Î  though, in general, p0 ≠ 0 for some p 2 R. If p0 = 0 
for all p 2 R, then we say R is zero-symmetric (denoted as, R = R0). An additive group (G, +) is called 
an R-group (or module over a nearring R), denoted by RG (or simply by G) if there exists a mapping  
R ´ G ! G (image (k,g ! kg)), satisfying: ( ) ; ( ) ( )k l g kg lg kl g k lg+ = + =  for all g 2 G and k, l 2 R. It 
is evident that every nearring is an R-group (over itself). Additionally, if R is a ring, then each (left) 
module over R is an R-group. Throughout, G represents an R-group where R is a right nearring.

A subgroup (H, +) of G with RH HÍ  is called an R-subgroup of G. A normal subgroup H of G is 
called an ideal if n g h ng H( )+ - Î  for all n R h H g GÎ Î Î, , .� �  For any two R-groups G1 and G2, a map 
f G G: 1 2®  is called an R-homomorphism, f x y f x f y f nx nf x( ) ( ) ( ) ( ) ( )+ = + = and  hold for all x y G, Î 1  
and n 2 R. If f is one-one and onto, then f is an R-isomorphism.

In case of a zero symmetric nearring, for any ideals A and B of G, A + B is an ideal of G ([22], 
Corollary 2.3).

For each g 2 G, Rg is an R-subgroup of G. The ideal (or R-subgroup) generated by an element g 2 G is 
denoted by g .  For any subsets S, T of G, the noetherian quotient is defined as ( : ) { : },S T n R nT S= Î Í  
and if S = {0}, then (0 : T ) is called the annihilator of T. A proper ideal P of R is called semiprime, if an 
ideal I of R with I P2 Í ,  then I PÍ ,  R itself is semiprime, if (0) is a semiprime ideal.

An ideal T of an R-group G is essential (see, [23]), if for any ideal H of G, T HÇ = ( )0  implies 
H = (0). If every non trivial ideal (0) ≠ H of G is essential, then we say G is uniform. Further, an 
ideal (R-subgroup) T of G is said to be strictly uniform (see, [21]), if for any two R-subgroups P, Q of 
G P T Q T P Q, , , ( ) �  Í Í Ç = 0  implies P = (0) or Q = (0).

In this paper, we consider the notions of uniform and strictly uniform ideal with respect to an 
arbitrary ideal (or R-subgroup) Ω of an R-group defined in [25]. We establish an equivalent condition 
for an R-subgroup to have a Ω-finite Goldie dimension (denoted by, Ω-f.G.d.) in terms of its strictly 
Ω-uniform R-subgroups.

For standard definitions and notations in nearrings, we direct the reader to [11, 22].

2. Uniform and strictly uniform ideals 

We start this section with the definitions of Ω-uniform ideal (or R-subgroup) and strictly Ω-uniform 
ideal with suitable examples.

Definition 2.1. ([26], Definition 2.1) An ideal H of G is said to be relative essential (resp. strictly rela-
tive essential), if there exists a proper ideal (resp. R-subgroup) Ω of G such that

(a) H ÒW,
(b) for any ideal (resp. R-subgroup) K of G, H K implies KÇ Í ÍW W  .
We denote it by H G resp H Ge se£ £W W( . ),  and read as H is Ω-essential in G (resp. H is strictly  
Ω-essential in G).

We denote H He
1 2£W  when H2 considered as an R-group. In case, Ω = (0), this is referred as 

G-essential, by the authors [4].

Definition 2.2. ([25], Definition 3.1)
An ideal I of G is called relative uniform (resp. strictly relative uniform) if J is an ideal (resp.  
R-subgroup) of G J I then J I resp J Ie se, , ( . ).     Í £ £W W
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Proposition 2.3. Let I be an ideal of G and Ω ≠ G be an ideal of G. I is Ω-uniform if and only if for any 
ideals H1, H2 contained in I such that H H1 2Ç Í W  implies H H1 2Í ÍW W or� .

Proof. Suppose that I is Ω-uniform. Let H1, H2 be ideals of G such that H I H I H H1 2 1 2Í Í Ç Í, , .� �and� W  
Assume that Hi * Ω. Since I is Ω-uniform, and H1 Ò I, we have H Ie

1 £W ,  and since H1 \ H2 Ò Ω, we 
get H2 Ò Ω.

On the other hand, let J be any ideal of G such that J IÍ  and J * Ω. To prove J Ie£W ,  let K be an 
ideal of G contained in I such that J KÇ Í W .  Since J * Ω, by converse hypothesis, we have K Ò Ω. 
Therefore, J Ie£W ,.

We give an example that Ω-uniform need not be uniform, in general.

Example 2.4. Let R = + ×( , , )12 12 12  and G = R. Then R is considered as R-group (over itself). The 
ideals of RR are H H H H1 2 3 40 2 4 6 8 10 0 6 0 3 6 9 0 4 8= = = ={ , , , , , }, { , }, { , , , }, { , , }.    Take Ω = H3. Then H1 is 
Ω-uniform, but not uniform in G, as H H H H H2 4 1 2 4 0, , ( ),Í Ç =  and H2  ≠ (0–) ≠ H4.

