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In this study, the initial and periodic boundary value problem were solved for the following fourth-
order pseudo-parabolic equation with gradient non-linearity and pseudo-term

u, —alAu, —Au+ANu=-V-(|Vul’? Vu)

where a > 0. A local existence-uniqueness result for mild solutions was found for any initial data in
[*(Q). In addition, the existence of blow-up solutions was proved and a lower bound for the blow-up
time was obtained.

Key words and phrases: Fourth-order pseudo-parabolic equation, Gradient non-linearity, Existence-
uniqueness, Blow-up and Lower blow-up time.

Mathematics Subject Classification (2020): 35A01, 35A02, 35B44

1. Introduction
In this paper, the following fourth-order pseudo-parabolic equation was solved:
u, —aAu, — Au+(-AYu=-V-(IVu"? Vu), (x,t)e Qx(0,T) (1)
subject to the initial condition
u(x,0) =u,(x), u,eL*(Q), xeQ, 2)

and periodic boundary conditions
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Vxel,, 0<t<T, i=12, u(x,t)=u(x+ Le,,t), 3)

13

u, (x,t)=u, (x+Le,,1), (4)

where
Q=(0,L,)x(0,L,), T, =0QnN{x, =0}.

Here, 9Q is the boundary of Q,a >0, and p > 2 cases were considered. For u #0, it is assumed that
[ o) =0. (5)

It is clear from equation (1) and condition (5) that %Jgudx =0, which means that the average zero
periodic initial value functions produce average zero periodic solutions. In this study, the aim is to
analyze the effect of the pseudo-parabolic term —aAu, and the diffusion term —Au in equation (1).
When a = 0, equation (1) turns into a form of thin-film equations:

u, + AAu+ ANu+AV-(IVul Vu)+ A,A | Vu =0, (6)

where u(x,t) and A Au denote the height of a film in epitaxial growth and the diffusion due to evap-
oration condensation, respectively, the terms A A’z and A,V -(IVu > Vu) are the capillarity-driven
surface diffusion and atomic displacements, respectively, and the term A,A|Vu[* describes the motion
of an atom to a neighbor effects. For a detailed description of this model, please see [13]. Thin film
equations are long-standing topics of research, as shown in [7, 13, 14, 16, 21, 23, 24].

Blow-up solutions for the nonlinear parabolic initial-boundary value problems have been studied
by many researchers; please see [7, 9-12, 17-22]. For the fourth-order nonlinear parabolic equations,
see the articles: [7, 8, 20, 29]. In [7], Feng and Xu studied the problem:

u, + (A ’u=-V-(|Vul’? Vu) @)
with the initial condition
u(x,0) =u,(x),u, € L(Q),xe Qu=0 (8)

on a two-dimensional torus. They derived an existence-uniqueness result when 2 < p > 3. Moreover,
they obtained a result for the existence of finite-time blow-up solutions for (7). In [29], Zhou derived
a blow-up result for the initial boundary value problem for fourth-order reaction-diffusion equation
with a non-local source term under the assumption that the initial energy is positive. In [20], Philippin
studied the existence-uniqueness of solutions of the following initial-boundary value problem:

u, +ANu=k(x) | ul' u,xeQ,0<t<T,
u(x,t)zO,g—ufoorxe 0Q,0<t<T,

n
u(x,0)=uy,(x),xe Q,Qe R",n2>2,and k(x) > 0.

In addition, this work obtained a blow-up result and a lower bound for the blow-up time.

The effect of the pseudo-parabolic term was studied by many researchers; please see [4, 15, 25-28, 30].
In [25], Showalter and Ting constructed connections between pseudo-parabolic and parabolic equa-
tions for a mixed boundary value problem for the partial differential equation.

u, —NAu, = kAu, 9)
where the cases 1= 0 and n # 0 were considered. For n = 0, this reduces to

u, = kAu. (10)
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They showed the existence-uniqueness and regularity of their solution. Moreover, they found that the
solution continuously depended on 1, and when 1 approached to zero, the solution of (9) converged to
the solution of (10).

