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We consider an R-group G, where R is a (right) nearring. We introduce the notions relative uniform
and strictly relative uniform ideals (or R-subgroup) which are not uniform, in general. We prove
important properties and obtain a characterization for an R-subgroup to have finite Goldie dimension,
in terms of strictly relative uniform R-subgroups. We provide the necessary examples.

Key words and phrases: Nearring, essential ideal, uniform ideal, finite dimension
Mathematics Subject Classification 2020: 16Y30.

1. Introduction

The concept of uniform dimension in modules over rings is a generalization of the dimension of a
vector space over a field. A module in which every non-zero submodule is essential is called uniform.
Uniform submodules play a significant role in establishing various finite dimension conditions in
modules over associative rings. Goldie [15] provided a characterization of equivalent conditions for a
module to possess finite uniform dimension. In Bhavanari [4], the notion of uniform dimension was
extended to modules over nearrings, (also known as, R-groups), with a characterization established
for an R-group to have finite Goldie dimension (in short, f.G.d). Subsequently, aspects of Goldie dimen-
sion in modules over nearrings have been extensively explored by the authors [23, 7, 9]. However,
the study of finite Goldie dimension in modules over rings, specifically in terms of pseudo uniform
submodules, which do not necessarily adhere to the uniformity condition, was undertaken in [14].
In case of a module over a matrix nearring, the authors [10] introduced the concepts of essential ideals
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and uniform ideals, providing a characterization for a module over a matrix nearring to have f.G.d.
Further exploration of prime and semiprime aspects in connection with f.G.d. in R-groups and matrix
nearrings was conducted by the authors in [13, 16].

A (right) nearring (R, +, .) is an algebraic system (Pilz [22]), where R is an additive group (not
necessarily Abelian), and a multiplicative semigroup, satisfying only one distributive axiom (say,
right): (P, + P,)Ps = PP+ P,D; for all D, Py, 03 € B. In a right nearring, the properties such as
Op =0 and (-p)qg =—pq holds for all p, ge R, though, in general, p0 # 0 for some p € R. If p0 =0
for all p € R, then we say R is zero-symmetric (denoted as, R = R ). An additive group (G, +) is called
an R-group (or module over a nearring R), denoted by ,G (or simply by G) if there exists a mapping
R x G — G (image (k,g — kg)), satisfying: (k+1)g =kg +1g; (kl)g=k(lg) forallge Gand k, [ € R. It
1s evident that every nearring is an R-group (over itself). Additionally, if R is a ring, then each (left)
module over R is an R-group. Throughout, G represents an R-group where R is a right nearring.

A subgroup (H, +) of G with RH < H is called an R-subgroup of G. A normal subgroup H of G is
called an ideal if n(g + h)-nge H forall ne R, he H, ge G. For any two R-groups G, and G,, a map
f:G, — G, is called an R-homomorphism, f(x +y) = f(x)+ f(y) and f(nx) = nf(x) hold for all x,ye G,
and n € R. If f1s one-one and onto, then fis an R-isomorphism.

In case of a zero symmetric nearring, for any ideals A and B of G, A + B is an ideal of G ([22],
Corollary 2.3).

For each g € G, Rg is an R-subgroup of G. The ideal (or R-subgroup) generated by an element g € G is
denoted by <g> For any subsets S, T'of G, the noetherian quotientis definedas (S:T)={ne R:nT < S},
and if S={0}, then (0 : T') is called the annihilator of 7. A proper ideal P of R is called semiprime, if an
ideal I of R with I* € P, then I c P, R itself is semiprime, if (0) is a semiprime ideal.

An ideal T of an R-group G is essential (see, [23]), if for any ideal H of G, T'n H =(0) implies
H = (0). If every non trivial ideal (0) # H of G is essential, then we say G is uniform. Further, an
ideal (R-subgroup) T of G is said to be strictly uniform (see, [21]), if for any two R-subgroups P, @ of
G, PcT, QcT, PnQ@=(0) implies P=(0) or @ = (0).

In this paper, we consider the notions of uniform and strictly uniform ideal with respect to an
arbitrary ideal (or R-subgroup) Q of an R-group defined in [25]. We establish an equivalent condition
for an R-subgroup to have a Q-finite Goldie dimension (denoted by, Q-f£.G.d.) in terms of its strictly
Q-uniform R-subgroups.

For standard definitions and notations in nearrings, we direct the reader to [11, 22].

2. Uniform and strictly uniform ideals

We start this section with the definitions of Q-uniform ideal (or R-subgroup) and strictly Q-uniform
ideal with suitable examples.

Definition 2.1. ([26], Definition 2.1) An ideal H of G is said to be relative essential (resp. strictly rela-
tive essential), if there exists a proper ideal (resp. R-subgroup) Q of G such that

(@) HZQ,
(b) for any ideal (resp. R-subgroup) K of G, H K c Q implies K c Q.

