Results in Nonlinear Analysis 7 (2024) No. 3, 29–34 https://doi.org/10.31838/rna/2024.07.03.005 Available online at www.nonlinear-analysis.com

Results in Nonlinear Analysis ISSN 2636-7556

Peer Reviewed Scientific Journal

Some generalized singular value and norm inequalities for sums and products of matrices

Mahdi Taleb Alfakhr¹, Panackal Harikrishnan²

1 Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran; 2 Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.

This work presents a generalized singular value and norm inequalities associated with 2×2 positive semidefinite block matrices.

Keywords and phrases: Singular value, Unitarily, Invariant norm, Positive operator *Mathematics Subject Classification (2010):* Primary 47A30, Secondary 15A18, 47A63, 47TB10.

1. Introduction and Preliminaries

Let $M_n(\mathbb{C})$ stand for the space of $n \times n$ complex matrices. We consider unitarily invariant norm $\|A\| = \|UAV\|$ for all *A*, *U* and $V \in \mathcal{M}_n(\mathbb{C})$ where *U*, *V* are unitary matrices. For two Hermitian matrices *A*, *B*∈ *M*_n(\mathbb{C}), one can write *A* ≤ *B* to mean *B* – *A* is positive semidefinite. Especially *A* ≥ 0 indicates that *A* is positive semidefinite. Also, *A* > 0 is named positive definite. The singular value of *A* is restricted by $s_1(A) \geq s_2(A) \geq \ldots s_n(A) \geq 0$, that is the eigenvalues of the positive semidefinite matrix $|A| = (A^*A)^{\frac{1}{2}}$ (the absolute value of *A*), arranged in decreasing order are repeated according to multiplicity. Note that $s_j(A) = s_j(A^*) = s_j(A)$ for $j = 1, 2, ..., n$. The operator norm of *A* is represent by $A \parallel = s_1(A)$. We use the direct sum notation $A \oplus B$ for the block-diagonal matrix *A B* 0 0 é $\begin{bmatrix} A & 0 \ 0 & B \end{bmatrix}$.

Email addresses: mehdifakhr11@gmail.com (Mahdi Taleb Alfakir); pk.harikrishnan@manipal.edu (Harikrishnan Panackal)*

For the general theory of unitarily invariant norms and more additional results about 2×2 positive semidefinite block matrices and related inequalities, we refer the reader to [4], [7] and [8]. It is evident that if A, B and $X \in M_n(\mathbb{C})$ such that $\begin{bmatrix} A & 0 \\ B^* & X \end{bmatrix} \geq 0$, then A and X are positive semidefinite.

In [11] the first author showed that for $A, B, X \in \mathcal{M}_{n}(\mathbb{C})$ and f and g be non-negative continuous functions on [0, ∞) that satisfy the relation $f(t)g(t) = t$ for all $t \in [0,\infty)$, then

$$
\begin{bmatrix} A^* f \left(\left| X^* \right| \right)^2 A & A^* X^* B \\ B^* X A & B^* g \left(\left| X \right| \right)^2 B \end{bmatrix} \tag{1.1}
$$

is positive semidefinite.

As an immediate consequence of the min-max principle (see, e.g., [2, p.75]), if $A, B, X \in \mathcal{M}_{n}(\mathbb{C})$, then

$$
s_j(AXB) \le \|A\| \|B\| s_j(X) \tag{1.2}
$$

for $j = 1, 2, ..., n$. For $1 \le p < \infty$, the Schatten p-norm of A is described by $||A||_p = (tr |A|^p)^{\frac{1}{p}}$, where tr is the usual trace functional. One can see that

$$
||A \oplus B|| = \max(||A||, ||B||)
$$

and

$$
||A \oplus B||_p = (||A||_p^p + ||B||_p^p)^{\frac{1}{p}}.
$$
\n(1.3)

It has been established by Bhatia and Kittaneh in [4] that if $A, B \in \mathcal{M}_{n}(\mathbb{C})$, then

$$
2\|A^*B\| \le \|AA^* + BB^*\|
$$
\n(1.4)

and

$$
\|A^*B + B^*A\| \le \|AA^* + BB^*\|
$$
\n(1.5)

for every unitarily invariant norm.

A singular value inequality due to [5] states that if $A, B, C, S, K \in \mathcal{M}_n(\mathbb{C})$ are such that $\begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \geq 0$, then

$$
s_j\left(S^*BK + K^*B^*S\right) \le s_j\left(\left(S^*AS + K^*CK\right)\oplus\left(S^*AS + K^*CK\right)\right) \tag{1.6}
$$

for $j = 1, 2, ..., n$.