The rest of this paper is organized as follows: in the next section, the required phase spaces and
some preliminaries are given. In Section 3, the local existence-uniqueness of a mild solution of (1)-(2)
1s obtained. In Section 4, the blow-up solution and a lower bound for the blow-up time are obtained.

2. Notations and Preliminaries
In this study, L*(Q) is specified in the regular and periodical Hilbert spaces as given by

H*(Q)={ue [*(Q): D"ue L*(Q) for | a < 2},
H? (Q):={ue H> (Q):J.Qudx=0},

per per
respectively. The inner product and its norm are given as
[ 2 _ 2
wv) = [ w@p@)dx, [u =] wdx.
) denotes Hilbert space with the inner product of gradients:

(u,v) = JQVu.Vu dx + JQAuAv dx,

The pair (H? (Q),”.

H*(Q)

and the norm

2 . 2 2
e e =l Ve IIF + 11 A 1"
1

In addition, L(Q) is defined as the Lebesque space with the norm || u I,= (J.Q [z | dx)g .

The Sobolev Space W*1(Q) for 1< g << is defined as the subset of functions fin L(Q) such that f
and its weak derivatives up to an integer order s are in L. That is,

W*1(Q) = {u ‘ue L'(Q),u, Lq(Q),...,g—L;e (@),
X

s..q é
(jg[mwﬂux [ +...+|a”s deD <ol
0x

For the case g — o, the norm is defined by

..........

In the inequality above, esssup means essential supremum. This allows us to generalize the maxi-
mum of a function in a useful way. Let fe L'(Q) with ¢ >1 and f(k) be The Fourier transform of f(k)
at the frequencies ke Z* is given by

F(k)=["e™f(x)dx. (11)

Moreover, when g = 2 and s € R, the Sobolev space by H*(€2) and the homogeneous Sobolev space by
H?(Q) are denoted by the norms

IFIE.= Y @1k EY | f(R) P=I (T - A FI2,

keZ?

IFIE= S (LR PY | F(R) P=ll (-8 I,

keZ?

s/2

respectively. Here, I is the identity operator and (—A)** shows Fourier multiplier with symbol | % [,

k#0.
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The strongly continuous semi-group of operators, which are generated by
L=(-aA)" (-A+A*) on I*, are defined by

o LHRE
—tLp _ -1 1+alkl?
e"f=F"|te [

where ! denotes the inverse Fourier transform on Q.

Definition 2.1 A function u: C([0,T]; L*(Q)) for 0<T <o is called a mild solution of (1)-(2) on [0,T]
with initial data u, e L*(Q), if it satisfies

nw)(@) =u®) =e“u, - J;e"("S)L (I =aA) " (V-(|Vul’? Vu))ds (12)

for 0<t<T.

In order to be able to define the non-linearity that needs Vu to be locally integrable, the following
Banach spaces are defined for

u:R, xQ—->R,
1
supt? || Vu|l,<ee, ifa 21,
_ Josi<t
E, = .
supt?* || Vu|,<eo, if0<a <1,
0<t<T
and

Es= C([0,T]; L} () N Ey),

with the norm

0<t<

1
max[sup llwll,supt? || Vu |, ], ifa>1,
T 0<t<T
el = 1
max[sup [ u||2,suptZ | V|l ], if0<ax<l.

0<t<T 0<t<T

Lemma 2.2. There exist positive constants C' and C? such that

1
C't *“|IfIl, ifa>1,

c:
a+af2HfH1ﬂOSa<L

e (I -=ad)™ (V- )I,<

Proof. By using Plancherel’s identity and the definition of the operator e™*, one finds

LT _ aA)Y ' (V 2_ |k P —2z|k|211+;:2|2 p: k) I2
e (I —aA)™\( 'f)||2—2m |/ (R) 1
keZ?

14k
1+alk?

~ ) | & |2 -2tk
<suplf (k)P Y,

ez’ “(1+alklP)

2 —otleP 1+|«7C|22
SUFIE [(HLe Ll ]dx- (13)

alle)Z
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The above integral in polar coordinates is split into two parts:

| x |? oy 1P

— 1+alxf dx
JRZ Q+alx)?