We denote it by H <;, G(resp. H <;; G), and read as H is Q-essential in G (resp. H is strictly
Q-essential in G).

We denote H, <, H, when H, considered as an R-group. In case, & = (0), this is referred as
G-essential, by the authors [4].

Definition 2.2. ([25], Definition 3.1)
An ideal I of G is called relative uniform (resp. strictly relative uniform) if J is an ideal (resp.
R-subgroup) of G, J c I, then J <{, I (resp. J <{ I).
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Proposition 2.3. Let I be an ideal of G and Q # G be an ideal of G. I is Q-uniform if and only if for any
ideals H , H, contained in I such that H " H, c Q implies H c Q or H, c Q.

Proof. Suppose that Iis Q-uniform. Let H,, H, beideals of Gsuchthat H, c I, H, c I, and H " H, c Q.
Assume that H, ¢ Q. Since I is Q-uniform, and H, C I, we have H, <, I, and since H, N H,C Q, we
get H, C Q.

On the other hand, let J be any ideal of G such that J c I and J ¢ Q. To prove oJ <;, I, let K be an
ideal of G contained in I such that J N K c Q. Since J ¢ Q, by converse hypothesis, we have K C Q.
Therefore, J <, I.

We give an example that Q-uniform need not be uniform, in general.

Example 2.4. Let R=(Z,,+,,,,) and G = R. Then R is considered as R-group (over itself). The
ideals of R are H, = {0,2,4,6,8 10} H, =1{0,6}, H, = {6,5,6_3,5}_, H, = {6,1,5}; Take Q = H,. Then H, is
Q- umform but not uniform in G, as H JH,cH,H,nH,=(0), and H, # (0) # H,.

Example 2.5. Let G =(ZyxZ,,+). Then G is an R-group, where R =(Z, +, .). Take Q =7, % (0), an ideal
of ,G. Then the ideal (2) X Z, is Q-uniform, but not uniform, as the ideals (4) X (0), (4) X Z, contained in
(2) X Z, such that (4)x(0) N (4)xZ, =(0)x(0), but (4) x (0) # (0) x (0) # (4) X Z,.

The following corollary is straightforward.

Corollary 2.6. Let Q be a proper ideal of G. Then G is Q-uniform if and only if for any two ideals K
and LofG, KNnLcQ=KcQor LcQ.

Proposition 2.7. Let Q be a proper ideal of G, and G is Q-uniform. Then any finite intersection of
Q-essential ideals of G is Q-essential in G, and converse also holds.

Proof. Let {H,}", be a family of Q-essential ideals of G. Write H = ﬂHi. Clearly H, ¢ Q for each i,

and since G is Q-uniform, HZ Q. To prove H is Q-essential, we use_the induction on the number n
of Q-essential ideals. Suppose that n = 2. Let L be an ideal of G such that HZQ, HNL c Q. Then

(H,nH,)n L cQ, implies that H, n(H, nL)c Q. Since H, <, G and H, N L is an ideal of G with
H,NLc Q. Again, since H, <, G and H, ¢ Q, we get L C Q. Therefore the statement is true for
n = 2. We assume the induction hypothe51s for (n — 1) ideals {H,}";' of G. Let L be an ideal of G such

n n-1
that [ﬂHiJngQ and HZQ. Then, (ﬂH NnH, ijcQ That is, nH N(H,nL)c Q. Since

=1 =1 i=1

= n-1
HS& ﬂH . and HZQ, we have ﬂHi ZQ, hence, by induction hypothesis, it follows that H, "L c Q.
i=1 i=1
Now since H, <, G, and L is an ideal of G, we have L C Q, which shows that H < G.
Conversely, suppose that H = ﬂH < @G. Since ﬂH ZQ, we get H ¢ Q, for all i. Then to show that

H, <, G foreveryi,1<i<n, letLbeanyldealostuchthatH NLcQ Now HNLcH,NnLcQ

and since H <, G, we have that L C Q. Since H.(1<i<n),is arbitrary, we conclude that H; <;, G for
every i.

Remark 2.8. The converse of the Proposition 2.7 do not hold, in general. Consider the following
example:

Let R=(Z,,,+,,,,) and G = R. Then G is an R-group and the ideals are H, = <§>,H2 = <§>,H3 = <Z>,
Q=H, :<6>, H, :<§>, H, :<1_2> Since H, " H, = H,, we have

() H,nH,cH,

@) H,NnHZQ



Sahoo T, et al., Results in Nonlinear Anal. 7 (2024), 52-63 55

Then, Hy=(12) is the only ideal satisfying H,c H,, (H, "H,)nH, cQ, implies that H, C Q.
Therefore, H, " H, <, H,. Since H,ZH,, we conclude that H, %, H,.

