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In this study, the initial and periodic boundary value problem were solved for the following fourth- 
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1. Introduction

In this paper, the following fourth-order pseudo-parabolic equation was solved: 
u a u u u u u x t Tt t

p- - + - = -Ñ × Ñ Ñ Î ´-D D D W( ) (| | ), ( , ) ( , )2 2 0  (1)
subject to the initial condition 

u x u x u L x( , ) ( ), ( ), ,0 0 0
2= Î ÎW W  (2)

and periodic boundary conditions 
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where 

W G W= ´ = ¶ Ç =( , ) ( , ), { }.0 0 01 2L L xi i

Here, ¶W  is the boundary of W, ,a ³ 0  and p > 2 cases were considered. For u0≡/ 0, it is assumed that 

Wò =u x0 0( ) .  (5)

It is clear from equation (1) and condition (5) that d
dt udx

Wò = 0,  which means that the average zero 
periodic initial value functions produce average zero periodic solutions. In this study, the aim is to 
analyze the effect of the pseudo-parabolic term –aDut and the diffusion term –Du in equation (1). 
When a = 0, equation (1) turns into a form of thin-film equations: 

u A u A u A u u A ut + + + Ñ × Ñ Ñ + Ñ =1 2
2

3
2

4
2 0D D D(| | ) | | ,  (6)

where u(x,t) and A1Du denote the height of a film in epitaxial growth and the diffusion due to evap-
oration condensation, respectively, the terms A2D

2u and A u u3
2Ñ × Ñ Ñ(| | )  are the capillarity-driven  

surface diffusion and atomic displacements, respectively, and the term A u4
2D| |Ñ  describes the motion 

of an atom to a neighbor effects. For a detailed description of this model, please see [13]. Thin film 
equations are long-standing topics of research, as shown in [7, 13, 14, 16, 21, 23, 24].

Blow-up solutions for the nonlinear parabolic initial-boundary value problems have been studied 
by many researchers; please see [7, 9–12, 17–22]. For the fourth-order nonlinear parabolic equations, 
see the articles: [7, 8, 20, 29]. In [7], Feng and Xu studied the problem: 

u u u ut
p+ - = -Ñ × Ñ Ñ-( ) (| | )D 2 2  (7)

with the initial condition 
u x u x u L x u( , ) ( ), ( ), ,0 00 0

2= Î Î ºW W  (8)
on a two-dimensional torus. They derived an existence-uniqueness result when 2 < p > 3. Moreover, 
they obtained a result for the existence of finite-time blow-up solutions for (7). In [29], Zhou derived 
a blow-up result for the initial boundary value problem for fourth-order reaction-diffusion equation 
with a non-local source term under the assumption that the initial energy is positive. In [20], Philippin 
studied the existence-uniqueness of solutions of the following initial-boundary value problem: 

u u k x u u x t T

u x t u
n

for x t T

t
p+ = Î < <

= ¶
¶
= Î¶ < <

-D W

W

2 1 0

0 0 0

( )| | , , ,

( , ) , , , ,,

( , ) ( ), , , , ( ) .u x u x x n and k xn0 2 00= Î Î ³ >W W 

In addition, this work obtained a blow-up result and a lower bound for the blow-up time.
The effect of the pseudo-parabolic term was studied by many researchers; please see [4, 15, 25–28, 30]. 
In [25], Showalter and Ting constructed connections between pseudo-parabolic and parabolic equa-
tions for a mixed boundary value problem for the partial differential equation. 

u u k ut t- =hD D ,  (9)
where the cases h = 0 and h ≠ 0 were considered. For h = 0, this reduces to 

u k ut = D .  (10)
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They showed the existence-uniqueness and regularity of their solution. Moreover, they found that the 
solution continuously depended on h, and when h approached to zero, the solution of (9) converged to 
the solution of (10).

The rest of this paper is organized as follows: in the next section, the required phase spaces and 
some preliminaries are given. In Section 3, the local existence-uniqueness of a mild solution of (1)-(2) 
is obtained. In Section 4, the blow-up solution and a lower bound for the blow-up time are obtained. 

