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Abstract

In this paper, we discuss a novel type of analytic bi-univalent functions by utilizing specialized
g-Salagean differential operators. Then, we use the g-analogue of the logarithmic function to intro-
duce definition and provide properties of a class of bi-univalent functions. Further, we use the subor-
dination principle to estimate the initial Taylor and Maclaurin coefficients for these given univalent
functions. Additionally, we introduce new operators to demonstrate practical applications of the exist-
ing theory and establish Fakte-Szego results for each function in the defined sets. Further, we discuss
certain coefficient inequalities in detail.

Keywords: Salagean differential operator; geometric function theory; inequalities; bi-univalent
functions.
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1. Introduction

Recently, the fractional g-calculus has emerged as an extension of the conventional fractional calcu-
lus. It has found applications in several scientific fields, such as hypergeometric functions, optimal
control, g-difference operators, g-integral equations, ordinary fractional calculus, and univalent func-
tions of complex analysis (see, e.g., [1-5]). For a complex valued function 6 and a real number 0 <¢g <1,
Jackson invented the so-called g-difference operator as [6]
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D,6() = 9((’2:—2?5), where £ € D( D ={&,1 & 1}).

Srivastava [7] examined the g-difference operator within the framework of geometric function theory,
whereas Kanas and Raducanu [8] talked about a g-Ruscheweyh differential operator. Srivastava
invented the g-Noor integral operator in [9] by utilizing the Hadamard product concept. Conversely,
Kanas and colleagues [10] explored a new class of univalent functions and suggested a symmetric
operator for the g-derivative. As an alternative, Srivastava et al. [11] used g-calculus operators to
construct many new families of k-symmetric harmonic functions. Nonetheless, readers are referred to
[12-17] and citations therein for up-to-date information on the fractional theory. The definition of the
g-logarithm function is given as [18]

e 4 LS4 g, 126"
lnq(l g)—;l_qu _1_ka:‘1‘[k]q§ ’[k]q_ 1_q'

Next, Yamano [19] examined the g-exponential and g-logarithmic functions’ characteristics and their
use in Tsallis statistics. The function 6 € A may be represented in the expansion form if A represents
the set of all functions 0 on the unite disc D ={&,| £ <1}, normalized by 6(0) = 0 and 6'(0) = 1, then the
function 6 € A can be expressed in the expansion form

6()=¢+ Y, (1)

The classes of univalent functions in A are represented by S, starlike functions by S*, and convex
functions by K in this instance (See [20] and [21-24]). Generally speaking, if there exists an analytic
Schwartz function ® on D such that ®(0) = 0 and |w(§) <1(& e D),f(&) =gw(&)) [20, 23], then the
function f is subordinate to a function g on D, f(&)< g(£) where &e D. An equation for subordina-
tion is provided by Miller and Mocanu in [23], with significant implications for complex analysis and
univalent functions. All elements 6 € S enfolding a disc of radius 1/4 are known to have an inverse 6!
such that 67'(0(&)) = &,(E € D), thanks to the Koebe one-quarter theorem [24]

007 (w)) =w, [we A:{we (C:le<i}}

If 6 and 67! are both univalent on D, then the function 6 is regarded as bi-univalent on D. If the class
Y. of bi-univalent functions on D is represented by the Taylor-Maclaurin series expansion (1), then the
illustrative examples of such functions in the class > may be

& 1 1+¢&
—, —log(1-¢), —log| —= |.
¢ og(1-¢) 5108| 1= :
However, the Koebe function is not in Y, and examples of functions in S can be
& g
5 - > 9 9
2 1-¢&

which are also not members of Y. Various bi-univalent sets of functions are explored in [25-27].
Further, authors in the aforementioned papers obtain coefficient estimates and study certain Fekete-
Szego results.