In [8, Theorem 2.1] it has been shown that if $A_i, B_i, X_i \in \mathcal{M}_{n}(\mathbb{C})$ for $j = 1, 2, ..., n$, then

$$
s_{j}\left(\sum_{i=1}^{n} A_{i}^{*} X_{i} B_{i}\right) \leq \left\| \sum_{i=1}^{n} \left| A_{i}^{*} \right|^{2} \right\| \leq \left\| \sum_{i=1}^{n} \left| B_{i}^{*} \right|^{2} \right\| \leq s_{j}\left(\bigoplus_{i=n}^{n} X\right)
$$
\n(1.7)

for $j = 1, 2, ..., n$.

The above inequalities have attracted the attention of several mathematicians. Different proofs and stronger versions of the inequalities mentioned above have been given; see $[3,8,10,12]$.

In this paper, we generalize some inequalities dealing with 2×2 positive semidefinite block matrices in a different perspective.

2. Main Results

This section gives generalized singular value inequalities associated with 2×2 positive semidefinite block matrices. We should recall the following lemmas that are essential roles in our by-products. The first and second lemmas are presented in [5]. The third one has been proved in [1]. Finally, the fourth lemma is given in $[6]$.

Lemma 2.1. Let $A, B, C \in \mathcal{M}_n(\mathbb{C})$ be such that $\begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \geq 0$, then $B^*B \leq C^{\frac{1}{2}}U^*AUC^{\frac{1}{2}}$

for some unitary matrix U.

Lemma 2.2. Let $A, B, C, X, Y \in \mathcal{M}_n(\mathbb{C})$ be such that $\begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \geq 0$, then

$$
\pm (X^*BY + Y^*B^*X) \le X^*AX + Y^*CY
$$

Lemma 2.3. Let $A, B \in \mathcal{M}_{n}(\mathbb{C})$ be such that A is Hermitian, $A \ge 0$ and $\pm B \le A$, then

$$
2s_i(B) \leq s_i((A+B) \oplus (A-B))
$$

for $j = 1, 2, ..., n$.

Lemma 2.4. Let X be Hermitian, then

$$
\prod_{j=1}^k s_j(X) = \max \left| \det \left(U^*XU \right) \right|
$$

where maximum is taken over $n \times k$ matrices U for which $U^* U = I_k (I_k)$ is identity matrix of order k) $1 \leq k \leq n$.

In the following, we aim to provide a generalized singular value and norm inequalities associated with 2×2 block matrices.

Theorem 2.1. Let $A, B \in \mathcal{M}_{n}(\mathbb{C})$. Then

$$
\left|\det\left(B^*|A|^2|B\right)\right|\leq \det|B|^2\prod_{j=1}^k s_j^2(A)\tag{2.1}
$$

for $j = 1, 2, ..., n$ and $1 \le k \le n$.

Proof. By Lemma 2.2 in [13] we showed that for A, B and X in $\mathcal{M}_{n}(\mathbb{C})$ and f and g be non-negative continuous functions on $[0,\infty)$ that satisfy the relation $f(t)g(t) = t$ for all $t \in [0,\infty)$, the matrix

$$
\begin{vmatrix} A^* f \left(\left| X^* \right| \right)^2 A & A^* X^* B \\ B^* X A & B^* g \left(\left| X \right| \right)^2 B \end{vmatrix} \geq 0. \tag{2.2}
$$

Now by Lemma 2.1, we have

$$
B^*X\left|A\right|^2X^*B\leq\!\left(\left(Bg\left(\left|X\right|\right)^2B\right)^{\!\frac{1}{2}}U^*Af\left(\left|X^*\right|\right)^2AU\!\left(Bg\left(\left|X\right|\right)^2B\right)^{\!\frac{1}{2}}\right)\!.
$$

Put $X = I_n$. It follows that

$$
B^*\left|A\right|B\leq\!\left(\left(B^*B\right)^{\!\frac{1}{2}}U^*\left|A\right|^2 U\!\left(B^*B\right)^{\!\frac{1}{2}}\right)
$$