Definition 2.9. ([26], Definition 2.3) An R-subgroup H of G is said to be relative essential (resp. strictly
relative essential), if there exists a proper ideal (resp. R-subgroup) Q of G such that

(@ HZQ,
(b) for any ideal (resp. R-subgroup) K of G, H K c Q implies K C Q.

We denote it by H <;, G (resp. H <, G), and read as H is Q-essential in G (resp. H is strictly Q-essential
in G).

Definition 2.10. An R-subgroup I of G is called relative uniform (resp. strictly relative uniform) if
there exists an ideal (resp. R-subgroup) Q of G and any ideal (resp. R-subgroup) J of G, J ¢ Q and
J C Iimplies J <, I (resp. J < I) (here we consider I as an R-group).

Furthermore, G is called relative uniform (resp. strictly relative uniform) if there exists an ideal (resp.
R-subgroup) Q of G such that for each ideal (resp. R-subgroup) K of G and K ¢ Q, then K <{, G (resp.

K< Q).

Table 1
+ a 2a 3a b a+tb 2a+b 3atb
a 2a 3a b at+b 2a+b 3a+b
a a 2a 3a 0 a+b 2a+b 3atb b
2a 2a 3a 0 a 2atb  3atb b a+tb
3a 3a 0 a 2a 3atb b at+b 2a+b
b b 3atb  2a+b a+b 0 3a 2a a
a+tb a+tb b 3atb  2a+tb a 0 3a 2a
2atb | 2atb a+b b 3atb 2a a 0 3a
3atb | 3atb  2a+b a+b b 3a 2a a 0
Table 2
*1 0 2a 3a b a+b 2a+b  3atb
0 0 0 0 0 0 0 0
a 0 a 2a 3a b a+b 2a+b  3a+tb
2a 0 2a 0 2a 0 0 0 0
3a 0 3a 2a a b a+tb 2a+tb  3atb
b 0 b 2a 2a+b b atb 2a+b  3atb
a+b 0 a+tb 0 a+b 0 0 0
2a+b 0 2a+b 2a b b 2a+b  3a+tb
3a+b 0 3a+b 0 3a+b 0 0 0 0
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Table 3
*2 0 2a 3a b a+tb 2atb  3a+tb
0 0 0 0 0 0 0 0
a 0 a 2a 3a b a+b 2atb  3a+tb
2a 0 2a 0 2a 0 0 0 0
3a 0 3a 2a a b a+tb 2atb  3atb
b 0 b 2a 2a+b b 0 2a+b 2a
a+b 0 a+b 0 a+b 0 a+b + a+b
2a+b 0 2a+b 2a b b 0 2a+b 2a
3a+b 0 3a+b 0 3a+b 0 a+b 0 atb

Example 2.11. Consider the nearring with addition and multiplication tables listed in K(135)
and K(139) of p.418 of Pilz [22]. Let G=D,= <{a,b | 4a=2b=0, a+b=b- a}> ={a,2a,3a,4a =0,
b,a+b,2a +b,3a + b}, where a is the rotation in an anti-clockwise direction about the origin through %
radians and b is the reflection about the line of symmetry, and G = R. Then G is an R-group.

(1) Consider the operations in Table 1 and Table 2. The proper ideals are I, = {0, 2aj},
I, ={0,a+b,2a,3a + b}, and R-subgroups are J, = {0, 2a}, J, = {0, b}, J, = {0, a+b}, J, = {0, 2a+b},
J, =10, 3a+b}, J, =10, b, 2a, 2a+b}, J. = {0, 2a, a+b, 3a+b}. Consider H = I, = {0, 2a, a+b, 3a+b}
and Q = I, =10, 2a}. Now H is not strictly Q-uniform, since the R-subgroups J, = {0, a+b} and
J. =10, 2a, a+b, 3a+b} which are contained in H with J,NJ CQ, but J, ZQ, J, ZQ. However, H
is Q-uniform, since the only ideals I, = {0, 2a} and I, = {0, 2a, a+b, 3a+b} contained in H satisfying
I, "1, cQ implies I, C Q.

(2) Consider the operations in Table 1 and Table 3. Then the proper ideals are I, = {0, 2a}, 1, = {0,
2a, b, 2a+b}, I, = {0, 2a, at+b, 3a+b} and R-subgroups are J, =10, 2a}, J, = {0, b}, J, = {0, a+b},
J, =10, 2a+b}, J, =10, b, 2a, 2a+b}, J, = {0, 2a, a+b, 3a+b}. Consider H = I, = {0, 2a, a+b, 3a+b}
and Q =J_ =10, 2a, b, 2a+b}. Here, H is strictly Q-uniform, since the R-subgroups J, =10, 2a} and
J, = {0, a+b} which are contained in H with J, ndJ; cQ, we have J, C Q. Also, H is Q-uniform,
since the only ideals I = {0, 2a} and I, = {0, 2a, a+b, 3a+b} contained in H satisfying I, NI, c Q
implies I, C Q.