Example 2.5. Let G = ´ +( , ). 8 3  Then G is an R-group, where R = (Z, +, .). Take Ω = Z8 ́  (0), an ideal 
of RG. Then the ideal (2) ´ Z3 is Ω-uniform, but not uniform, as the ideals (4) ´ (0), (4) ´ Z3 contained in 
(2) ´ Z3 such that ( ) ( ) ( ) ( ) ( ),4 0 4 0 03´ Ç ´ = ´  but (4) ´ (0) ≠ (0) ´ (0) ≠ (4) ´ Z3.

The following corollary is straightforward.

Corollary 2.6. Let Ω be a proper ideal of G. Then G is Ω-uniform if and only if for any two ideals K 
and L of G, K L K or LÇ Í Þ Í ÍW W W  .

Proposition 2.7. Let Ω be a proper ideal of G, and G is Ω-uniform. Then any finite intersection of 
Ω-essential ideals of G is Ω-essential in G, and converse also holds.

Proof. Let { }Hi i
n
=1  be a family of Ω-essential ideals of G. Write H H

i

n

i=
=1


.  Clearly Hi * Ω for each i, 

and since G is Ω-uniform, HÒW . To prove H is Ω-essential, we use the induction on the number n 
of Ω-essential ideals. Suppose that n = 2. Let L be an ideal of G such that HÒW , H LÇ Í W .  Then 
( ) ,H H L1 2Ç Ç Í W  implies that H H L1 2Ç Ç Í( ) .W  Since H Ge

1 £W  and H2 \ L is an ideal of G with 
H L2 Ç Í W. Again, since H Ge

2 £W  and H2 * Ω, we get L Ò Ω. Therefore the statement is true for  
n = 2. We assume the induction hypothesis for (n – 1) ideals { }Hi i

n
=
-
1
1  of G. Let L be an ideal of G such 

that 
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iH L
=

æ

è
ç

ö

ø
÷ Ç Í

1
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 and HÒW , we have 
i

n

iH
=
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1

1



ÒW,  hence, by induction hypothesis, it follows that H Ln Ç Í W.  

Now since H Gn
e£W ,  and L is an ideal of G, we have L Ò Ω, which shows that H Ge£W .

Conversely, suppose that H H G
i

n

i
e= £

=1
 W .  Since 

i

n

iH
=1


ÒW,  we get Hi * Ω, for all i. Then to show that 

H Gi
e£W  for every i, 1 ≤ i ≤ n, let L be any ideal of G such that H Li Ç Í W.  Now H L H LiÇ Í Ç Í W  

and since H Ge£W ., we have that L Ò Ω. Since Hi (1 ≤ i ≤ n), is arbitrary, we conclude that H Gi
e£W  for 

every i.

Remark 2.8. The converse of the Proposition 2.7 do not hold, in general. Consider the following 
example:

Let R = + ×( , , )24 24 24  and G = R. Then G is an R-group and the ideals are H H H1 2 32 3 4= = =, , ,  
W = = = =H H H4 5 66 8 12, , .   Since H H H5 3 5Ç = ,  we have

(i) H H H5 1 3Ç Í
(ii) H H5 1Ç ÒW
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Then, H6 12=  is the only ideal satisfying H H H H H6 3 5 1 6Í Ç Ç Í, ( ) , W  implies that H6 Ò Ω. 
Therefore, H H He

5 1 3Ç £W .  Since H H1 3Ò ,  we conclude that H He
1 3W .

Definition 2.9. ([26], Definition 2.3) An R-subgroup H of G is said to be relative essential (resp. strictly 
relative essential), if there exists a proper ideal (resp. R-subgroup) Ω of G such that

(a) HÒW ,
(b) for any ideal (resp. R-subgroup) K of G, H KÇ Í W  implies K Ò Ω.
We denote it by H Ge£W . (resp. H Gse£W .), and read as H is Ω-essential in G (resp. H is strictly Ω-essential 
in G).

Definition 2.10. An R-subgroup I of G is called relative uniform (resp. strictly relative uniform) if 
there exists an ideal (resp. R-subgroup) Ω of G and any ideal (resp. R-subgroup) J of G, J * Ω and  
J Ò I implies J Ie£W  (resp. J Ise£W ) (here we consider I as an R-group).

Furthermore, G is called relative uniform (resp. strictly relative uniform) if there exists an ideal (resp. 
R-subgroup) Ω of G such that for each ideal (resp. R-subgroup) K of G and K * Ω, then K Ge£W  (resp. 
K Gse£W ).

Table 1
+ 0 a 2a 3a b a+b 2a+b 3a+b
0 0 a 2a 3a b a+b 2a+b 3a+b
a a 2a 3a 0 a+b 2a+b 3a+b b

2a 2a 3a 0 a 2a+b 3a+b b a+b
3a 3a 0 a 2a 3a+b b a+b 2a+b
b b 3a+b 2a+b a+b 0 3a 2a a

a+b a+b b 3a+b 2a+b a 0 3a 2a
2a+b 2a+b a+b b 3a+b 2a a 0 3a
3a+b 3a+b 2a+b a+b b 3a 2a a 0

Table 2
*1 0 a 2a 3a b a+b 2a+b 3a+b
0 0 0 0 0 0 0 0 0
a 0 a 2a 3a b a+b 2a+b 3a+b

2a 0 2a 0 2a 0 0 0 0

3a 0 3a 2a a b a+b 2a+b 3a+b
b 0 b 2a 2a+b b a+b 2a+b 3a+b

a+b 0 a+b 0 a+b 0 0 0 0
2a+b 0 2a+b 2a b b 0 2a+b 3a+b
3a+b 0 3a+b 0 3a+b 0 0 0 0