For a function 6 € A mentioned by (1), the Salagean differential operator D"0 has the form [28]

D'6E) =&+ Tk'a,&". @)

In the literature, there are several differential operators introduced to generalize (2), whilst a variety
of classes of univalent functions involved with the generalized Salagean differential operators are
discussed by [29-32]. In what follows, we define the differential operator
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Df(2) = f(2),
Dq,a,/lf(z) =(a-AVf)+A-a+ l)Zqu(z),

D;,a,lf(z) = Dq,a,/l(D;,;l,/lf(z))’

where & 20,420 and ne Ny =NU{0},ze D. Tt is clear that D, f(0)=0. If fis given by (1), then

D, f)=z+ i> "a,2", 3)
k=2
where
Ay =[@-)+A-a+D[k], ], k=234,.,neN (4)

Based on the definition, we can infer that if ¢ approaches 1 from the negative side, then we have
. n R - n k
im D7, ,f(2) = lim {z + %[(a ~V+A-a+D)E], | az }
=z+ z[(n -D(A-o)+ k:| "q,2" = Dy . f(2),
k=2

where D,f is the Salagean differential operator presented by [33]. Note that for ¢ =1 asq—>1", we
attain the Salagean differential operator (see [28]). Now, we define

_1+lnq(1—z)

(PL(Z)—W, (ze D). )

Therefore, we have

2 2 3 2 3
¢, (z)=1+ 2q z+ 2q ~+2 g 2? 2q ~+4 9 4 ~+2 ! 22+ (6)
1-q 1-q 1-q 1-q 1-q1-q 1-q

Lemma 1.1. [20,23] Assume the function r € P is expressed by

r(z)=1+nz+nz*+rz’+.. (ze D),
then, the coefficient estimate is given by
|r <2 (ne N).

Our aim in this paper is to give a broad introduction to the g-analogue of the logarithmic operator
and its application to the definition of bi-univalent function subclasses via the generalized Salagean
differential operator. For the coefficients |a,| and |a,|, we also obtain limits and prove the Fekete-
Szego inequality for these functions. We reviewed a few preliminary findings and supplementary
findings from the geometric field theory in Section 1. We estimate coefficient bounds and go into great
depth on several Fekete-Szego issues in Sections 2 and 3.

2. Certain class of coefficient inequalities

In this section, we examine coefficient inequalities for various categories of bi-univalent functions.
We divide this section into two subsections to discuss coefficient estimates for the function class

Y (A4,0,9,) and the function class Y, "(4,a,¢;) as well.
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2.1. Coefficient estimates for the function class Z A.0,0,) . Following is a definition discussing the

class 2 «(A0,0,) of functions.

Definition 2.1.Let ¢ 20,0< ¢ <1 and 1>0. Anelement f € X isplannedtobeintheclass Z JA00),
if each of the following subordination conditions holds true:

n+1
q‘”f() <@, (2), zeD,
q,a,ﬂ,f( )

and n+1 ( )
Q“g <p,w), weD,
Dy, ,8w)

provided gw)=/"(w) and ¢, (z) has the significance of (5).

Theorem 2.2. Let o > 0, 0 < g <1 and A > 0. For every element f in the class Z «A0,0,), defined by
(1), we have

2
la, I< d (7)
n+ n 2 n+ ) n+ n
\/(l—q{%(/\s ' —As)—[q +1+1+q](1\2 T AL) (AT - (A3))
and y
4 2 1
|a3 |S 2 4 n+l n\2 + c n+l n’ (8)
1-q | (A)" —A})" 1-q A" —A;
where A} is givenin (4),k=2,3,...andn € N.
Proof. Let fe X (4,0,¢,),8w) = f'(w) and ze D. Then, in view of (3), we get
Dn+1
Diual @ g, (AM? = AD)a,z + ((Ag+1 — A} )a, + Ay (A" —A;‘)ag)z2 +os )
D}, .f(z)
and
Dn+1 ( )
Zuaa8 g (A - Aago+ (AL - AL)(2a2 —ay) + AL (AL - AD) ) +.. (10)
Dy, ,8w)
Therefore, can derive analytic functions u,v: D — D,u(0) =v(0) =0 satisfying the conditions
Dn+1 f( )
LA = g, (u(2)),  (ze D),
D}, .f(z)
and
n+1
gw)
l— =¢,(v(w)), (weD).
Dy, gw)
Now, we introduce the functions r and s as follow
r(z) _1+u@@) =1+rz+nz’+.., (zeD),
1-u(z)
and
s(z) = L+vw) _ l+sw+s,w’+..., (we D).