Remark 2.12. Let Q be a proper ideal of G, and K a Q-uniform ideal of G. If L is an ideal of G such
that L ¢ Q and L C K, then L is Q-uniform.

Proof. Let L be an ideal of G and L,, L, be ideals of G contained in L such that L n L, cQ. Since
L,L, c L c K, and K is Q-uniform, we have L, C Q or L, C Q. Hence L is Q-uniform.

Proposition 2.13. Let Q be a proper ideal of G. If G is Q-uniform, then GI/Q is uniform, and Q is
semiprime.

Proof. Suppose G is Q-uniform. Let K/Q and L/Q be ideals of G/Q such that K/ QN L/Q=(0) in G/Q,
where K and L are ideals of G, properly containing Q. Then K n L ¢ Q. Since G is Q-uniform of G, we
have K c Q or L c Q. Therefore, K/ Q c (0) or L/ Q < (0) in G/Q, hence G/Q is uniform. Now to show
Q is semiprime, let I be an ideal of G such that I c Q. Then I nI c I* c Q. Since G is Q-uniform,
we get I < Q.
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Remark 2.14. In Proposition 2.13, G not necessarily Q-uniform, even if G/Q is uniform.

Consider the following examples.

1) Take G=Z,xZ,; and R=7. Then G is a module over a nearring. Consider the ideal Q = <(T,I)> of
G. Since Q is maximal, G/Q is simple, by ([22], Prop 1.40), and hence uniform. However, G is not
Q-uniform, since {(1,2)) n{(0,3)) C Q, but <(6,§)> ¢ Q and <(T,§)> ZQ.

() Take G=7,xZ, and R = Z, Then G is a module over a nearring. Consider an ideal
Q={(x,x)| xe R} of G. Clearly Q is maximal ideal of G. Therefore, G/Q=1{(0,0),(1,1)} is
uniform. But Z, x (0) is an ideal of G such that Z, % (0) ¢Q, and Z, x(0) is not Q-essential in G,
since (0,1 € G\ Q) for each r € R, r(0,1)¢ (Z,x(0)) \ Q. Hence, G is not Q-uniform.

(i11) For each positive integer n, ZInZ is uniform if and only if Z is an nZ-uniform.

The following theorem provides a characterization for essentiality in R-subgroups of G, where G is an
unitary R-group G (that is, 1 € R).

Theorem 2.15. Let Q c H, ¢ H, be R-subgroups of G and 1 € R. Then the following are equivalent.
(1) H, < Hy;

29

(2) Foreach ge H, \ Q, there exists n € R such that nge H, \ Q.

Proof. (1) = (2): Let ge H,\ Q. Since Rgc H, and as 1 € R, we have Rg ZQ. Since H, <§ H,, we
get H NRg Z Q.

Let xe H, n Rg such that x ¢ Q. Then there exists n € R such that x = ng € H,, and ng ¢ Q, implies
that nge H, \ Q..

(2) = (1): Let L be an R-subgroup of G such that L C H, and H nLc Q. If L ¢ Q, then there exists
ac L\Qc H,\ Q. Now by (2), there exists n € R such that nae H, \ Q, though nae H nLcQ, a

contradiction. Hence, H, < H, .

Theorem 2.16. Let Q c H, c H, be R-subgroups of G and 1 € R. Then the following are equivalent.
(1) H <5 Hy

(2) (H,:8) <, (H,:8), for each ge H, \ Q.

Proof. (1) = (2): Let ge H,\ Q. By (2), there exists n € R such that nge H, \ Q, shows that
ne (H,:g)\(Q:g). Hence (H,:8)Z(Q: g).

Let I be an R-subgroup of R such that (H,: g)nI c(Q: g). Clearly Ig is an R-subgroup of G. First we
show that H, nIg c Q. If H, nIg £Q, then there exist xe H, nIg, butx ¢ Q. Sox € H and x = ig,
for some i € I. This means x = ig € H, but x =ig ¢ Q, implies ie (H,:g)n 1, butig (Q:g), a contra-
diction. Therefore, H, nIg c Q. Since H, < H,, Ig is a R-subgroup of G contained in H,, it follows
that Ig € Q. So, I c(Q:g)c(H,:g), as @ C H,. Therefore, I is an R-subgroup of R contained in
(H,: ), proves (H, : g) <., (H,:g).