2 1412

T poo 2 —2tr 3
= JZ J. 7"—22 e " Lvar rdrd@
0901 1+ar?)

2 2 1472
oo r —2tr°——
= 277:'[ g e L+ar® rdr
ol I+ar”)

9 1472

2 2 9 1472
1 r —2tr°*—— I r —2tr°*——
= 271-'[ —22 e 1+ar2 rdr + 277:'[ —22 e 1+ar2 rdr.
ot 1+ar”) 1 1+ar?)

(14)

In (14), the first integral is proper and it converges to a positive number, C,. The second integral can

be written as
o 2 72”21;;*2:
I, =27rj _rr r2 ~e Mt \dr,
L (1+ar?)
2 2 2
Since Mzr— fora>1,andfor0<t<1,

l+ar® a
I, < Zn'[j(% e e Jdr = 2—7; m[\/;;/; e e Jdr.
ar

a” 1! r

Applying Holder inequality to the right side of (15), we obtain

1 1
om = \rlr —2% 21 | —4% P~ 2
? 1( 2 e JdrS?[J‘lre dr] ledr .

By computing the above integrals, the following is obtained:
1 2t 1

I,<Cpt % *<Cgt?* for C,=

b
§ b
2a?
and .
I<C +Cyt 2.

For C' =max{C,,C,}, one gets

1
I<C'(1+t 2).
If equation (18) is used in (13), then for 0 <¢ <1 one gets

1 =
e (I —ar) (VOIS C' A+ )| fI2C 2 | 112

r*+rt

In addition, 0<a <1, >rfand 0<t<1

1+ar?

7"2

————rdr.
(1+ar2)2r "

I < iZiere‘m2
2 1

(15)

(16)

(17)

(18)
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Taking s =1+ ar?®, the right-hand side turns into

e 2
—ﬂ;e“ e o’ 21ds=£e'2t 1 =< ¢ —,
a l+a S 2t 1+a) (Q+a)t
where C? =%. Hence,
C2
e “(I —aA) (V. c_—Z ¢! 2,
Il e ( ) (VOIS 1ta) /I3

Lemma 2.3. For any s > 0, there exists constants C? and C* such that

Ct2|fll, ifax1,

C't 4| fll, if0<a<l.

neAfgé”fn;

Proof. By using Plancherel’s identity and the definition of the operator e
for a > 1, one can write:

oy LHEE IR

2 | s A 2
||(_A)2e—t£f||§=2 jlklzs e 1+alkl | (k) |2S Z lklzs e 2t |7 (k) |2

ke kez?

i R
<C? (supxzse @ Jz | f(x)P<C | f 1l
xeR” keZ?

For 0 <a <1, one can write:

o 14k

” (_A)ge*tllf ” iz 2 |k IZS e 1+alkl? |;~(k) IZS 2 Ik IZS e—2ta|k|4 I?(k) |2

keZ? keZ?

<C* (supxzse‘twl Jz |f(x)E<C 2 | £ ..

xeR* he72

3. Local Existence and Uniqueness

In this study, the following lemmas were used, which are crucial in proving the existence-uniqueness
of the mild solution:

Lemma 3.1. (i) For 2<p <g,a 21, and 0<T <1, there exists a positive constant C, such that the

operator N :ES - ES satisfies
5-2p
IMWH@SQ@Wﬂhﬂ’4HM§q- (19)

(ii) For 2<p<3,0<a<1, and 0<T <1, there exists a positive constant C. such that the operator
n:E, - E, satisfies

3-p

nmw%gé{m%mﬂuan nmaq. (20)

Proof. To prove (i) in this lemma, it is sufficient to show the following two assertions hold:

Assertion 1 If ue Es, then n(w)e C([0,T]; I2(Q));
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_ 1
Assertion 2 If ue Es, then supt? || V() ||,< oo

0<t<T

In the rest of the computations, we shall use 7' to denote the operator (I —aA)™. In the proofs of these
two inequalities, the equality s =t will be used when needed. To prove Assertion 1, Lemma 2.2 and
Lemma 2.3 are used with 2< p <3 as follows:

1n@11, <Clluy Iy +, e TV - (| V™ Vu) | ds)

L
<C|lluy I, +[ (E=5) * I(IVu P V) ILdSJ
; 1
<Cllluy Il +[ (=) " ||Vu||§1ds)
N V.S 1
<Cllluy l, +[ t=5) 's 2 (s? ||Vu||2)"‘1ds}

52 1
<Cllly, lp+t * [a- ¢ ||u||§:déJ

5-2p
-1
<Cllluyll, +t 4 ||u||§s .