2. Notations and Preliminaries

In this study, L2( )W  is specified in the regular and periodical Hilbert spaces as given by 

H u L D u L for
H u H uper per

2 2 2

2 2

2( ) { ( ) : ( ) | | },
( ) : { ( ) :
W W W

W W

= Î Î £

= Î

a a


WWò =dx 0},

respectively. The inner product and its norm are given as 
( , ) ( ) ( ) , .u v u x v x dx u u dx

a
= =ò ò0

2 2
W

The pair ( ( ), . )
( )





H
H

2
2W

W
 denotes Hilbert space with the inner product of gradients: 

( , ) : . ,u v u u dx u v dx= Ñ Ñ +ò òW W
D D

and the norm 
     u u uH2

2 2 2
( ): .
W

D= Ñ +

In addition, Lq ( )W  is defined as the Lebesque space with the norm  u u dxq
q q= ( )òW| | .

1

The Sobolev Space W qs q, ( )W  for 1 £ < ¥  is defined as the subset of functions f in Lq ( )W  such that f 
and its weak derivatives up to an integer order s are in Lq. That is, 

W u u L u L u
x

L

u u

s q q
x

q
s

s
q

q
x
q

, ( ) ( ) ( ) ( )

| | | |

: , ,..., ,W W W W

W

= Î Î ¶
¶

Î
ì
í
î

+ ++ + ¶
¶

< ¥
ü
ý
ï

þï

é

ë
ê

ù

û
ú

æ

è
çç

ö

ø
÷÷ò ... .| |

s q

s
u
x
dx

q
1

For the case q ®¥,  the norm is defined by 

   f f ess f tk i k

i

i k t

i
, ,...,

( )
,...,

( )max max sup| ( )|¥ = ¥ =
= = æ

èç0 0
öö
ø÷
.

In the inequality above, esssup means essential supremum. This allows us to generalize the maxi-
mum of a function in a useful way. Let f L q f kqÎ ³( ) ( )W  with  and 1   be The Fourier transform of f(k) 
at the frequencies k Î2  is given by 

F k e f x dxikx
( ) ( ) .=

-¥

¥ -ò  (11)
Moreover, when q = 2 and s 2 R, the Sobolev space by Hs(Ω) and the homogeneous Sobolev space by 
Hs( )W  are denoted by the norms 

� � � � �

� � �

f k f k I f

f

H
k

s s
L

H
k

s

s

2 2 2 2 2

2

2
2

2

1= + = -

=
Î

Î

å

å




( | | ) | ( )| ( ) ,/D

((| | ) | ( )| ( ) ,/k f k fs s
L

2 2 2 2
2

� � �= -D

respectively. Here, I is the identity operator and ( ) /-D s 2  shows Fourier multiplier with symbol | | ,k s  
k ≠ 0.
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The strongly continuous semi-group of operators, which are generated by
 = - - +-( ) ( ) ,I a LD D D1 2 2 on  are defined by 

e f F te ft
t k k

a k- -
- +

+=
æ

è
ç
ç

ö

ø
÷
÷

 1
1

1
2

2

2| | | |
| | ,

where F–1 denotes the inverse Fourier transform on Ω. 

Definition 2.1 A function u C T L for T: ([ , ]; ( ))0 02 W   £ < ¥  is called a mild solution of (1)-(2) on [0,T] 
with initial data u L0

2Î ( ),W  if it satisfies 

h( )( ) ( ) ( ) ( (| | ))( )u t u t e u e I a u u dst t t s p= = - - Ñ × Ñ Ñ- - - - -ò 
0 0

1 2D  (12)

for t T 0 £ < .
In order to be able to define the non-linearity that needs Ñu to be locally integrable, the following 

Banach spaces are defined for 

u : , + ´ ®W

E
t u a

t u a
s

t T

t T

=

ì
Ñ < ³

Ñ < £ <

£ £
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and 
E C T L ES S= Ç([ , ]; ( ) ),0 2 W

with the norm 
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Lemma 2.2. There exist positive constants C 1 and C 2 such that
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Proof. By using Plancherel’s identity and the definition of the operator e t-  ,  one finds 