(2) = (1): Suppose that K is a (proper) R-subgroup of G such that K C H and H nKcQ. If K¢ Q,
then there exists xe K\ Qc H, \ Q. Now by (2), we get (H, :x) <j,,, (H,:x). Since (H,:x)Z(Q:x),
there exists ae (H, :x), but ag (Q:x). That is, ax € H , but ax ¢ Q. Now since K be an R-subgroup
of G, and a € R, x € K, we get ax € K. Thus, axe H N K, but ax ¢Q, a contradiction. Therefore,
H <  H,.
Definition 2.17. ([18]) Let G be an R-group. We say that R distributes over G if d(g,+g,) = dg, + dg, for
alldeR, g, g,€G.
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In [6], the authors, used the condition that R distributes over G for obtaining aG an ideal of G,
for any a € R. In ([11], Remark 5.3.39), the authors provided the classes of nearrings where in every
R-subgroup is an ideal. Among such classes, Boolean nearrings, and the classes of all strongly reg-
ular nearrings are the familiar ones. In [20], the authors extensively studied the class of all central
Boolean rings. Further, if the R-group is tame ([22], Definition 9.165), then every R -subgroup is an
ideal.

In the rest of the paper, we consider classes of nearrings wherein every R-subgroup is an ideal.
Therefore, we assume that the sum of two R-subgroups is again an R-subgroup.

Theorem 2.18. Let Q be a proper R-subgroup of G and let G, H; be R-subgroups of G, H, c G,, for
i =1, 2 such that H "nH,=Q=G, NG,. If H +H, <} G, +G, then H, < G,, for i =1, 2, and the
converse holds if R distributes over G.

Proof. Suppose H, +H, <! G, +G, and H, £5 G,. Then for some R-subgroup A of G such that
AcG,HNAcCQ and AZQ. We show that (H,+H,)nAcQ. Let pe(H, +H,)nA. Then
p=h+h, where h ¢ H, h,c H, and p € A. Now h,=-h +pe(H +A)nH,cG NG, =QcH,.
That is, h,€ H,. Hence p=h, +h,e H N AcQ, implies (H, + H,) " A cQ, a contradiction. Hence,
H, < G,. In a similar way, we will get H, < G,.

Conversely, suppose H, <; G,, H, <;; G,. To show H, + H, < G, +G,. Let [ € (G, + G,) \ Q. Then
I=x+x, for some x, € G, x, € G,and x + x,¢ Q. This implies that x, ¢ Q or x, & Q. Suppose x, € G, \ Q.
Then by Theorem 2.15, there exists n, € R such that n,x, € H \ Q.

Case 1: If n.x, € H,\ Q, then since R distributes over G, we have n,/ =n (x,+ x)=nx+nx,c H +H,.
Now we show that n,l ¢ Q. If nle Qc H,, then nx,=n l-nx € H,. Since nx,c H , we get
nx,e H nH, c G NG, cQ, a contradiction. Therefore, nle (H, + H,)\ Q. If nx, € Q CH,,
then by the same argument as above we will get n,l=n,(x, +x,)e H, c H, + H,. Nowifn lc Q,
then n,x, =nl-nx, € Q, a contradiction. Therefore, n,le (H, + H,) \ Q..

Case 2: Nowletn x,¢ H \ Q. Subcase i): If njx,e Qc H,, thenn l=n(x+x)=nx+nx,cH CH +H,.
In this case if n,l € Q, then n.x, = n,l - n x, € Q, a contradiction. Therefore, n,l €(H,+ H)\ Q.
Subcase (ii): If n,x, € G,\ Q, then by Theorem 2.15, there exists n, € Rsuch that n, - (n x,) € H,\ Q.
Therefore, by a similar argument, (n, n))l € (H,+ H)\ Q, hence (H, + H,) <J G, +G, .

Corollary 2.19. Let {G,}! | {H,}!, be R-subgroupsof Gand HCG, fori=1tonsuchthat ﬁGi =Q= ﬁHi_
n n i=1 i=1
If ZHi < ZGL. then H, < G,, 1 <i<n and the converse holds if R distributes over G.

=1 =1
Proof. By using Theorem 2.18 and induction on 7.

Theorem 2.20. Let f: G, — G, be an R-isomorphism. Let K and Q be proper ideals of G,. Then K is
Q-uniform in G, if and only if f(K) is f(Q)-uniform in G,.

Proof. Suppose K is Q-uniform in G,. To prove f(K) is f()-uniform in G,, let L, and L, be ideals
of G, contained in f(K) such that L N L, c f(Q). This implies that f7(L, "L,) c Q. Since f is an
R-isomorphism, we have f'(L,) " f ' (L,) Q. Now f(L,) and f'(L,) are ideals of G, contained in K,
and K is Q-uniform, we get f'(L,) c Q or f(L,) c Q. Hence, L, c f(Q) or L, c f(Q).

Conversely, suppose f(K) that is f(Q)-uniform in G,. To show K is Q-uniform in G, let H, H, be
ideals of G, contained in K such that H, " H, c Q. Since f is an R-isomorphism, f(H, N H,) c f(Q),
implies, f(H,) N f(H,) c f(Q). Since f(K) is f(Q)-uniform, we have f(H,)c f(Q) or f(H,) c f(Q). As f
is one-one, H, C Q or H, C Q, desired.