Sahoo T, et al., Results in Nonlinear Anal. 7 (2024), 52–63 56

Table 3
*2 0 a 2a 3a b a+b 2a+b 3a+b
0 0 0 0 0 0 0 0 0
a 0 a 2a 3a b a+b 2a+b 3a+b

2a 0 2a 0 2a 0 0 0 0
3a 0 3a 2a a b a+b 2a+b 3a+b
b 0 b 2a 2a+b b 0 2a+b 2a

a+b 0 a+b 0 a+b 0 a+b + a+b
2a+b 0 2a+b 2a b b 0 2a+b 2a
3a+b 0 3a+b 0 3a+b 0 a+b 0 a+b

Example 2.11. Consider the nearring with addition and multiplication tables listed in K(135) 
and K(139) of p.418 of Pilz [22]. Let G D a b a b a b b a a a a a= = = = + = - = =8 4 2 0 2 3 4 0{ , | , } { , , , ,� � �
b a b a b a b, , , },+ + +2 3  where a is the rotation in an anti-clockwise direction about the origin through p

2  
radians and b is the reflection about the line of symmetry, and G = R. Then G is an R-group.
(1) Consider the operations in Table 1 and Table 2. The proper ideals are I1 = {0, 2a}, 

I a b a a b2 0 2 3= + +{ , , , },  and R-subgroups are J1 = {0, 2a}, J2 = {0, b}, J3 = {0, a+b}, J4 = {0, 2a+b}, 
J5 = {0, 3a+b}, J6 = {0, b, 2a, 2a+b}, J7 = {0, 2a, a+b, 3a+b}. Consider H = I2 = {0, 2a, a+b, 3a+b} 
and Ω = I1 = {0, 2a}. Now H is not strictly Ω-uniform, since the R-subgroups J3 = {0, a+b} and  
J7 = {0, 2a, a+b, 3a+b} which are contained in H with J3 \  J7 Ò Ω, but J J3 7Ò ÒW W, .  However, H 
is Ω-uniform, since the only ideals I1 = {0, 2a} and I2 = {0, 2a, a+b, 3a+b} contained in H satisfying 
I I1 2Ç Í W  implies I1 Ò Ω.

(2) Consider the operations in Table 1 and Table 3. Then the proper ideals are I1 = {0, 2a}, I2 = {0, 
2a, b, 2a+b}, I3 = {0, 2a, a+b, 3a+b} and R-subgroups are J1 = {0, 2a}, J2 = {0, b}, J3 = {0, a+b},  
J4 = {0, 2a+b}, J5 = {0, b, 2a, 2a+b}, J6 = {0, 2a, a+b, 3a+b}. Consider H = I3 = {0, 2a, a+b, 3a+b}  
and Ω = J5 = {0, 2a, b, 2a+b}. Here, H is strictly Ω-uniform, since the R-subgroups J1 = {0, 2a} and 
J3 = {0, a+b} which are contained in H with J J1 3Ç Í W,  we have J1 Ò Ω. Also, H is Ω-uniform, 
since the only ideals I1 = {0, 2a} and I3 = {0, 2a, a+b, 3a+b} contained in H satisfying I I1 3Ç Í W  
implies I1 Ò Ω.

Remark 2.12. Let Ω be a proper ideal of G, and K a Ω-uniform ideal of G. If L is an ideal of G such 
that L * Ω and L Ò K, then L is Ω-uniform.

Proof. Let L be an ideal of G and L1, L2 be ideals of G contained in L such that L L1 2Ç ÍΩ. Since 
L L L K1 2, Í Í , and K is Ω-uniform, we have L1 Ò Ω or L2 Ò Ω. Hence L is Ω-uniform.

Proposition 2.13. Let Ω be a proper ideal of G. If G is Ω-uniform, then G/Ω is uniform, and Ω is 
semiprime.

Proof. Suppose G is Ω-uniform. Let K/Ω and L/Ω be ideals of G/Ω such that K L/ / ( )W WÇ = 0  in G/Ω, 
where K and L are ideals of G, properly containing Ω. Then K LÇ Í W . Since G is Ω-uniform of G, we 
have K LÍ ÍW Wor . Therefore, K L/ ( ) / ( )W WÍ Í0 0 or  in G/Ω, hence G/Ω is uniform. Now to show 
Ω is semiprime, let I be an ideal of G such that I 2 Í W . Then I I IÇ Í Í2 W.  Since G is Ω-uniform, 
we get I Í W.
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Remark 2.14. In Proposition 2.13, G not necessarily Ω-uniform, even if G/Ω is uniform.

Consider the following examples.

(i) Take G = ´ 2 6  and R = Z. Then G is a module over a nearring. Consider the ideal W = ( , )1 1  of 
G. Since Ω is maximal, G/Ω is simple, by ([22], Prop 1.40), and hence uniform. However, G is not 
Ω-uniform, since á ñ Ç á ñ Í( , ) ( , ) ,1 2 0 3 W  but ( , )0 3 * W  and ( , ) .1 2 * W

(ii) Take G = ´ 2 2  and R = Z2. Then G is a module over a nearring. Consider an ideal 
W = Î{( , )| }x x x R� �  of G. Clearly Ω is maximal ideal of G. Therefore, G / {( , ),( , )}W = 0 0 1 1  is  
uniform. But 2 0´ ( )  is an ideal of G such that 2 0´ ( ) ,*W  and 2 0´ ( )  is not Ω-essential in G, 
since (0,1 2 G \ Ω) for each r 2 R, r( , ) ( ( )) .0 1 02Ï ´ W  Hence, G is not Ω-uniform.