� �e I a f k
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k
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- +
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R
èè
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÷
÷
dx.  (13)



Karslioğ lu D, Results in Nonlinear Anal. 7 (2024), 94–108 98

The above integral in polar coordinates is split into two parts: 

I x
a x

e dx
t x x
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In (14), the first integral is proper and it converges to a positive number, C1. The second integral can 
be written as 

I r r
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21
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³  for a ≥ 1, and for 0 < t ≤ 1, 
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Applying Hölder inequality to the right side of (15), we obtain 
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2 1
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By computing the above integrals, the following is obtained: 

I C t e C t for C
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22
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and 
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If equation (18) is used in (13), then for 0 < t ≤ 1 one gets 
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Taking s ar= +1 2,  the right-hand side turns into 

p p¥
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Lemma 2.3. For any s ≥ 0, there exists constants C 3 and C 4 such that
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Proof. By using Plancherel’s identity and the definition of the operator e t- 

for a ≥ 1, one can write: 
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For 0 ≤ a < 1, one can write: 
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3. Local Existence and Uniqueness
In this study, the following lemmas were used, which are crucial in proving the existence-uniqueness 
of the mild solution: 

Lemma 3.1. (i) For 2 5
2

1 0 1< < ³ < £p a and T, , ,   there exists a positive constant C1 such that the 

operator h :E ES S®  satisfies 

     h( ) .u C u T uE

p

E
p

S S
£ +

æ

è
ç

ö

ø
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-
-

1 0 2

5 2
4 1  (19)

(ii) For 2 3 0 1 0 1< < £ < < £p a and T, , ,   there exists a positive constant C1  such that the operator 
h :E ES S®  satisfies 
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Proof. To prove (i) in this lemma, it is sufficient to show the following two assertions hold:

Assertion 1 If u E then u C T LSÎ Î, ( ) ([ , ]; ( ));  h 0 2 W
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Assertion 2 If u E t uS
t T

Î Ñ £ ¥
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In the rest of the computations, we shall use T to denote the operator ( ) .I a- -D 1  In the proofs of these 
two inequalities, the equality s t= x  will be used when needed. To prove Assertion 1, Lemma 2.2 and 
Lemma 2.3 are used with 2 5

2< <p  as follows: 
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Similarly, for Assertion 2, 
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Multiplying the inequality (21) by t
1
2 ,  one obtains 
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for any t TÎ[ , ].0  Combining these two assertions, the proof of (i) is completed where h :E ES S®  is 
a bounded operator.

Similarly, to prove the second part of this lemma, it is sufficient to show the following two asser-
tions hold:

Assertion 1 If u E then u C T LSÎ Î, ( ) ([ , ]; ( ));  h 0 2 W

Assertion 2 If u E t uS
t T

Î Ñ £ ¥
£ £

, sup ( ( )) . then 
0

1
4

2 h

In the proofs of these two inequalities, the equality s t= x  will be used when needed. To prove Assertion 1,  
Lemma 2.2 and Lemma 2.3 are used with 2 < p < 3, 
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Similarly, for Assertion 2, 
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Multiplying the inequality (22) by t
1
4 ,  one gets 

t u t C u a t u
p

E
p
S

1
4

2 0 2
1

3
4 11     Ñ £ + +

æ

è
ç

ö

ø
÷-

-
-h( )( ) ( ) ,

for any t TÎ[ , ].0  Combining these two assertions, the proof of (ii) is completed. This means h :E ES S®  
is a bounded operator. 