Similarly, for Assertion 2,

_-9), _(t-9),

V@O 11, < Ve “uy I+ [ Ve 2 11, lle * TV -(1Vu ™ Vu)l, ds

o 1 1
<CL [y Il Cf (¢ =9) 2 =) * 11 Va2 Va | s

3 (p-1) 1

-1
<Ct? Yl I1,+Cf (t-9)*s 2 (s21IVull,)""ds

3-2p 3 (p-D)

-1
— 1
<Ce? Nlug ll+ Ct © [ A=8) & 7 llullydé

-1 3-2p
SC[t2 R PS A ||u||%;1 ] (21)
Multiplying the inequality (21) by £*, one obtains

1 5-2p
2 |IVn(w)@) |,< C(uu0 I, +t * ||u||§: ]

for any te [0,T']. Combining these two assertions, the proof of (i) is completed where n :Es - Es 18
a bounded operator.

Similarly, to prove the second part of this lemma, it is sufficient to show the following two asser-
tions hold:

Assertion 1 If ue Es, then n(u)e C([0,T];I3(Q));
1

Assertion 2 If ue Z_Zs, then supt? || V(n(w)) [}, < oo.
0<t<T

In the proofs of these two inequalities, the equality s =t will be used when needed. To prove Assertion 1,
Lemma 2.2 and Lemma 2.3 are used with 2 <p < 3,
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17@ 1< C (1, I+, lle TV -(1Vu ™ Vu)  ds|

1
<Cllluy ll, +1+a)™ [ (t=9) 2111 Vuu P2 V) Ihds]
t _l
<C|lly, lh +1+a)* [ (t-9) 2 ||Vu||§1ds]
(p-1) 1

1
<Clluy 1+ @) [ie=9) 25 1 (s 11 Vu ||2>P‘1ds]

RS 1w X
<Clly, I +A+a)"e? [ =82+ Jlully! dé

3-p
<Clllu ll, +HA+a) 't * Jlul’ )

Similarly, for Assertion 2,

¢ _(t-s) _(t-s)
| V@) @) |, <I| Ve u, ||2+J0||Ve 2 glle ?

TV (1Vu P2 V) |l,ds

1 1 1
<Ct |y, ll, +CA+a)™ j ;(t —5) 4(t-s) 2 | Vul? Vu) || ds

3 (p-1) 1

1
<Ct * |y, I, +CA+a)’ | ;(t —s)is 4 (s'||VulL)"ds

(p-1)

SOy, +CA+a) 't 0 [ © i) de

1 2-p
SC(t ug I, +A+a) 't 4 ||u|l§;1 ] (22)

1
4

Multiplying the inequality (22) by ¢*, one gets

1 3-p
tIVn@)(@) I, < C[H u L +A+a)'t * Jlu II§;1 ]

for any t € [0,7T']. Combining these two assertions, the proof of (ii) is completed. Thismeans n: E, — ES
1s a bounded operator.