(iii) For each positive integer n, Z/nZ is uniform if and only if Z is an nZ-uniform.
The following theorem provides a characterization for essentiality in R-subgroups of G, where G is an 
unitary R-group G (that is, 1 2 R).

Theorem 2.15. Let W Í ÍH H1 2  be R-subgroups of G and 1 2 R. Then the following are equivalent.

(1) H Hse
1 2£W ;

(2) For each g HÎ 2 W,  there exists n 2 R such that ng HÎ 1 W.

Proof. (1) ) (2): Let g HÎ 2 W,. Since Rg HÍ 2  and as 1 2 R, we have Rg ÒW.  Since H Hse
1 2£W , we 

get H Rg1 Ç ÒW.

Let x H RgÎ Ç1  such that x Ï Ω. Then there exists n 2 R such that x = ng 2 H1, and ng Ï Ω, implies 
that ng HÎ 1 W. .

(2) ) (1): Let L be an R-subgroup of G such that L Ò H2 and H L1 Ç Í W.  If L * Ω, then there exists 
a L HÎ Í W W2 .  Now by (2), there exists n 2 R such that na HÎ 1 W,  though na H LÎ Ç Í1 W,  a 
contradiction. Hence, H Hse

1 2£W .

Theorem 2.16. Let W Í ÍH H1 2  be R-subgroups of G and 1 2 R. Then the following are equivalent.

(1) H Hse
1 2£W ;

(2) ( : ) ( : ), .( : )H g H g for each g Hg
se

1 2 2£ ÎW W   

Proof. (1) ) (2): Let g HÎ 2 W,. By (2), there exists n 2 R such that ng HÎ 1 W., shows that 
n H g gÎ ( : ) ( : ).1  W  Hence ( : ) ( : ).H g g1 Ò W

Let I be an R-subgroup of R such that ( : ) ( : ).H g I g1 Ç Í W  Clearly Ig is an R-subgroup of G. First we 
show that H Ig1 Ç Í W.  If H Ig1 Ç ÒW,  then there exist x H IgÎ Ç1 ,  but x Ï Ω. So x 2 H1 and x = ig, 
for some i 2 I. This means x = ig 2 H1, but x = ig Ï  Ω, implies i H g IÎ Ç( : ) ,1  but i Ï  (Ω : g), a contra-
diction. Therefore, H Ig1 Ç Í W.  Since H Hse

1 2£W , Ig is a R-subgroup of G contained in H2, it follows  
that Ig Ò Ω. So, I g H gÍ Í( : ) ( : ),W 2  as Ω Ò H2. Therefore, I is an R-subgroup of R contained in  
(H2 : g), proves ( : ) ( : )( : )H g H gg

se
1 2£ W .

(2) ) (1): Suppose that K is a (proper) R-subgroup of G such that K Ò H2 and H K1 Ç Í W.  If K * Ω, 
then there exists x K HÎ Í W W2 .  Now by (2), we get ( : ) ( : ).( : )H x H xx

se
1 2£ W  Since ( : ) ( : ),H x x1 Ò W  

there exists a H xÎ ( : ),1  but a xÏ ( : ).W  That is, ax 2 H1, but ax Ï Ω. Now since K be an R-subgroup 
of G, and a 2 R, x 2 K, we get ax 2 K. Thus, ax H KÎ Ç1 ,  but ax Ï Ω, a contradiction. Therefore, 
H Hse

1 2£W .

Definition 2.17. ([18]) Let G be an R-group. We say that R distributes over G if d(g1+g2) = dg1 + dg2 for 
all d 2 R, g1, g2 2 G.
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In [6], the authors, used the condition that R distributes over G for obtaining aG an ideal of G, 
for any a 2 R. In ([11], Remark 5.3.39), the authors provided the classes of nearrings where in every 
R-subgroup is an ideal. Among such classes, Boolean nearrings, and the classes of all strongly reg-
ular nearrings are the familiar ones. In [20], the authors extensively studied the class of all central 
Boolean rings. Further, if the R-group is tame ([22], Definition 9.165), then every R0-subgroup is an 
ideal.

In the rest of the paper, we consider classes of nearrings wherein every R-subgroup is an ideal. 
Therefore, we assume that the sum of two R-subgroups is again an R-subgroup.

Theorem 2.18. Let Ω be a proper R-subgroup of G and let Gi, Hi be R-subgroups of G, H Gi iÍ ,  for  
i = 1, 2 such that H H G G1 2 1 2Ç = = ÇW .  If H H G Gse

1 2 1 2+ £ +W  then H Gi
se

i£W ,  for i = 1, 2, and the  
converse holds if R distributes over G.

Proof. Suppose H H G Gse
1 2 1 2+ £ +W  and H Gse

1 1W .  Then for some R-subgroup A of G such that 
A G H AÍ Ç Í1 1, W  and A ÒW.  We show that ( ) .H H A1 2+ Ç Í W  Let p H H AÎ + Ç( ) .1 2  Then  
p = h1+ h2, where h1 2 H1, h2 2 H2 and p 2 A. Now h h p H A H G G H2 1 1 2 1 2 1= - + Î + Ç Í Ç = Í( ) .W  
That is, h2 2 H1. Hence p h h H A= + Î Ç Í1 2 1 W,  implies ( ) ,H H A1 2+ Ç Í W  a contradiction. Hence, 
H Gse

1 1£W .  In a similar way, we will get H Gse
2 2£W .

