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Abstract

A new algorithm is proposed in this paper to explain how the modified homotopy perturbation 
approach can be successfully implemented based on the Pade approximants and the Laplace trans-
form in order to acquire the accurate solutions of a nonlinear system of multi-photograph delay dif-
ferential  equations. The method that has been suggested has the benefit of giving exact solutions, 
and it is simple to implement analytically on the issues that have been presented. Examples have 
been provided to demonstrate that this strategy may be utilized and is successful in its application. 
The results show that the method that was described could be used to solve many different types of 
differential equations.
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1. Introduction
In applied science and engineering, there are several nonlinear phenomena that are important. 
Nonlinear equations are present in a wide range of physics-related phenomena, such as wave prop-
agation in shallow water, solid mechanics, quantum field theory, fluid dynamics, and many more. 
Multi-photograph delay differential equations regulate the models’ range of applicability. The major 
reason mathematicians are aware of these equations is because of how frequently they are used. 
Nevertheless, finding a solution to these mathematical issues is neither theoretically nor numerically 
simple. Finding exact or approximative solutions to these kinds of equations has received a lot of focus 
in recent studies.

Therefore, it is important to get knowledgeable about all analytical, numerical, and recently devel-
oped methods for solving nonlinear multi-photograph delay differential equations: for instance, the 
variational iteration method [1, 2], the Adomian decomposition method [3], The spectral tau tech-
nique is also used to solve systems of multi-pantograph equations with shifted Jacobi polynomials as 
basis functions[4], Taylor matrix method [5] and others [6–12].

The majority of the multi-photograph differential equations solved in [21–23] are covered by the 
system of multi-photograph equation, which is of the following form. 

u t u t f t u t u t u t
u t
i n n
'

'

( ) ( ) ( , ( ), ( ),..., ( )),
( )

= +b a a a1 1 1 1 11 2 12 1

2 == +b a a a2 2 2 1 21 2 22 2u t f t u t u t u tn n( ) ( , ( ), ( ),..., (( )),  (1)
subject to 

u t u t t T ii i( ) , , , ,0 0 1 2= < £ =  (2)
where bi,ui are constant, fi denoted analytical functions in a way that 0 < ai j ≤ 1, i, j = 1, 2, ..., n, 
and ui(t), i = 1, 2, ..., n are yet-to-be-determined functions. The HPM method is straightforward and 
effective numerical method that has been widely employed in recent years for a variety of linear and 
nonlinear differential equations without lineariazation, descretization, or perturbation [13–20]. It 
has also yielded accurate approximate solutions for various problems in the limit of infinite approxi-
mation terms. Thus, the biggest challenge for scholars is finding an accurate method that efficiently 
yields the closed form of the exact solution.

This paper aims to improve the HPM series solution. In order to achieve this, the truncated HPM 
solution is first transformed using the laplace transform; the transformed series is then transformed 
into a meromorphic function using Pade approximants; and last, the exact solution of the provided 
system is determined using the inverse laplace transformation.

The following topics will be covered in the next sections of this article: By describing the model 
and the process for finding accurate solutions to the given problem, we outline the essential concepts 
of the research methodology of this study in Section 2. And section 3 applies the suggested method to 
a few illustrative examples to prove its applicability, convergence, and effectiveness. Conclusions are 
contained in the final section.

2. Research Methods Description

We outline the fundamental concepts of the research methodologies in this part. 

2.1 Review of the HPM

To highlight the fundamental concept of the HPM procedure, We utilize the nonlinear problem 
described below: 

A u f r r( ) ( ) , ,- = Î0 W  (3)
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where A denotes to the integral operator, B for the boundary operator, f(r) is a known function, and 
the boundary of the domain Ω is indicate Γ is. In general, the operator A can be split into two parts: L 
and N. L is linear, whereas N is nonlinear. Thus, we may rewrite Eq. (1) as follows: 

L u N u f r( ) ( ) ( ) .- - = 0  (4)
He [4] formulated a homotopy v : Ω × [0,1] → R which performs 

H v p L v L v pL v p N v f r( ; ) ( ) ( ) ( ) [ ( ) ( )] .= - + + - =0 0 0  (5)
or 

H v p p L v L v p A v F r( ; ) ( )[ ( ) ( )] [ ( ) ( )] ,= - - + - =1 00 0  (6)
where r 2  Ω, p 2 [0,1] is known as the homotopy parameter, and v0(x) is an initial approximation of 
Eq. (1). Hence, it is obvious that 