. 5 )
Lemma 3.2. (i) For 2<p< E,a >1, and 0<T <1, there exists a constant C, such that the operator
n: I_ZS - ES is a Lipschitz continuous map. That is, it satisfies:

5-2p

||77(u1) —77(%) ”Eg < CzTT(” ul ”§;2 + ” uz |I§;2) || u1 _uz ”Eg . (23)

(ii) For 2< p<3,0<a<1, and 0<T <1, there exists a constant Cs such that the operator n : E‘S - ES
is a Lipschitz continuous map. That is, it satisfies:

3-p

M) =)l <O (luy 1122+ 1wy 1222 1y —uy -

S

(24)
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Proof. To prove (i), it is sufficient to show the following two inequalities:

5-2p

LoIn@,) —n@) 1L,<Ct * (luy B2+ 1y 12°) 1w, —uy
5-2p

1
Iz sup t2 II Vn(ul)_vn(uz) ”2S Ct 4 (” ul ”§;2 + “ uz ”]173);2) ” u1 _uz ”Eg .

te[0.T]

In the proofs of these two inequalities, the equality s=t£ will be used when needed. To prove I,

Lemma 2.2 and Lemma 2.3 are used with 2< p < g,

1
17G8) ~0(,) 1, < Cf' ¢ =) * I Vi, P Vi~ Vat, P Vu, s
1
< C'J‘i)(i,‘—s)_Z I Vi, —=Vu, | (I Vi, P +1Vu, P?) |, ds
1
t —
< CJ‘O(t _S) 4 “ Vul _Vuz ||2 (I“ Vul |p—2”2 + |” Vuz |p_2||2)ds

(p—2)
- -2 -2
s 2 (luy 11222 +1luy 120)ds

1 1
SCj;(t—s) Ys 2y —uy i
52p 12
<Ct * [ (=8 T& 7 (luy 117 +1luy 12 1wy —u, Iy, dE,

5-2p

-2 -2
SCt 4 (||u1 Hgg +||U,2 Hgg )”ul_u'z ”Eg .

S

Similarly, for I,, one can write

: _(t=5) . _(t-9)
1V1@) =Vn@,) <[ 1IVe 2 " llle 2

TV - (1 Vi, 172 Vu,— |V, P2)Vu) ||, ds
1 1
<C[\(t-5) 2(t—5) * I Vi, P Viy=| Vu, P2 Vu, | ds
_3
< Cj;(t -8) * || Vu, = Vu, I, (I Vi, P2, + [l Vi, P%],)ds

(p-2)
- -2 -2
s 2 (luy 122 +1lu, [1220)ds

3 1
t — —
SCIO(t—s) ‘s 2y —uy

3-2p 3 1p
<Ct [ (=848 (luy 127 +lluy 1B 1w, —u, Iy, dE,

3-2p

SCt (luy 127+l 122wy —uy Il - (25)

Multiplying the inequality (25) by 7, one gets

5-2p

1
t2 ” Vn(u1)_vn(u2) ||2S Ct 4 (” u1 HEP;Z + ” LL2 H§;2) ” ul —LL2 ”ES’

for any te[0,7]. Combining the above two inequalities, the proof of (i) is completed. That is,
n: l_f]S — Es is a Lipschitz continuous map.

To prove (ii), similar to the previous inequality, it is sufficient to show the following two inequali-
ties hold:

. ]
L ) -n@,), <Ca+ o)t * (i + o) ls — el

1 3-p _ _
L ts[lglg]tz ||V77(u1) - Vn(u, )”2 <Cl+a)'t* (||u1||%s2 + ||u,2||%:)||u1 U "Es :
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In the proofs of these two inequalities, the equality s=t£ will be used when needed. To prove L,
Lemma 2.2 and Lemma 2.3 are used and 2 < p < 3 is assumed.:

1
1 () =1 () b < C [ ¢ = 5) 2 [V, P2 Vi, |V, 1772 Vs, | s
1
< C*J.;(t —s) 2| |Vu1 - VLL2|(‘VLL1 P2 +‘Vu2 Ip"z) ||, ds

1
%t -3 _ _
<C'[ (t=9) > 1 Vi, = Vuy I, (Il|Veg, P21, + 1|V, 1721} ) ds

(p-2)

1 1
= (1 o4 -2 -2
<C =92 Ny -l s+ (I 122 +llw, 1127 ds

2-p
4

<ot g

-2 -2
(e 122 My 122 )y =, Ny, S

i

3
<CO+a) e+ (Jlwy 1157+, 122w, =, Il
where C* =C(1+a)™". Similarly, for I,, one has