1-v(w)
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These functions are analytic in D and r(0) =s(0) =1. Solving for u and v implies
2
u(z) = rz) -1 =lrlz+1 r, A2y (ze D),
r(z)+1 2 2 2
and
2
v(w) = sw) -1 :lslw+l S, I +..., (we D).
sw)+1 2 2 2
So, for z € D, we have
Dn+1 z _ 2 2
—‘i’””lf( )=(pL r@-1)_,,_4d rz+| 1|, s +r7 SR G B [ +.y (11)
Dy, .f(2) r(z)+1 1-q 1-q 2 1+qgll—q
and
Dn+1 w _ 2 2
?‘Lg():% sw) -1 =1+-T sw+|-L|s -2 +slZL 4w (12)
D, .sw) s(w)+1 1-¢q 1-q 2 1+gll-¢q
Now, equating the coefficients (9) and (11) implies
n+l n q
(A2 —Az)a2=—r1, (13)
1-q
and ,
2 2
n+ n n n+ n q r r q
(A" —AL)a, + Ay (AS" =AY )a) = 1_q[r2 _é}’ 1iq(§] : (14)
Also, from (10) we have
_ An+1 _ An a. = q s ,
( 2 2) 277 P 1 (15)
and
q s2). st (g Y
n+l n 2 n n+l n 2 _ 1 1
(As — A )(2a2 —a,)+ A, (Az — A, )az = E[Sz _EJ+ E[EJ (16)
From (13) and (15), we derive
n==5 17
and
2 q ;
2(AS+I—A§) a; 2(7”12+812)(mj : (18)
Now, employing equations (14) and (16) leads to
2 2 2 2 2
ntl _ A n n ntl _ A n 2 _ q _rl +81 rl +81 q
2 A} - AG + AL (A A2)]a2——1_ (r2+s2 . ]+ . (1—q]' (19)
By invoking equation (18) in equation (19), we establish that
n+ n n n+ n q n+ n\2 l_q 2
2[1\3 AT+ Al (A2 1 _AZ)}aj = (r, +s,)—a; (A2 1 _AZ) [_q __1+q}’ (20)
or, equivalently,
n+ n n n+ n n+ n\2 2 +1
[261(1+q)[1\3 AL+ AL (A2 ' - Al )]+(1—2q —q2)(A2 ' _Az) }ai =%(@ +5,). (21)

—-q

Using Lemma 1.1, for the coefficients r, and s, yields the bound on |a,|, as asserted in (7). Next, to

derive the bound on |a,|, by subtracting (16) from (14) and using (17), we write



Amini E, et al. Results in Nonlinear Anal. 7 (2024), 65-79 70

a,=a?+—1 i 22
PP 2(l-q) AN - AL =

By virtue of (18) and (22), we obtain

__4 ’ r12+312 n q =8
1-q ) 2(A}" = A 1-q 2(A}" —A)

a;

Finally, by applying Lemma 1.1 for the coefficient r, and s,, we reach to the assertion (8). Hence, we
our result has been proved.

The following theorem calculates the Fekete-Szego problem for the class Z (A,0,0,) of functions
by using the estimate coefficients a, and a,.

Theorem 2.3. Let f be a function defined by (1), gw)=f"'w), 0<qg<1l,a>0and A>0andn € C.
Iff e Zq(?», o, ¢,), then we have

o, 0STOD<
9 (1 - q)(A3 - A3) Z(Ag - A3)
‘aS —naZ‘ < 4q 1
—T(n), rmz——m—,
where A} is given in (4), for k=2, 3, ...and n € N, and
1- 1

5.
2g(1+q) [Ag“ — AL+ AL (AL - AL )J +(1-2g-q%) (A}~ A)
Proof. By using equation (22), we have

a, —na; q 7% | (1-n)al.