The proof of the Corollary 2.21 follows from the fundamental homomorphism theorem for R-groups
and Theorem 2.20.
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Corollary 2.21. If H and K are ideals of G and Q a proper ideal of G such that HN K = Q. Then H
is Q-uniform if and only if (H+ K) /| K is f(Q)-uniform in G/K, where f: H—(H + K) / K is a canonical
epimorphism.

Theorem 2.22. Let Q be a proper ideal of G. If every Q-essential R-subgroup is strictly Q-essential,
then every Q-uniform ideal of G is strictly Q-uniform.

Proof. Suppose H is Q-uniform. In a contrary, suppose that H is not strictly Q-uniform.
Then, for some R-subgroups I, JJ, we have I[,LJcH, INnJ cQ but I ¢ Q and J ¢ Q. Consider
S={X:XnIcQ, Xisanideal of G}. Clearly (0), @ € S Now § is a non-empty partially ordered
subset of ideals of G, in which every chain has an upper bound. Hence, by Zorn’s lemma, let K be an
ideal of G maximal with respect to KN I C Q. To show I+ K <, G. Clearly, I + K is an R-subgroup of
G, by ([22], Proposition 2.15). Let L be any ideal of G such that {+ K) N L C Q. To show that L C Q,
first we show that IN(K+L)c Q. Let xe INn(K+L). Thenx=iandx=k+ [, forsomeic I kc K,
l e L,implies [=i—ke LN(I+K)cQ. Hence,l € Q,andsoi=k+[c K+ Q =K, as K is maxi-
mal in 8. This implies x =ie I " K c Q. Again by the maximality of K, it follows that K+ L c K.
Therefore, L ¢ K < Q, which proves that I+ K <{, G. Now by hypothesis, I+ K < G.AsJ ¢ Q and
I+K < G, we have (I+K)nJZQ. Let xe (I+K)nJ and x¢Q. This implies that x = i + k for
someic ke K andx=dJ.Then—-i+x=kec KNI +J).SinceINJCQandJCK,JZQ, we get
k=—-i+x¢Q. Write K, =HNK.Then K ¢ Q. Let T'be an ideal of G such that T n K, c Q and T+K,
is Q-essential. Since T+ K, <, G and [ ¢ Q,wehave INn(T +K,)Z Q. As in the above similar argu-
ment, we get TN H ZQ. Let M=TNH ¢ Q. Then, K, M ¢ Q are ideals of G, and K, M C H such that
KnM=K nNTnH)cK NnT cQ, acontradiction to H is Q-uniform.

3. Relative finite Goldie dimension

We define a finite Goldie dimension of an R-subgroup with respect to an arbitrary R-subgroup Q. We
provide examples and obtain a characterization for an R-subgroup to have Q-f.G.d.

Definition 3.1. Let Q be a proper R-subgroup of G and let 1;}ic; be a family of R-subgroups of G. We
say that ;}i; is Q-direct if I, N ZIL. c Q.

J#i
Definition 3.2. Let Q be a proper R-subgroup of G. An R-subgroup H of G is said to have Q-finite
Goldie dimension (denoted as, Q-f.G.d) if H does not contain R-subgroups H's of infinite number with
H ¢ Q and its sum is Q-direct.

An R-group G has Q-f.G.d if G does not contain an infinite number of R-subgroups H, ¢ Q whose
sum is Q-direct.

Example 3.3.
(1) Let G=Z,xZ,, R=7. Then G is an R-group. Let Q:<(6,§)>. Consider H1=<(I,§)>,

H,=((1,1)), H,=((0,1)).Then H,¢ Q and H, m(ZH ; Jg Q. Therefore, G has Q-£.G.d.
J#
(2) Let R=(Z,,+,,,) and G=R. Consider the R-subgroups H =(2), H, =(4), H, = (), @=(12).
Clearly, H nH, cQ, H ZQ, H, ZQ. Hence, there exist no infinite R-subgroups whose sum is
Q-direct. Therefore, H has Q-f.G.d.

Theorem 3.4. Let H, Q (proper) be R-subgroups of G where every R-subgroup of G contained in H,
contains Q. Then H has Q-f.G.d if and only if for every strictly increasing sequence of R-subgroups
T, T, ..of Gcontained in H, there exists an integer v such that T, <5 T,,, for all k> 1.
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Proof. Suppose H has Q-f.G.d. Let T, G T, G ... be R-subgroups of G such that 7, ¢ Q for all i. In a
contrary way, suppose that for every 1nteger i, there exists £ > i such that T, ﬁ - For i =1,

there exists k, > 1 such that T, £ T, ,,. Fori, =k, + 1, there exists k, > i, such that T, £g T,
k,>k + 1. Continuing the process, we get a subsequence {7, }i, of {T}}., such that Ti %o T, and
k. >k+1.Since T, ST, C ... is increasing we have that Tk, O Tk, . Since T, £a Ty and Tk, 2 Tk,