Conversely, suppose H Gse
1 1£W ., H Gse

2 2£W . To show H H G Gse
1 2 1 2+ £ +W .  Let l 2 (G1 + G2) \ Ω. Then  

l = x1+ x2, for some x1 2 G1, x2 2 G2 and x1+ x2 ÏΩ. This implies that x1 ÏΩ or x2 Ï Ω. Suppose x1 2 G1 \ Ω.  
Then by Theorem 2.15, there exists n1 2 R such that n1 x1 2 H1 \ Ω.

Case 1:  If n1x2 2 H2 \ Ω, then since R distributes over G, we have n1l = n1(x1+ x2) = n1x1+ n1x2 2 H1 + H2. 
Now we show that n1l Ï Ω. If  n l H1 1Î ÍW ,  then n1x2 = n1l – n1x1 2 H1. Since n1x2 2 H2 , we get 
n x H H G G1 2 1 2 1 2Î Ç Í Ç Í W,  a contradiction. Therefore, n l H H1 1 2Î +( ) .W  If n1x2 2  Ω Ò H1, 
then by the same argument as above we will get n l n x x H H H1 1 1 2 1 1 2= + Î Í +( ) .  Now if n1l 2  Ω,  
then n x n l n x1 1 1 1 2= - ÎW,  a contradiction. Therefore, n l H H1 1 2Î +( ) .W .

Case 2:  Now let n1x2 Ï  H2 \ Ω. Subcase (i): If n x H1 2 1Î ÍW ,  then n1l = n1(x1+ x2) = n1x1+ n1x2 2 H1 Ò H1 + H2.  
In this case if n1l 2 Ω, then n1x1 = n1l – n1x2 2 Ω, a contradiction. Therefore, n1l 2 (H1 + H2) \ Ω.  
Subcase (ii): If n1x2 2 G2 \ Ω, then by Theorem 2.15, there exists n2 2 R such that n2· (n1x2) 2 H2 \ Ω.  
Therefore, by a similar argument, (n2· n1)l 2 (H1 + H2)\ Ω, hence ( )H H G Gse

1 2 1 2+ £ +W .

Corollary 2.19. Let { } { },G Hi i
n

i i
n

= =1 1  be R-subgroups of G and HiÒGi for i = 1 to n such that 
i

n

i
i

n

iG H
= =

= =
1 1
 

W . 

If 
i

n

i
se

i

n

iH G
= =
å å£

1 1
W  then H Gi

se
i£W ,  1 ≤ i ≤ n and the converse holds if R distributes over G.

Proof. By using Theorem 2.18 and induction on n.

Theorem 2.20. Let f: G1 ! G2  be an R-isomorphism. Let K and Ω be proper ideals of G1. Then K is 
Ω-uniform in G1 if and only if f(K ) is f(Ω)-uniform in G2.

Proof. Suppose K is Ω-uniform in G1. To prove f(K ) is f(Ω)-uniform in G2, let L2 and L2 be ideals 
of G2 contained in f(K ) such that L L f1 2Ç Í ( ).W  This implies that f L L- Ç Í1

1 2( ) .W  Since f is an 
R-isomorphism, we have f L f L- -Ç Í1

1
1

2( ) ( ) .W  Now f–1(L1) and f–1(L2) are ideals of G1 contained in K, 
and K is Ω-uniform, we get f L f L- -Í Í1

1
1

2( ) ( ) .W W or  Hence, L f L f1 2Í Í( ) ( ).W W or 
Conversely, suppose f(K ) that is f(Ω)-uniform in G2. To show K is Ω-uniform in G1 let H1, H2 be 

ideals of G1 contained in K such that H H1 2Ç Í W.  Since f is an R-isomorphism, f H H f( ) ( ),1 2Ç Í W  
implies, f H f H f( ) ( ) ( ).1 2Ç Í W  Since f(K ) is f(Ω)-uniform, we have f H f or f H f( ) ( ) ( ) ( ).1 2Í ÍW W   As f 
is one-one, H1 Ò Ω or H2 Ò Ω, desired.

The proof of the Corollary 2.21 follows from the fundamental homomorphism theorem for R-groups 
and Theorem 2.20.
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Corollary 2.21. If H and K are ideals of G and Ω a proper ideal of G such that H \ K = Ω. Then H 
is Ω-uniform if and only if (H + K) / K is f(Ω)-uniform in G/K, where f : H!(H + K) / K is a canonical 
epimorphism.
Theorem 2.22. Let Ω be a proper ideal of G. If every Ω-essential R-subgroup is strictly Ω-essential, 
then every Ω-uniform ideal of G is strictly Ω-uniform.