2(1-q) AJ - AL

On account of (21), we obtain

a, -nal = —2 7% A-mq’A+q)(r, +5,)
’ ’ 2<1_q> An+1_An n+l n n n+l n 2 n+1 n\2 ’
3 2 (1-q)| 2L+ )| Aj™" = A3+ AL (A37 = A}) |[+(1—-2g —g*) (A3 - A})

Therefore, we have

_nat=-21_ _ v
R Hr(n) "HATAD J +[F(") 2N A ”

where I'(n) is defined by (23). Since 0 < ¢ <1, we derive

1 1
ro s o -z

This ends the proof of Theorem 2.3.
Remark 2.4. Letn=1.Iff € Zq(k, o, ¢,), then we have

2q
la, —aZ < - -
T (AT - AY)
where A} is givenin (4), k=2, 3,...andn € N.

|a3—na22 |:L
1-¢q

’
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2.2. Coefficient estimates for the function class Z L (L,a,0,). Following is a definition decribing the
elements of the class Y, "(A,a,¢;).

Definition 2.5. Let 0<¢<1,0>0,A>0and 0 <u <1. A function f € ¥ is said to belong in the class

Y “(A,a,9,), if all of the following subordination criteria are met:

4 ;H;/lf( )
(f(z)] - <9, (2), zeD,

w 1-u D"H,lg( )
(f(w)) ” <¢,(w), weD,

where g(w)=f"(w) and ¢, (2) is given by (5).

and

Theorem 2.6. Let 0<q<1,0>0,A>0and 0<u<1. Ifthe function f is a member of the class Zq(k, o, ,),
defined by (1), then we have
2 q
Al -1+ull-q f

|a, |< min 2q : (24)

\/(1—Q)[q(2A§ +(1—u)(2—#)+2A;(1—u)_(q+1_qil)(A; 4—#)1

and

la, I< 29
A=) IA (-]

4 q ’
(A -y’ \1-q )

+ min 4¢> , (25)

(1—q>‘q(2A;; +<1—u><z—u>+2A;<1—u>)—<q+1—q2+1><A;

where A} is givenin (4), k=2,3,...and n € N.
Proof. Let f € Zf]’(l,a,%) and g(w) = f"(w). Then, in view of (2), we obtain
( : ] " DL )

f(2)

and

n n 1- n
. =1 +(A2 -Q —,u))a22+(A3a3 +T‘u<(4 - wa’ —2a3)—A2 (1-wa; jzz +.. (26)

1-p Dn+1 ~
[fgjﬂ)] ng( = —1+((1—,u)—A;’)a2w+(Ag(2a22 _a3)+17,u(2a3 — pa;) = Ay (1- wa; )wz +. (27)

Now, by equating the coefficients (26) and (11), we obtain

n _ — q
(A3 -(-w)a, vt (28)
q

_ _ﬁ L2 1 q i
1-q|? 2] '"1+qll-q ]’ (29)

Ala, +1 ((4 wa’ —Za) A1 -pal
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Once again, equating the corresponding coefficients (27) and (12) reveals

q

—(Ag—(l—/,t))azzl_ 5,5 (30)
1-u q s 1 q ’
]\;L(Z(ZZ2 —a3) + T(Zas —‘Uag) —A;(l - ﬂ)a; = E(SZ _Elj+ 812 E[E] . (31)
By comparing the coefficients (28) and (29), we get
n=-s, (32)
9 2
Z(A;—(l—ﬂ)) a; =’ +812)[ﬁj : (33)
Now, by equating equations (29) and (31), we write
2 2 2
2 n n _ q 7'1 +81 2 2 ]- q
02[2/\3+(1—.U)(2—#)+2A2(1—#)]—1_q['“2+82— 2 ]+(r1 +81)E(ﬁ} . (34)
In view of (33) and (34), we derive
n n n 1 - 2
aZ[2AL + (L )2~ ) +2A5 (01— 1) | = ——(r, +5,) = (A ~1+ p)*al | — L - |, (35)
1-q q 1l+gq
or, equivalently,
2
+
al = 9 +5) (36)