we have Tk, is not strictly Q-essential in Tk,, . Thus we get a subsequence {7} }7, of {I}}7, such that

ky+1 2111(1

Tki v Tki+1 for all i. Write B, = Tk, for i > 1. Now {B,}7, is an increasing sequence of R-subgroups
of G contained in H such that Q C B, and B, £; B,,,, for all i. Therefore, for each i, there exists a
non-zero R-subgroup A, ¢ Q of G contained in H such that Qc A, c B,,, and B, N A, c Q. Now we
show that A, r\(ZA ) c Q. Let n be the number of such R-subgroups A s. Suppose n = 2, and let
xe A NA,. SlnceA CB,, we have xe A nA,c B,nA, cQ. Forn=3,let xe A Nn(A,+A,). Since
A/ CB,and A, C BS, by modular law, we have x € AN(A,+A,)) c B, N (A, + A,) = A, +(B, n A,). Also,
since (B,NA,)cQ and Q C A,, we have x€ A, +Qc A,. Now, xe A, NnA,c B,nA, cQ, shows

that A, N (4, + A,) c Q. Continuing the process, we get A4; N (ZA ) € Q. Therefore, ZAL is Q-direct,
a contradiction to H has Q-f.G.d. Converse follows from the defimtlon of Q-£.G.d.

Example 3.5. Let G=(Z,,+,;) and R = (Z, +,7). Then .us: R x G — G is a R-group with respect

to the external operation .. Consider the R-subgroups H,=(2), H,=(3), H,=(4), H, =(6),

H, :<§>, H, :<1_2>, H, :<1_6>, H, :<2_4> Take H= H, and Q = H,. Now we have

Chain 1: H, G Hy G H, G H,. Then by the notation in the proof of Theorem 3.4 for i =2, k=2, 3, we have
H, SQ H, and H, < H,. Similarly,

Chain 2: H,G H, G H,. Fori=2,k=2,we have H, < H,. Therefore, H has Q-{.G.d.

Example 3.6. Let G =(Z ,,+,), wherep is prime and R=(Z, +,). Then -p: Rx G —G is a R-group with
respect to the external operation - p. Consider the R-subgroups H, = p"‘inn, i>0. Take Q= p”‘Ian
and H = pr". Then H, < H, ,, for all k> 2. Therefore, H is Q-f.G.d.

k+1?

n

Example 3.7. Let R= g st b where q is prime and n € Z*. Here R non-commutative
ring and let G = R. Now G is considered as an R-group. The ideals as well as R-subgroups of G are

4 —{ 0 4 ﬁ : neZ"}. Consider K=K _ and Q=K. Then, H, <, H,,, for all i > 2. Therefore, K
has Q-f. G.d.

Example 3.8. Consider the nearring with addition and multiplication tables listed below ([1], Table
no 6/2(18)). Let G = S,, the symmetric group, and G = R. Then G is an R-group.

+10 1 2 3 4 5 + /0 1 2 3 4 5
0Oj0 1 2 3 4 5 0|0 0 O O O O
1 /1 0 3 2 5 4 110 1.1 0 0 1
212 4 0 5 1 3 20 2 2 0 0 2
313 5 1 4 0 2 3/0 0 0 O O O
414 2 5 0 3 1 410 0 0 O O O
515 3 4 1 2 O 510 5 5 0 0 5
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The R-subgroups of G are H, = {0}, H, = {0,1}, H, = {0,2}, H, = {0, 3, 4}, H, = {0, 5}, H, = G. Consider
Q=H,. Then H, is not Q-f.G.d, as H,, H,ZH,, but the sum is not Q-direct.

Example 3.9. Let R is a nearring and R, = R, for all i € N. Then éRi is an R-group which has neither
finite dimension not Q-f.G.d. )

For instance, let R = Z and G = éZi, Z,=7(1=21). Then G is an R-group. Take Q = 27 x 27 x ...
2Z.x ... ThenI.=(0, ..., Z, ..., 0, ...). It is clear that I. ¢ Q for each i. Also I, m(ZIj) =(0)x(0)x---C Q.

i#]

Therefore, {IL. }; forms an infinite Q-direct sum, hence G does not have Q-f.G.d.

Lemma 3.10. If G has Q-f.G.d, then every R-subgroup H of G, H ¢ Q, contains a strictly Q-uniform
R-subgroup.