Proof. Suppose H is Ω-uniform. In a contrary, suppose that H is not strictly Ω-uniform. 
Then, for some R-subgroups I, J, we have I J H I J, ,Í Ç Í W  but I * Ω and J * Ω. Consider 
 = Ç Í{ : , }.X X I X GW � �is an ideal of�  Clearly (0), Ω 2 S Now S is a non-empty partially ordered 
subset of ideals of G, in which every chain has an upper bound. Hence, by Zorn’s lemma, let K be an 
ideal of G maximal with respect to K \ I Ò Ω. To show I K Ge+ £W .  Clearly, I + K is an R-subgroup of 
G, by ([22], Proposition 2.15). Let L be any ideal of G such that (I + K ) \ L Ò Ω. To show that L Ò Ω,  
first we show that I K LÇ + Í( ) .W  Let x I K LÎ Ç +( ).  Then x = i and x = k + l, for some i 2 I, k 2 K,  
l 2 L, implies l i k L I K= - Î Ç + Í( ) .W  Hence, l 2 Ω, and so i = k + l 2 K + Ω = K, as K is maxi-
mal in S. This implies x i I K= Î Ç Í W.  Again by the maximality of K, it follows that K L K+ Í . 
Therefore, L KÍ Í W,  which proves that I K Ge+ £W .  Now by hypothesis, I K Gse+ £W . As J * Ω  and 
I K Gse+ £W , we have ( ) .I K J+ Ç ÒW  Let x I K JÎ + Ç( )  and x Ï Ω. This implies that x = i + k for 
some i 2 I, k 2 K, and x = J . Then –i + x = k 2 K \ (I + J). Since I \ J Ò Ω and J Ò K, J * Ω, we get  
k = –i + x Ï Ω. Write K1 = H \ K . Then K1 * Ω. Let T be an ideal of G such that T KÇ Í1 W  and T + K1   
is Ω-essential. Since T K Ge+ £1 W  and I * Ω , we have I T KÇ +( ) .1 ÒW  As in the above similar argu-
ment, we get T HÇ ÒW.  Let M = T \ H * Ω. Then, K1, M * Ω are ideals of G, and K1, M Ò H such that 
K M K T H K T1 1 1Ç = Ç Ç Í Ç Í( ) ,W  a contradiction to H is Ω-uniform.

3. Relative finite Goldie dimension 

We define a finite Goldie dimension of an R-subgroup with respect to an arbitrary R-subgroup Ω. We 
provide examples and obtain a characterization for an R-subgroup to have Ω-f.G.d.
Definition 3.1. Let Ω be a proper R-subgroup of G and let { }Ii i IÎ  be a family of R-subgroups of G. We 

say that { }Ii i IÎ  is Ω-direct if I Ii i
j i

Ç
æ

è
ç

ö

ø
÷ Í

¹
å W.

Definition 3.2. Let Ω be a proper R-subgroup of G. An R-subgroup H of G is said to have Ω-finite 
Goldie dimension (denoted as, Ω-f.G.d) if H does not contain R-subgroups Hi’s of infinite number with 
Hi * Ω and its sum is Ω-direct.

An R-group G has Ω-f.G.d if G does not contain an infinite number of R-subgroups Hi * Ω whose 
sum is Ω-direct.

Example 3.3. 
(1) Let G R= ´ =  2 6 , .  Then G is an R-group. Let W = ( , ) .0 2  Consider H1 1 2= ( , ) ,  

H H2 31 1 0 1= =( , ) , ( , ) . Then Hi * Ω and H Hi
j i

jÇ Í
æ

è
çç

ö

ø
÷÷

¹
å W.  Therefore, G has Ω-f.G.d.

(2) Let R = + ×( , , )24 24 24  and G = R. Consider the R-subgroups H H H= = = =2 4 6 121 2, , , .   W  
Clearly, H H H H1 2 1 2Ç Í W W W, , .  Ò Ò  Hence, there exist no infinite R-subgroups whose sum is 
Ω-direct. Therefore, H has Ω-f.G.d.

Theorem 3.4. Let H, Ω (proper) be R-subgroups of G where every R-subgroup of G contained in H, 
contains Ω. Then H has Ω-f.G.d if and only if for every strictly increasing sequence of R-subgroups  
T1, T2, ... of G contained in H, there exists an integer ‘i’ such that T Tk

se
k£ +W 1  for all k ≥ i.
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Proof. Suppose H has Ω-f.G.d. Let T T1 2$ $ ...  be R-subgroups of G such that Ti * Ω for all i. In a 
contrary way, suppose that for every integer i, there exists k ≥ i such that T Tk

se
kW +1.  For i1 = 1, 

there exists k1 ≥ 1 such that T Tk
se

k1 1 1W + .  For i2 = k1 + 1, there exists k2 ≥ i2  such that T Tk
se

k2 2 1W +  and  
k2 ≥ k1 + 1. Continuing the process, we get a subsequence { } { }T of Tk i i ii = =1 1

¥ ¥   such that T Tk
se

ki i
W +1  and  

ki+1 ≥ ki + 1. Since T T1 2$ $ ...  is increasing we have that Tki+1 Ó  Tki+1. Since T Tk
se

ki i
W +1  and Tki+1 Ó  Tki+1  

we have Tki is not strictly Ω-essential in Tki+1. Thus we get a subsequence { } { }T of Tk i i ii = =1 1
¥ ¥   such that 