(1—q)[q(21\;‘ +(1—,u)(2—u)+2A;(1—‘u))—(q +1_q2+1)(A;L _1+‘u)2i|

From (33) and (36) and using Lemma 1.1 for the coefficients r, and s,, we reach the bounds on |a,|
as asserted in (24). The proof can be finalized by determining the limit for the absolute value of the
coefficient |a,|. By subtracting equation (31) from equation (29), we get

2 q(SQ_rQ)

a, —a, = ~ . 37
P T g (A - (- ) 57
Put the value a, given in (33) into (37). Then, we get
_ 2, .2 2
a; = atr, n 5) + nr1 *A 2 4 : (38)
20-g)(A; -1 -w) 2(A;-QA-w) (1-4q
Insert the value of a, given by (33) in (36) to have
r—s *(r,+s
“ 7o _;)((/2\" —2()1 ) o 2 - (39)
; <1—q>{q(2A;: FO- @0+ 2AL 0= ) =g+ 1= A —Hu)ﬂ
Therefore, from (37), we conclude that
2
2q 4 q
la, I< - +— : 40
A -] (AQ—(l—,u))z[l—qJ (40)
Similarly, from (39), we obtain the following bound
2 4q°
la, | d g (41)

< + :
A-g)A; -1-p)l (1_q)q(2A;+(1_y)(2_u)+2A;(1—u))—(q+1—qZH)(A;_1+u)2
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This ends the proof of our Theorem.
The following useful theorem calculates the Fekete-Szego problem for the class 25(/1,05,%) of
functions by aid of the coefficients a, and a,.

Theorem 2.7. Let f be a function defined by (1), gw)=f"(w), 0<q¢<1,u>0,1>0,0<u<1and
neC.Iffe Y, (4a,9,), then we have

2 1
— 2 0<0O . —
. —na? |< 4 Ay —(1-w) (n)<2(A§—(l—u))
3 2 1= _ 1 B
40(n), om)>—n—
() ) SN — (=)

where A} is given by (4), k=2, 3, ...and n € N, and
1-m)g
n n 2 n '
q(2A; +(1—#)(2—u)+2A2(1—u))—(q+1—ﬁ)(/\2 ~1+p)?

om) =

Corollary 2.8. Let f be a function defined by (1), gw)=f"(w),0<q<1,0>0,A>0and 0 <p <1.
Iffe D “(Aa,¢,), then we have
|a3 — a; |< 2 n 2 )
1_q A3 —(1—/.1)

where A} is given by (4), k=2, 3,...and n € N.

3. Applications of the coefficient inequality

In this section, for 0 <3 <1, let us denote by 1, (z) the function such that

1+ pA-g)in,(1-2) q—2 )
U (2) = I—(=q)in,(1-2) —1+(1+ﬁ)qz+2(1+ﬁ)(1_q)(1+q)z + (42)
On the other hand, for 0 <y <1, let us denote by 1; . (2) the function such that
~ _ 1+(1—q)lnq(1—2) y_ q’ 2 2
wL(Z)_[l—(l—q)lnq(l—z)] —1+2yqz+(4y—(1_q)(l+q) +2q7y(y 1)}2 +. (43)

Therefore, we have the following useful definition.

Definition 3.1. Let 0<¢<1,0>0,A>0and 0 <P <1. A member f € Y is in the class 25(&,0{,%),
if each of the following conditions (subordination) holds true
Dn+1 f(z)

—awr T 2 (2), ze D,
Dy, f(2) g

and

Dn+1
M _< wL (w), we D,

Dgya,lg(w)

where g(w)=f"(w) and Y, (2) 1s given by (42).
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Theorem 3.2. Let 0<q¢<1,0>0,A>0 and 0 <P < 1. If a function f in the class Zf(/l,a,@bL), defined
by (1), then we have

2901 - B)

n+ n n n+ n 2 n+ n
\/4q(1—[3)[A3 P AL+ AL(ALY —A2)]+(1—1_(i]2 )(A2 LAY

la, <

>

and

|Ct |< Q(l_ﬂ) + 4q2(1_ﬁ)2
3 A;Hl _A; (A;+1 _A;L)Z

where A) is given by (4), for k=2, 3, ...and n € N.
The following corollary describes the Fekete-Szego problem for the function class 2 5 (A, 0,9,) by
using the coefficients a, and a,.