Proof. Suppose that G has Q-f.G.d. On a contrary, suppose H contains no strictly Q-uniform
R-subgroup. Then H is not strictly Q-uniform. So there exist R-subgroups H, and H,” of G contained
in H, and H,, H'¢Q such that H, nH, cQ, H, + H, c H. Then by supposition H, is not strictly
Q-uniform, which implies that there exist R-subgroups H,, H, contained in H, and H,, H, ¢ Q such
that H, "nH' c Q,H, + H, c H,. If we continue, then we get {H,};7, {H;}7 of two infinite sequences of
R-subgroups of G, not contained in Q such that H, "H/ cQ and H, + H; c H; ,, for i > 2. Thus, the

sum ZHL‘ is infinite Q-direct, which contradict the fact that G has Q-f.G.d.
=1

Theorem 3.11. If G has Q-f.G.d, then there exist finite number of strictly Q-uniform R-subgroups of G,
such that the sum is Q-direct and strictly Q-essential in G.

Proof. Since G has Q-f.G.d, by Lemma 3.10, G contains a strictly Q-uniform R-subgroup, say H,. If H,
is strictly Q-essential in 7, then the conclusion is obvious. Suppose that H, is not strictly Q-essential in
G. Then there exists an R-subgroup K, of G with H, " K, c Q but K, ZQ. By Lemma 3.10, K| contains
a strictly Q-uniform R-subgroup, say H,.If H, + H, £ G, then there exists an R-subgroup K, of G such
that (H, + H,)n K, c Q, but K,ZQ. Again by Lemma 1, there exists a strictly Q-uniform R-subgroup,
H, C K,. Continuing this process, we get a strictl}; increasing chain H, G H, +H,GH, +H,+H, &,
which must terminate as G has Q-f.G.d. Hence Y H, <} G, for some n.
1=1

Lemma 3.12. Let H, c H, c H,, and Q (proper) be R-subgroups of G. Then H, <} H, if and only if
H <} H, and H, <} H,.

Proof. Let H <5 H, and H NnLcQ, where L is R-subgroup of G and L C H, Since

LcH,cH, and H, <, H;, we have that L C Q. Therefore, H, < H,. Next, let L be an R-subgroup
of G such that H,nLcQ and L C H,. Now H nLc H,nLcQ and since H, <5 H;, we have
L C Q. Therefore, H, <; H;. Conversely, assume H, < H, and H, <5 H;. Let L be an R-subgroup of
Gsuchthat H "L cQ and L C H,. Wehave H n(H,nL)c H n L c Q. Since H,N Lis R-subgroup
of G, H,nLc H,,, and H, <, H,, it follows that H, "L c Q. Also, as H, <j; H,, it follows L C Q.

229 2 —Q

Theorem 3.13. Let R be distributes over G and Q a proper R-subgroup of G. If G has strictly Q-uniform

R-subgroups H,, H,, ..., H containing Q such that ZHi is Q-direct and iHi <* @G, then G has Q-{.G.d
i=1 i=1

(here, n € Z* is independent of the choice of H’s).
Proof. Suppose G has strictly Q-uniform R-subgroups H,, H,, ..., H such that its sum is Q-direct

n

and iHi < G. Let L, L, ..., L, be R-subgroups of G such that I, £Q, and il‘i is Q-direct.

i=1 i=1
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Now to show m < n, first we show that if 7" is an R-subgroup of G such that T n H,ZQ for all i,

then T <j G. Suppose T'N H, ¢ Q. Since H, is strictly Q-uniform, by definition, every R-subgroup
contained in H, is strictly Q-essential. In particular, 7'N H, is an R-subgroup contained in H, and so

TNH, <5 H. Now by Theorem 2.18, Z(TmHi) <o zHi and iHi <* G. Hence, by Lemma 3.12,
i=1 i=1

=1

we have § T ~ H.) <* G. Again by Lemma 2.18, since Y(TTnH.)cT cG and » (T nH,)) <5 G, we
hX( D<o ;
i=1

i=1 =1

get T < G. Now if ZLi < @, then since ZLL. is Q-direct, we have ZLL- NL cQ but L ZQ, a
i

i=2 i=2

contradiction. Hence, ZLi £ G. So there exists an j € {1, 2, ..., n} such that ZLi NH, cQ, and
=2 =2
H, ZQ. Suppose j = 1, then ZLi N H, c Q, which shows that ZLL- + H, is Q-direct. Again, since
i=2 =2

H, + YL, £5 G, there exists j € {2, ..., n} such that YL +H; cQ, and H, ZQ, say j = 2, which
i=3 i=3
implies that ZLL. + H, + H, is Q-direct. Continuing this process, we get m < n. Hence, G has Q-f.G.d.

i=3

4. Conclusion

We have introduced the concept of uniform ideal (strictly uniform ideal) with respect to an arbitrary
ideal Q (or R-subgroup) in R-groups. Several properties of Q-uniform ideals were proved and exhib-
ited suitable examples or counterexamples. Finally, we have obtained Goldie theorems analog in
terms of Q-uniform R-subgroups. One can extend to study various dimensions properties involving
quotient R-groups.
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