T Tk
se

ki i
W +1  for all i. Write Bi = Tki for i ≥ 1. Now { }Bi i=1

¥  is an increasing sequence of R-subgroups 
of G contained in H such that Ω Ú Bi and B Bi

se
iW +1 ,  for all i. Therefore, for each i, there exists a 

non-zero R-subgroup Ai * Ω of G contained in H such that W Ì Í +A Bi i 1  and B Ai iÇ Í W.  Now we 
show that A Ai

i j
jÇ Í

¹
å( ) .W  Let n be the number of such R-subgroups Ai's. Suppose n = 2, and let 

x A AÎ Ç1 2.  Since A1ÒB2, we have x A A B AÎ Ç Í Ç Í1 2 2 2 W.  For n = 3, let x A A AÎ Ç +1 2 3( ).  Since 
A1 Ò B3  and  A2 Ò B3, by modular law, we have x 2 A1\ (A2 +A3) Í Ç + = + ÇB A A A B A3 2 3 2 3 3( ) ( ).  Also, 
since ( )B A3 3Ç Í W  and Ω Ú A2, we have x A AÎ + Í2 2W .  Now, x A A B AÎ Ç Í Ç Í1 2 2 2 W,  shows 

that A A A1 2 3Ç + Í( ) .W  Continuing the process, we get A Ai
i j

jÇ Í
¹
å( ) .W  Therefore, 

i
iA

=
å

1

¥

 is Ω-direct, 

a contradiction to H has Ω-f.G.d. Converse follows from the definition of Ω-f.G.d.

Example 3.5. Let G = +( , )48 48  and R = (Z, +,·). Then .: R ´ G ! G is a R-group with respect 
to the external operation .. Consider the R-subgroups H H H H1 2 3 42 3 4 6= = = =, , , ,   
H H H H5 6 7 88 12 16 24= = = =, , , .    Take H = H2 and Ω = H8. Now we have

Chain 1:  H H H H8 6 4 2$ $ $ .  Then by the notation in the proof of Theorem 3.4 for i = 2, k = 2, 3, we have 
H Hse

6 4£W  and H Hse
3 2£W .  Similarly,

Chain 2: H H H8 4 2$ $ .  For i = 2, k = 2, we have H Hse
4 2£W .  Therefore, H has Ω-f.G.d.

Example 3.6. Let G p pn= +( , ),  where p is prime and R = (Z, +,·). Then · p: R ́  G ! G is a R-group with 
respect to the external operation · p. Consider the R-subgroups H pi

n i
pn= -  ,  i ≥ 0. Take W = -pn pn

1  
and H p pn=  .  Then H Hk

se
k£ +W 1 ,  for all k ≥ 2. Therefore, H is Ω-f.G.d.

Example 3.7. Let R q
q q

n

n n=
æ

è
çç

ö

ø
÷÷ + ×

æ

è
çç

ö

ø
÷÷

0
0 0


, , ,  where q is prime and n 2 Z+. Here R non-commutative 

ring and let G = R. Now G is considered as an R-group. The ideals as well as R-subgroups of G are 

K
q

ni

i
qn=

æ

è
çç

ö

ø
÷÷ Î +{ : }.

0
0 0


�  Consider K = Kn–1 and Ω = K1. Then, H Hk

se
k£ +W 1 ,  for all i ≥ 2. Therefore, K 

has Ω-f.G.d.

Example 3.8. Consider the nearring with addition and multiplication tables listed below ([1], Table 
no 6/2(18)). Let G = S3, the symmetric group, and G = R. Then G is an R-group.

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 0 3 2 5 4
2 2 4 0 5 1 3
3 3 5 1 4 0 2
4 4 2 5 0 3 1
5 5 3 4 1 2 0

+ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 1 0 0 1
2 0 2 2 0 0 2
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 5 5 0 0 5
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The R-subgroups of G are H1 = {0}, H2 = {0,1}, H3 = {0,2}, H4 = {0, 3, 4}, H5 = {0, 5}, H6 = G. Consider 
Ω = H4. Then H2 is not Ω-f.G.d, as H3, H H5 2Ò , but the sum is not Ω-direct.

Example 3.9. Let R is a nearring and Ri = R, for all i 2 N. Then Å
=i iR1

¥
 is an R-group which has neither 

finite dimension not Ω-f.G.d.

For instance, let R = Z and G i
i i i= Å = ³
=1

1
¥
  , ( ). �  Then G is an R-group. Take Ω = 2Z ´ 2Z ´ …  

2Z ´ … Then Ii = (0, …, Z, …, 0, …). It is clear that Ii * Ω for each i. Also I Ii
i j

jÇ = ´ ´ Í
¹
å( ) ( ) ( ) .
¥

0 0  W  

Therefore, Ii i{ } =1
¥  forms an infinite Ω-direct sum, hence G does not have Ω-f.G.d.

Lemma 3.10. If G has Ω-f.G.d, then every R-subgroup H of G, H * Ω, contains a strictly Ω-uniform 
R-subgroup.

Proof. Suppose that G has Ω-f.G.d. On a contrary, suppose H contains no strictly Ω-uniform 
R-subgroup. Then H is not strictly Ω-uniform. So there exist R-subgroups H1 and H1¢ of G contained 
in H, and H1, H1¢*Ω such that H H H H H1 1 1 1Ç Í + Í¢ ¢W, .  Then by supposition H1¢ is not strictly 
Ω-uniform, which implies that there exist R-subgroups H2, H2¢ contained in H1¢ and H2, ¢H2 *W  such 
that H H H H H2 2 2 1Ç ¢ Í + ¢ Í ¢W, .  If we continue, then we get { } , { }H Hi i1 1

¥ ¥ ¢  of two infinite sequences of 
R-subgroups of G, not contained in Ω such that H Hi iÇ ¢ Í W  and H H Hi i i+ ¢ Í ¢-1 ,  for i ≥ 2. Thus, the 

sum 
i

iH
=
å

1

¥

 is infinite Ω-direct, which contradict the fact that G has Ω-f.G.d.