(t-s) t—s

1V () = ()l < [ 11V * il > T (V- (Vi 17 Vi, |V, 172 Vi, ) 1, ds

1 1
<C| ;(t =8) 2(t—s) * |||Vu, P Vi, | Vi, 1P Vu, |} ds

3
« [t - _ _
<C [ (t=9) * 11V, = Vuy I (I |V P21} + 1|V, 1721, ) ds

. 31 _(p-2)
N -2 -2
<C'[(t=9) s lluy —wllp s (Il 127 +llu, 127 )ds

NE= 3 1p
SCt | =8 1& (w17 +lluy 17 ) 1w, —u, |l dé
0 S S S

2-p
<Ca+a)yt* (Il 122+l 122wy —u, I, (26)

where C" =C(1+a)". Multiplying the inequality (26) with t%, one gets:

3-p

1
IV () =V () LS CA+a) "t (I 122+ 1127 )1l —u, g,

for any ¢ e [0,T]. Combining these two inequalities, the proof of (ii) is completed. That is, n : I_ZS - ES
1s a Lipschitz continuous map.
The main result in this study is given below.

Theorem 3.3. (i) Let u,€ L’ (Q) such that a > 1, 2, |l,< Cﬁ’ where C, =max{C,,C,} for the positive
0

constants C, and C, provided by Lemma 3.1 and Lemma 3.2, and 2 < p < g Then there exists 0<T <1,
depending on || u, ||,, such that (1)-(2) admits a unique mild solution u on [0,T] € E’S.

R ~ - ~
(ii) Let u, € I*(Q) suchthat 0<a <1, ||y, |l,<—=, where C' = max{C:,Cs for the positive constants Ci
0 C 0 )
0

and Cs provided by Lemma 3.1 and Lemma 3.2, and 2< p <3. Then there exists 0 <T <1, depending

on ||y, |l,, such that (1)-(2) admits a unique mild solution u on [0,T] € ES .
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Proof. (i) Let B,(0) be the closed ball with radius R, and

4

T < min{1,(2C,R"?) **}.
Then, Lemma 3.1 suggests that, for every ue B,(0),
1) [ < R
Moreover, Lemma 3.2 states that, for every u,,u, € B,(0) and [ <1,
I~ ) <4y~ -

By using the Banach Contraction Mapping Theorem, a unique fixed point of n in B,(0) is obtained.
Thus, this fixed point u is the unique mild solution of (1)-(2) with the initial data wu,.

(ii) Let B,(0) be the closed ball with radius R, and

4

T <min{l,(1+a) ' 2C,R"?) **},
Then, Lemma 3.1 implies that, for every ue B,(0),
1) < R
Moreover, Lemma 3.2 denotes that for every u,,u, € B,(0)and [, <1,
H n(ul) - (uz) HE'SS l2 H U —U, HES :
By using the Banach Contraction Mapping Theorem, a unique fixed point of n in B,(0) is obtained.
Thus, this fixed point u is the unique mild solution to (1)-(2) with the initial data u,.
4. The blow-up solutions and an estimate for the lower limit of blow-up time

In this section, the blow-up result for the solutions of (1)-(2) is presented. To achieve this goal, the
following functionals are defined:

@ ={ul; +alVuls,

1 1 1
== Vullf - I Vulf -5 llAul; .

p 2 2

The main theorem of this study is given as follows:

Theorem 4.1. Assume that p>2, u,e H*(Q), u,# 0, and

1 1 1
YO0)==||Vu, ||F == Vu, | == || Au, | .
O = 1Vut =5 1V [~ 1

Then for the solution u(x,t) of (1)-(2), there exists some T >0 such that

Lim®(¢) =
t—>T
where
2-p
«_ @2 (0)
p(p-2)

Theorem 4.1. was formulated using the ideas of [20].
Proof. Using (1)-(2), one can obtain

(1) =2[[| Vu |l - Vulf -] Aul;] @7)
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P =l [ +all Vi, | -
By Schwarz inequality, one has
’ 1 ’
OO)W(t) = (||ulf +a || Vu (w5 +a | Vy, |}) 22 (@) (28)
Combining (27) and (28), one gets
’ 1 4 4 4
OOY (1) 2 OO W) 2 TP O(W), (29)
which turns into
DH)Y'(t) - d) ‘t)¥(t) = 0.