H v L u L v H v A v F r( ; ) ( ) ( ) , ( ; ) ( ) ( ) ,0 0 1 00= - = = - =  (7)
as well as the way that p changes from 0 to 1, is only that of H(v,p) from L(u)–L(v0) to A(v)–F(r). We 
refer to this as deformation in topology, where L(u)–L(v0) and A(v)–F(r) are known homotopic. Using 
the method of perturbation [16], as a result of the fact that 0 ≤ p ≤ 1 can be regarded as a small param-
eter. Assuming that the solution of Eqs. (4) or (5) is represented by a series in p, as: 

v v pv p v p v= + + + +¼0 1
2

2
3

3 ,  (8)
when p →1, Eq. (4) or Eq. (5) corresponding to Eq. (3) and consequently becomes an approximation of 
Eq. (1). i.e., 

u v v v v v
p

= = + + + +
®

lim
1 0 1 2 3

¼.  (9)

2.2 Padé technique approximation

Padé technique [18] is the ratio of two polynomials initiated derived from coefficients of a function’s 
Taylor series expansion y(x). 

The [L/M] Padé approximants to a function y(x) are provided by 
L
M

P x
Q x
L

M
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ù
ûú
=

( )
( )

,

where PL(x) and QM(x) are a polynomials of degree at most L and M, respectively. The power series 
y x a xi

i
i( ) = =

¥å ,1

y x
P x
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xL

M

L M( ) - ( )
( ) = ( )+ +O 1 ,  (10)

determine the coefficients of PL(x) and QM(x) by the equation. Given that there is no change in [L/M] 
when the numerator and denominator are multiplied by a constant. The need for normalization is 
then enforced 

QM 0 1( ) = .  (11)
Eventually, There must be no factors in common between PL(x) and QM(x). The coefficients of PL(x) and 
QM(x) can be expressed as 

P x p p x p x p x
Q x q q x q x q x
L L
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M M
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therefore, by Eqs. (11) and (12), we multiply Eq. (10) by QM(x), that linearizes the coefficient equa-
tions. More specifically, we can express Eq. (10) as 

a a q a q
a a q a q
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 (13)
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As a starting point for solving these equations, We begin with Eq. (13), which is a set of linear equa-
tions for each unknown q. Following the determination of the q's, the solution is completed by Eq. (14), 
which provides an explicit formula for the unknown p's.

If Eq. (14) and Eq. (13) are non-singular. Then we may directly solve them and get the Eq. (15) [20], 
where Eq. (15) holds, If the lower index of a sum is greater than the higher index, the sum is substi-
tuted by zero:
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 (15)

using computer software like Mathematica, diagonal Padé approximants of various orders, like [2/2], 
[4/4] or [6/6] will be obtained.

3. Numerical Examples

To illustrate how effective the new method is, consider the nonlinear system of multi-pantograph 
equations shown below. 

3.1 Example 1

The following nonlinear system is the first tested example [23], 
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according to conditions listed below
u u1 20 1 0 0( ) , ( ) .= =  (17)

In view of our HPM presented algorithm, the following family of homotopy equations will be con-
structed as given below 
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By using the same power to equalize the coefficient of p in Eq. (18) we get 
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Consequently, the solution of problem (16) in a series form given by 
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u x x x x x x x x
1
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within in the limit of infinity terms, leads to exact solution. It can be seen from results parented in 
Tables 1 and 2 and Fig. 1 that the solution obtained HPM algorithm of eight-order is quasi-identical 
with exact solution, demonstrating very good accuracy with low remarkable errors based on order of 
the HPM approximation, which means that more efforts need to get high degree of accuracy, from 
this point, we will modify the HPM algorithm to get accurate results closed to the exact form based 
on the HPM series solution using alternative technique based on the laplace transform and Padé 
approximants throughout utilizing the laplace transform to the first three terms of the HPM series 
solutions, yields 
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we have the exact solutions 
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Table 1: Comparison of the exact solution u(x)=e–xcosx for example 1 with the Eq. (20) (HPM solution).

x Exact Solution HPM Solution Absolute Error
0.0 1.0000000000 1.0000000000 0.00 
0.2 0.8024106473 0.8024106473 9.60×10–12 
0.4 0.6174056479 0.6174056427 5.16×10–9 
0.6 0.4529537891 0.4529535825 2.07×10–7 
0.8 0.3130505040 0.3130476607 2.84×10–6 
1.0 0.1987661103 0.1987444007 2.17×10–5 

Table 2: Comparison of the exact solution u(x) = sinx for example 1 with the Eq. (21) (HPM solution).
x Exact Solution  HPM Solution Absolute Error
0.0 0.0000000000 0.0000000000 0.00 
0.2 0.1986693308 0.1986693308 2.53×10–13 
0.4 0.3894183423 0.3894183422 1.29×10–10 
0.6 0.5646424734 0.5646424684 4.95×10–9 
0.8 0.7173560909 0.7173560255 6.54×10–8 
1.0 0.8414709848  0.8414705022 4.83×10–7 

8 10−6×

6 10× −6

4 10× −6

2 10× −6

0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

5.0 10× −8
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1.5 10× −7

2.0 10× −7

(a)                                                   (b) 

Figure 1: Plot of the absolute errors resulted from the HPM approximate solution Eqs. (20) and (21) 
of eight order and the exact solution Eq. (24) for example 1.