Corollary 3.3. Let f be a function defined by (4.1), gw)=f"(w),0<qg<1,0>0,A>0and 0<B<1
andneC.Iffe z f(l,a,@bL), then we have

q(1-B)

n+l n’
A3 _AB

4q(1-B)rpm), Ipm)=

0<TBm) <

1
4 An+1 _An ’
la, —na; I< ™ —A)

1
4(AFT =AY’
where A} is given by (4), for k=2, 3, ...and n € N, and
1-n)1-
I, = 1-mA-PB)g 2q ’
40~ B[ AL~ AL+ ALAL - AD)] +[1 -1 j(A;“ ALY

Corollary 3.4. Let f be a function defined by (1), gw)=f"(w),0<qg<1,a>0,A>0and 0 <B<1.
Iffe 25(/1,a,¢L), then we have

ja,-a3 s 20=P)
As _A3

where A is given by (4), for k=2, 3, ...and n € N.

Definition 3.5. Let 0<g<1,0>0,A>0 and 0 <y< 1. A function f € ¥ is in the class zg(l,(x,@?}L),
if all of the following subordination conditions are met

Dn+1 ~
ﬂ <.(2), zeD,
D, f(z)

and

n+l

Dq,a,lg(w)
Dy, ,gw)
where g(w) = f(w) and ¥, (2) is given by (43).

Theorem 3.6. Let 0 < ¢ <1,a>0,A>0 and 0 <y < 1. If a function f is a member of the class
2 7(A,0,%;), defined by (1), then we have

=< @L(w), we D,



Amini E, et al. Results in Nonlinear Anal. 7 (2024), 65-79 75

2yq

la, I
n+ n n n+ n 2 n+ n
\/2;«1[1\3 Lo AL + AL(A —A2)]+[1—q(1 7 +y—1ﬂ(A2 LAY

’

and
2 2

< 2rg , 4dra
A;L+1 _ A;L (A;L+1 _A;L)Z

la, |

where A} is given by (4), for k=2, 3, ...and n € N.

The following corollary computes the Fekete-Szego problem for the class Z Z(l,(x,qz 1), of functions
by using the coefficients a, and a,.

Corollary 3.7. Let f bAe a function defined by (1), gw)=f"(w), 0<q<1,00>0,A>0,0<y<1 and
neC.Iffe Y "(Aa,1p,), then we have

2yq

n+l n
A3 - As

, 0<Ty(n)<

2An+1_An ’
o, na i )

4yqly(m), T, (m)

b

> -
2(A3" - A
where A} is given by (4), k=2, 3, ...and n € N, and

A-myq
n+ n n n+ n 2 n+ n
2yq[ A} — Aj + A (AL —A2)]+[1—q(1 . +y—1ﬂ(A2 LAY

r,m-=

Corollary 3.8. Let f be a function defined by (1), gw)=f"(w),0<q¢<1,0>0,A>0and 0 <y< 1.
Iffe 2 7(A,0,%1), then we have

2yq

2
|a3_a2 |S Agﬂ—Ag,

where A} is given by (4), k=2, 3,...and n € N.

Definition 3.9. Let 0<¢<1,00>0,A>0,0<u<1and 0 <P <1. A function f € . is said to be in the
class z Z’ﬁ (A,a,1,), if all of the next subordination conditions are met

4 7 D;;,l,/lf(z)
[f(z)] . <Y, (2), zeD,

and

1-u Dn+1
( w j 1a:8) <, (w), weD,

f(w)
where g(w)=f"(w) and Y, (2) 1s given by (42).