Now consider

4

[‘I’(t)d)(t)g ] —a@) T (‘P'(t)(b(t) - §<D'(t)‘l‘(t)]2 0. (30)
From this one gets
\P(t)cp(t)’g > \P(O)cp(ofg =M, (31)
and
W(t) > Ma(1)?.

Using (27), the following is obtained:

o' ()(1) >

2 > M. (32)
This 1s equivalent to
o) * ]
>M,
2-p)p
and
0] Tp —(®(0 Tp
o )p[< ) —(@0) J
Thus, one gets
@) * > [ 5<0>—p<p—2>t]. (33)

Taking the roots of both sides of (33), one gets the following:

2

() > [cp;p(O) — p(p-2)t J“ .

2-p
2

©)

. . . . . . D .
This expression gives the upper bound of the time interval, i.e, t<T for the solution

blow-up. p(p
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Now, the following theorem is given to specify a finite time interval (0,7%) on which the quantity
| Vu |} +a||Au |} remains bounded and this is inspired by [17, 20]. Indeed, 7, is a lower bound for ¢
because, by the Poincaré inequality, one has

lull +a | Vu ;<A@ Aul; +][Vulp), te O,T.),
where A, is the first eigenvalue of the —Au = Au under the periodic of boundary conditions.

Theorem 4.2 Let u(x,t) be solution of the problem (1)-(2). Then there exists a positive number

B> (0)

s such that
(p—2)C"7(Q)

B@t) = jg( IVul’ +a|AuP)dx (34)
remains bounded in (0,T.) .
Proof. By using Green’s identity and using (1)-(2)
B'(t) = 2LZAu(—ut +aAu,)dx
= 2] Au(-Au+ (=AY u+V-(IVu"? Vu)dx,
=-2||Au | 2| VAu |} —ZJQVAu-(IVu P~ Vu))dx. (35)

By the inequality |2|8u | |u |PI<| du * +|u*? the last term above gives

|—2j IVAu| | Vi P dx ]| VAR | + || Vi |22 .
Q

2p-2
Substituting this into (35) B'(t) <|| Vu |27 . Now, by using the Sobolev inequality

IV |B5< CP Q)| Vull; +a || Au )" (36)
So, one gets

BO<CPHQ( Vu P +allAu )™ = C*(Q)B @).
If this inequality is solved, the following is obtained:
B ()= B*7(0) - (p - 2)C**(Q)t. (37)

Taking the root of both sides of (37), one finds

Bt)=(B*7(0) - (p-2)C* ()t ).

B (0) :
Therefore, T, = -2 Q) as obtained.
p_

5. Conclusion

Higher-order pseudo-parabolic equations can be obtained from parabolic equations by adding the
term —aAu, . Pseudo-parabolic equations play a crucial role in modeling complex physical phenomena
where traditional parabolic or hyperbolic equations are insufficient. Their ability to capture memory
effects and non-local behavior and to ensure the smoothness of solutions makes them valuable in var-
lous scientific and engineering applications, see [1-3, 5, 6].

By setting @ =0 in the term —aAu, , these equations generalize the thin-film equation, which arises
in various fields of science such as biology and physics. This includes the spreading of low-amplitude
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long waves and heat conduction, describing nonlinear phenomena in the seepage of homogeneous
fluids through fissured rock, the unidirectional propagation of nonlinear dispersive long waves, and
numerous other phenomena.

In this research, it was observed that these two different types of equations have different solution
spaces and these spaces converge to each other as a approaches zero. It was also observed that the
solutions of pseudo-parabolic equations are smoother than the solutions of parabolic equations.

For a > 1, the solutions are in

1

Eg={u:R xQ-Rlsupt? | Vu|,< o}

0<t<T

and for 0 < g <1, the solution space is given by

1

E,={u:R,xQ— Rlsupt* | Vu|,< o}

0<t<T
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