Theorem 3.11. If G has Ω-f.G.d, then there exist finite number of strictly Ω-uniform R-subgroups of G, 
such that the sum is Ω-direct and strictly Ω-essential in G.

Proof. Since G has Ω-f.G.d, by Lemma 3.10, G contains a strictly Ω-uniform R-subgroup, say H1. If H1 
is strictly Ω-essential in G, then the conclusion is obvious. Suppose that H1 is not strictly Ω-essential in 
G. Then there exists an R-subgroup K1 of G with H K1 1Ç Í W  but K1ÒW.  By Lemma 3.10, K1 contains 
a strictly Ω-uniform R-subgroup, say H2. If H H Gse

1 2+ W ,  then there exists an R-subgroup K2 of G such 
that ( ) ,H H K1 2 2+ Ç Í W  but K2ÒW.  Again by Lemma 1, there exists a strictly Ω-uniform R-subgroup, 
H3 Ò K2. Continuing this process, we get a strictly increasing chain H H H H H H1 1 2 1 2 3$ $ $+ + + ,  
which must terminate as G has Ω-f.G.d. Hence 

i

n

i
seH G

=
å £

1
W ,  for some n.

Lemma 3.12. Let H H H1 2 3Í Í ,  and Ω (proper) be R-subgroups of G. Then H Hse
1 3£W  if and only if 

H H and H Hse se
1 2 2 3£ £W W  .

Proof. Let H Hse
1 3£W  and H L1 Ç Í W,  where L is R-subgroup of G and L Ò H2. Since 

L H H H HeÍ Í £2 3 1 3�and� W ,  we have that L Ò Ω. Therefore, H Hse
1 2£W . Next, let L be an R-subgroup 

of G such that H L2 Ç Í W  and L Ò H3. Now H L H L1 2Ç Í Ç Í W  and since H Hse
1 3£W , we have  

L Ò Ω. Therefore, H Hse
2 3£W . Conversely, assume H Hse

1 2£W  and H Hse
2 3£W . Let L be an R-subgroup of 

G such that H L1 Ç Í W  and L Ò H3. We have H H L H L1 2 1Ç Ç Í Ç Í( ) .W  Since H2 \ L is R-subgroup 
of G, H L H2 2Ç Í , , and H He

1 2£W , it follows that H L2 Ç Í W.  Also, as H Hse
2 3£W , it follows L Ò Ω.

Theorem 3.13. Let R be distributes over G and Ω a proper R-subgroup of G. If G has strictly Ω-uniform 

R-subgroups H1, H2, ..., Hn containing Ω such that 
i

n

iH
=
å

1
 is Ω-direct and 

i

n

i
seH G

=
å £

1
W ,  then G has Ω-f.G.d 

(here, n 2 Z+ is independent of the choice of Hi’s).

Proof. Suppose G has strictly Ω-uniform R-subgroups H1, H2, ..., Hn such that its sum is Ω-direct 

and 
i

n

i
seH G

=
å £

1
W .  Let L1, L2, ..., Lm be R-subgroups of G such that Li ÒW,  and 

i

m

iL
=
å

1

 is Ω-direct. 
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Now to show m ≤ n, first we show that if T is an R-subgroup of G such that T HiÇ ÒW  for all i, 
then T Gse£W .  Suppose T \ Hi * Ω. Since Hi is strictly Ω-uniform, by definition, every R-subgroup  
contained in Hi is strictly Ω-essential. In particular, T \ Hi is an R-subgroup contained in Hi and so 

T H Hi
se

iÇ £W .  Now by Theorem 2.18, 
i

n

i
se

i

n

iT H H
= =
å åÇ £

1 1
( ) W  and 

i

n

i
seH G

=
å £

1
W ,. Hence, by Lemma 3.12, 

we have 
i

n

i
seT H G

=
å Ç £

1
( ) .W

 Again by Lemma 2.18, since 
i

n

iT H T G
=
å Ç Í Í

1
( )  and 

i

n

i
seT H G

=
å Ç £

1
( ) W , we 

get T Gse£W .  Now if 
i

m

i
seL G

=
å £

2
W ,  then since 

i

m

iL
=
å

2
 is Ω-direct, we have 

i

m

iL L
=
å Ç Í

2
1 W,  but Li ÒW,  a 

contradiction. Hence, 
i

m

i
seL G

=
å

2
W .  So there exists an j 2 {1, 2, ..., n} such that 

i

m

i jL H
=
å Ç Í

2
W,  and 

Hj ÒW.  Suppose j = 1, then 
i

m

iL H
=
å Ç Í

2
1 W,  which shows that 

i

m

iL H
=
å +

2
1  is Ω-direct. Again, since 

H L G
i

m

i
se

1
3

+
=
å W ,  there exists j 2 {2, ... , n} such that 

i

m

i jL H
=
å + Í

3
W,  and Hj ÒW., say j = 2, which 

implies that 
i

m

iL H H
=
å + +

3
1 2  is Ω-direct. Continuing this process, we get m ≤ n. Hence, G has Ω-f.G.d.

4. Conclusion

We have introduced the concept of uniform ideal (strictly uniform ideal) with respect to an arbitrary 
ideal Ω (or R-subgroup) in R-groups. Several properties of Ω-uniform ideals were proved and exhib-
ited suitable examples or counterexamples. Finally, we have obtained Goldie theorems analog in 
terms of Ω-uniform R-subgroups. One can extend to study various dimensions properties involving 
quotient R-groups.
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