3.2 Example 2

The nonlinear system of multi-pantograph equations shown below [23],

u x u x u x x x
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¢¢ = - -( ) ( ) ( ) ( ),x u x u x x x2 1 cos  (25)

RNA-v7-i2-016.indd   193RNA-v7-i2-016.indd   193 22-05-2024   12:25:1322-05-2024   12:25:13



Anakira NR et al., Results in Nonlinear Anal. 7 (2024), 187–197 194

subjects to 

u u u1 2 30 1 0 0 0 0( ) , ( ) , ( ) .= - = =  (26)
In view of our HPM presented algorithm, the following family of homotopy equations will be con-
structed as given below 
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By using the same power to equalize the coefficient of p in Eq.(27) we get 
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Consequently, the solution of problem (25) in a series form given by 
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It results in the exact solutions in the terms that approach infinity. The numerical results of the 
HPM approximate solution are shown in the tables 3. Also, the absolute error are plotted in Fig. 2. To 
improve the HPM procedure’s accuracy and effectiveness, The Laplace transform will be applied to 
the first five terms of the HPM approximation series solution (25), resulting in 
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Lu x
s s s s s1 9 7 5 3
1 1 1 1 1~( ) .= - + - + -  (32)

therefore, for the sake of simplicity, we let s
z

= 1 ,  we have 

Lu x z z z z z~( ) .= - + - + -3 5 7 9  (33)

We now employ the Pad approximants of [ ] ( / ( ))4
4

1 2= - +z z  and then using z
s

= 1 ,  we get the exact 

solution by using the inverse Laplace transform 
u x x( ) ,= -cos . (34)

and by using the same process, we are able to get the exact solution for the system mentioned above. 
u x x
u x x x
u x x

1

2

3

( ) .
( ) .
( ) .

= -
=
=

cos
cos

sin  (35)

Table 3: Comparison of the exact solution u x x( ) ,= -cos  for example 2 with the Eq. (29) (HPM solution).

x Exact Solution  HPM Solution Absolute Error 
0.0 0.0000000000 0.0000000000 0.00 
0.2 –0.9800665778 –0.9800665778 6.32×10–12 
0.4 –0.9210609940 –0.9210609908 3.22×10–9

0.6 –0.8253356149 –0.8253354922 1.23×10–7

0.8 –0.6967067093 –0.6967050881 1.62×10–6

1.0 –0.5403023058 –0.5402903397 1.20×10–5

Table 4: Comparison of the exact solution u(x)=xcosx for example 2 with the Eq. (30) (HPM solution).

x Exact Solution HPM Solution Absolute Error
0.0 0.0000000000 0.0000000000 0.00
0.2 0.1960133155 0.1960133156 3.74×10–12

0.4 0.3684243976 0.3684243995 1.85×10–9

0.6 0.4952013689 0.4952014376 6.87×10–8

0.8 0.5573653675 0.5573662512 8.84×10–7

1.0 0.5403023058 0.5403086663 6.36×10–6

Table 5: Comparison of the exact solution u(x) = sinx for example 2 with the Eq. (31) (HPM solution).

x Exact Solution HPM Solution Absolute Error
0.0 0.0000000000 0.0000000000 0.00 
0.2 0.1986693308 0.1986693308 1.86×10–11 
0.4 0.3894183423 0.3894183483 5.98×10–9 
0.6 0.5646424734 0.5646427001 2.27×10–7 
0.8 0.7173560909 0.7173590674 2.98×10–6 
1.0 0.8414709848 0.8414928497 2.19×10–5 
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Figure 2: Plot of the absolute errors resulted from the HPM solutions Eqs. (29), (30) and (31) of eight 

order and the exact solution (35) for example 2.

4. Conclusion

This research focused on a new approach based basically on the HPM procedure to obtain exact solu-
tions for a system of multi-pantograph type DDEs. Throughout the illustrated cases and comparison 
with numerical results provided in the literature, the MHPM approach has been shown to be suffi-
cient to generate the exact analytical solution by utilizing only a few terms of the HPM truncated 
series solution. As a result of our study, we were able to say that the proposed procedure gives very 
useful analytical results with less processing work strongly nonlinear problems can be solved with 
this strategy, which gives it an advantage over other methods. It is also dependable and effective and
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