Lemma 3.2. (i) For 2 5
2

1 0 1< < ³ < £p a and T, , ,   there exists a constant C2 such that the operator 
h :E ES S®  is a Lipschitz continuous map. That is, it satisfies: 

       h h( ) ( ) ( ) .u u C T u u u uE
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E
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ES S S S1 2 2

5 2
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1 2- £ + -
-

- -  (23)

(ii) For 2 3 0 1 0 1< < £ < < £p a and T, , ,   there exists a constant C 2  such that the operator h :E ES S®  
is a Lipschitz continuous map. That is, it satisfies: 

� � � � � � � ��h h( ) ( ) ( ) .u u C T u u u uE
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E
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ES S S S1 2
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Proof. To prove (i), it is sufficient to show the following two inequalities:

I
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In the proofs of these two inequalities, the equality s t= x  will be used when needed. To prove I1, 

Lemma 2.2 and Lemma 2.3 are used with 2 5
2

< <p ,
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Similarly, for I2, one can write 
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Multiplying the inequality (25) by t
1
2 ,  one gets 

t u u Ct u u u u
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for any t TÎ[ , ].0  Combining the above two inequalities, the proof of (i) is completed. That is, 
h :E ES S®  is a Lipschitz continuous map.

To prove (ii), similar to the previous inequality, it is sufficient to show the following two inequali-
ties hold:
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In the proofs of these two inequalities, the equality s t= x  will be used when needed. To prove I3, 
Lemma 2.2 and Lemma 2.3 are used and 2 < p < 3 is assumed: 
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where C C a* = + -( )1 1 . Similarly, for I4, one has 
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 where C C a* = + -( )1 1 . Multiplying the inequality (26) with t
1
4 ,  one gets: 
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for any t TÎ[ , ].0  Combining these two inequalities, the proof of (ii) is completed. That is, h :E ES S®  
is a Lipschitz continuous map. 

The main result in this study is given below. 

Theorem 3.3. (i) Let u L0
2( )Î W  such that a ≥ 1, 

 u R
C0 2

0

£ , where C C C0 1 2= { , }max  for the positive 

constants C1 and C2 provided by Lemma 3.1 and Lemma 3.2, and 2 < < 5
2

p . Then there exists 0 1£ £T ,  

depending on  u0 2 , such that (1)-(2) admits a unique mild solution u on [0,T] 2 ES .

(ii) Let u L0
2( )Î W  such that 0 <1£ a ,  u R

C0 2
0
*£ , where C C C0

*
1 2= { , }max    for the positive constants C1  

and C 2  provided by Lemma 3.1 and Lemma 3.2, and 2 < < 3p . Then there exists 0 1£ £T , depending  

on  u0 2 , such that (1)-(2) admits a unique mild solution u on [0, ]T  2 ES . 
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Proof. (i) Let BR (0)  be the closed ball with radius R, and 

T C Rp p£ -
-
-min{1,(2 ) }.0

2
4

5 2

Then, Lemma 3.1 suggests that, for every u BRÎ (0) , 

 h( ) .u RES
£

Moreover, Lemma 3.2 states that, for every u u BR1 2, (0)Î  and l1 <1 , 

   h( ) ( ) .1 2 1 1 2u u l u uES ES
- £ -

By using the Banach Contraction Mapping Theorem, a unique fixed point of h in BR (0)  is obtained. 
Thus, this fixed point u is the unique mild solution of (1)-(2) with the initial data u0.
(ii) Let BR (0)  be the closed ball with radius R, and 

T min a C Rp p£ + - -
-
-{1,((1 ) 2 ) }.1

0
* 2

4
3

Then, Lemma 3.1 implies that, for every u BRÎ (0) , 

 h( ) .u RES
£

Moreover, Lemma 3.2 denotes that for every u u BR1 2, (0)Î and l2 <1 , 

   h( ) ( ) .1 2 2 1 2u u l u uES ES
- £ -

By using the Banach Contraction Mapping Theorem, a unique fixed point of h in BR (0)  is obtained. 
Thus, this fixed point u is the unique mild solution to (1)-(2) with the initial data u0. 