Theorem 3.10. Let 0<g<1,0>0,A>0,0<u<1and 0<P<1. If a function f belongs to the class
Y “P(A,a,1p,), defined by (1), then we have
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V2q(1-B)
Al =1+p’
g, < min ) :
Jza = B)al 285 + (1= 12— 1) + 285 (1= ) | +2(1 - - f‘})(A; ~1-w)
and
2¢°(1 - B)*
(Ay —(1-u)*’
q(1-B) . ] .
|a3|S|Ag_(1_‘u)|+m1n 2*(1 - B) : ’
q(1-B)(2A; +(1—#)(2—u)+2A§(1—u))+(1—1_622)(Ag ~1+ )

where A} is given by (4), k=2, 3,...and n € N.
Following is a corollary, which calculates the Fekete-Szego problem for the function class
Z g’ﬁ (A,a,%,), by using the coefficients a, and a,.

Corollary 3.11. Let f be a function defined by (1), gw)=f"(w),0<qg<1,u>0,A>0,0<p<1,
0<B<landneC.Iffe Y “P(Aa,,), then we have

, 00Bmn) <

_r . r
Al —(1-p) 2(A; —(1-p)’

208m), epm) =

la, —na; I<q(1-B) )
2(A; - (1-p)’
where A} is given by (4), k=2, 3, ...and n € N, and
qd-n)

2q

qﬂ—ﬂﬂmﬂ+ﬂ—uxlﬁo+mﬂﬂ—uﬂ+a—fj?MAg—a—uw

ep (77) =

Corollary 3.12. Let f be a function defined by (1), gw)=f"(w),0<q¢<1,00>0,A>0,0<pu<1and
0<B=<1l.Iffe Zfl"ﬁ(/l,a,z/;L), then we have

q(1-B)

la, —al < —————,
P TA -0
where A} is given by (4), k=2, 3,...and n € N.

Definition 3.13. Let 0<¢<1,a0>0,A>0,0<u<1and 0 <y<1. A function f € ¥ is said to be in the
class z 7 (A, 0,9,), if each of the following subordination conditions holds true:

z V' DR~
(f(z)j . <Y, (2), zeD,

and

w " D;;,l,/lg(w) -
[f(w)] ” <Y, (w), weD,

where g(w) = f(w) and ¥, (2) is given by (42).
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Theorem 3.14. Let 0<g<1,0>0,A>0,0<u<1and 0 <y<1. If a function f belongs to the class
2 2T (Aa,;) , defined by (1), then we have

27q
Al =1+u’
| a, < min 2yq ;
n n 2 n 2
J%ﬂ?Ag+ﬂ—uX2—u)+&Mﬂfﬂﬁ}+ﬂ—qg_q2+7—DXA2—G—HH
and
4q2y2
(A —(1-w)*’
la, I< L+min 4a%v?
SRTVEEnY L 5 |
VQQAQ+ﬂ—uX2ﬂW+2Aﬂl—uD+ﬂ—qS_qz+u—DXAZ—1+uf

where A} is given by (4), k=2, 3,...and n € N.
Following is a corollary, which establishes the Fekete-Szego problem for the functions class

Z d (l,a,;ﬁ 1) by using the coefficients a, and a,.
Corollary 3.15. Let f be a function defined by (1), gw)=f"(w), 0<qg<1,0>0,A>0,0<p<1,
0<y<lneC.Iffe Y ""(La,,), then we have

2 1
—, 0<0O o
L A—a-w < o~y
la, —na; I< vq 1
40y(n), Qym) = m,

where A} is given by (4), k=2, 3,...and n € N, and
4(1-n)
va| 245 + (1 - )2 - p) +2A5 (1 - ) |+ (1 - g

0,m) = 3

DA -a- )

Corollary 3.16. Let f be a function defined by (1), gw)=f"w),0<q<1,0>0,1>0,0<pu<1and
O0<y<l. Iffe z 17 (A, 0,%,) , then we have

2yq

la, —a K ——F—,
P TA -0

where A} is given by (4), k=2, 3,...and n € N.

4. Conclusions

This article introduces certain classes of bi-univalent functions through the use of differential subordi-
nations and specific generalized g-Salagean differential operators. These classes of bi-univalent func-
tions, influenced by the g-logarithm function, are formulated within an open unit disc. Additionally,
two operators, referred to as ¥, (z) and Wi (z), are examined. Furthermore, the article explores and
obtains various Fekte-Szego results concerning the coefficients |a,| and |a,]|.
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