4. The blow-up solutions and an estimate for the lower limit of blow-up time

In this section, the blow-up result for the solutions of (1)-(2) is presented. To achieve this goal, the 
following functionals are defined: 

F = ,2
2

2
2

   u a u+ Ñ

Y D= 1 1
2
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p
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p
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The main theorem of this study is given as follows: 

Theorem 4.1. Assume that p > 2 , u H0
2( )Î W , u0 ≠ 0, and 

Y D(0) = 1 1
2

1
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.0 0 2
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0 2
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Then for the solution u x t( , )  of (1)-(2), there exists some T * > 0  such that 
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Theorem 4.1. was formulated using the ideas of [20]. 
Proof. Using (1)-(2), one can obtain 

¢ Ñ - Ñ -éë ùûF D( ) = 2 2
2

2
2t u u up

p
       (27)
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¢ + ÑY ( ) = .2
2

2
2t u a ut t   

By Schwarz inequality, one has 
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Combining (27) and (28), one gets 
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From this one gets 
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Taking the roots of both sides of (33), one gets the following: 
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This expression gives the upper bound of the time interval, i.e, t T
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F  for the solution 

blow-up. 
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Now, the following theorem is given to specify a finite time interval (0, )*T  on which the quantity 
   Ñ +u a u2

2
2
2D  remains bounded and this is inspired by [17, 20]. Indeed, T* is a lower bound for t 

because, by the Poincaré inequality, one has 
       u a u a u u t T2

2
2
2

1 2
2

2
2

*( ), (0, ),+ Ñ £ + Ñ Îl D

where l1  is the first eigenvalue of the -Du u= l  under the periodic of boundary conditions. 

Theorem 4.2 Let u x t( , )  be solution of the problem (1)-(2). Then there exists a positive number 

T
p C

p

p*

2

2 2= (0)
( 2) ( )

b -

-- W
 such that 

b ( ) = (| | | | )2 2t u a u dx
W

Dò Ñ +  (34)

remains bounded in (0, )*T . 

Proof. By using Green’s identity and using (1)-(2) 

¢ - +òb ( ) = 2 ( )t u u a u dxt tW
D D
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By the inequality |2| || ||| | | |2 2d du u u up p£ +  the last term above gives 
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Substituting this into (35) ¢ £ Ñ -
-b ( ) 2 2

2 2t u p
p

  . Now, by using the Sobolev inequality 

     Ñ £ Ñ +-
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p p p

2 2
2 2 2 2
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So, one gets 
¢ £ Ñ +- - - -b b( ) ( )( ) = ( ) ( ).2 2 2 2 1 2 2 1t C u a u C tp p p pW D W   

If this inequality is solved, the following is obtained: 

b b2 2 2 2( ) (0) ( 2) ( ) .- - -³ - -p p pt p C tW  (37)
Taking the root of both sides of (37), one finds 

b b( ) (0) ( 2) ( ) .2 2 2
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2t p C tp p p³ - -( )- - -W

Therefore, T
p C

p

p*

2

2 2= (0)
( 2) ( )

b -

-- W
 as obtained. 

5. Conclusion

Higher-order pseudo-parabolic equations can be obtained from parabolic equations by adding the 
term -a utD . Pseudo-parabolic equations play a crucial role in modeling complex physical phenomena 
where traditional parabolic or hyperbolic equations are insufficient. Their ability to capture memory 
effects and non-local behavior and to ensure the smoothness of solutions makes them valuable in var-
ious scientific and engineering applications, see [1–3, 5, 6].

By setting a = 0  in the term -a utD , these equations generalize the thin-film equation, which arises 
in various fields of science such as biology and physics. This includes the spreading of low-amplitude 
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long waves and heat conduction, describing nonlinear phenomena in the seepage of homogeneous 
fluids through fissured rock, the unidirectional propagation of nonlinear dispersive long waves, and 
numerous other phenomena.

In this research, it was observed that these two different types of equations have different solution 
spaces and these spaces converge to each other as a approaches zero. It was also observed that the 
solutions of pseudo-parabolic equations are smoother than the solutions of parabolic equations.

For a ≥ 1, the solutions are in

E u t uS
t T

= { : | < }
0

1
2

2 +
£ £

´ ® Ñ ¥W sup  

and for 0 <1£ a , the solution space is given by 

E u t uS
t T

= { : | < }.
0

1
4

2 +
£ £

´ ® Ñ ¥W sup  
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