Finally, from lemma 2.4 and some property of determine function, we obtain

$$
\left|\det\left(B^*|A|^2|B\right)\right| \leq \left|\det\left(|B|U^*|A|^2|U|B|\right)\right| = \left|\det|B|\right| \left|\det U^*|A|^2|U\right| \left|\det|B|\right|
$$

$$
= \det|B|^2 \prod_{j=1}^k s_j^2(A)
$$

for $j = 1, 2, ..., n$ and $1 \le k \le n$

Theorem 2.2. Let $A, B, X, S, K \in M_n(\mathbb{C})$, f and g be non-negative continuous functions on $[0, \infty)$ that satisfy the relation $f(t)g(t) = t$ for all $t \in [0,\infty)$. Then

$$
\begin{aligned} 2s_j\left(S^*A^*X^*BK + K^*B^*XAS\right) & \leqslant s_j\bigg(\bigg(S^*A^*f\Big(\big\vert X^*\big\vert\big)^2\ AS + K^*B^*g\left(\big\vert X\big\vert\big)^2\ BK\bigg) \\ & \qquad \qquad +\big(S^*A^*X^*BK + K^*B^*XAS\big)\ \oplus\bigg(S^*A^*f\Big(\big\vert X^*\big\vert\big)^2\ AS + K^*B^*g\left(\big\vert X\big\vert\big)^2\ BK\bigg) \\ & \qquad \qquad -\big(S^*A^*X^*BK + K^*B^*XAS\big)\big). \end{aligned}
$$

Proof. We can obtain the result quickly from the positivity of [1.1], Lemmas 2.2 and 2.3.

We get the following corollary as an application of Theorem 2.2.

Corollary 1. Let $A, B, X, S, K \in \mathcal{M}_n(\mathbb{C})$. Then,

$$
2 \left\| S^* A^* X^* BK + K^* B^* X AS \right\| \leq \left\| \left(S^* A^* f \left(\left| X^* \right| \right)^2 AS + K^* B^* g \left(\left| X \right| \right)^2 BK \right) \right\|
$$

+
$$
\left(S^* A^* X^* BK + K^* B^* X AS \right) \oplus \left(S^* A^* f \left(\left| X^* \right| \right)^2 AS + K^* B^* g \left(\left| X \right| \right)^2 BK \right)
$$

-
$$
\left(S^* A^* X^* BK + K^* B^* X AS \right) \right\|
$$

for every unitarily invariant norm. In particular,

$$
\|S^*A^*X^*BK + K^*B^*XAS\| \leq max \left(\left\| \left(S^*A^*X^*BK + K^*B^*XAS \right) + \left(S^*A^*f \left(\left| X^* \right| \right)^2 AS + K^*B^*g \left(\left| X \right| \right)^2 BK \right) \right\| \right)
$$

$$
\left(\left\| \left(S^*A^*X^*BK + KB^*XAS \right) - \left(S^*A^*f \left(\left| X^* \right| \right)^2 AS + K^*B^*g \left(\left| X \right| \right)^2 BK \right) \right\| \right)
$$

and

$$
\|S^*A^*X^*BK + K^*B^*XAS\|_p \le \left(\left\| (S^*A^*X^*BK + KB^*XAS) + \left(S^*A^*f(|X^*|)^2 AS + K^*B^*g(|X|)^2 BK \right) \right\|_p^p \right. \\ \left. + \left\| (S^*A^*X^*BK + KB^*XAS) - (S^*A^*f(|X^*|)^2 AS + K^*B^*g(|X|)^2 BK \right\|_p^p \right)^{\frac{1}{p}} \tag{2.3}
$$

Remark 2.1. Let A and B be in $M_n(\mathbb{C})$. Putting $f(t) = g(t) = t^{\frac{1}{2}}$ and $X = S = K = I_k$ in Theorem 2.2, we get

$$
2s_j(A^*B + B^*A) \le s_j(A^*A + B^*B) + ((A^*B + B^*A) \oplus (A^*A + B^*B) - (A^*B + B^*A))
$$

= $s_j([A + B]^2 \oplus |A - B|^2)$

for $j = 1, 2, \ldots, n$, which was given in [1, Theorem 2.7] and [9].

Remark 2.2. The inequality in Theorem 2.2 is sharper than [1.6]. In fact, for $A, B, X, S, K \in \mathcal{M}_{n}(\mathbb{C})$. and $f(t) = g(t) = t^{\frac{1}{2}}$ in Theorem 2.2 and by the Weyls monotonicity principle, we have

$$
sj((S^*A^*AS + K^*B^*BK) + (S^*A^*X^*BK + K^*B^*XAS) \oplus (S^*A^*AS + K^*B^*BK) - (S^*A^*X^*BK + KB^*XAS))
$$

= $s_j \begin{bmatrix} (S^*A^*AS + K^*B^*BK) + (S^*A^*X^*BK + K^*B^*XAS) & 0 \\ 0 & (S^*A^*AS + K^*B^*BK) - (S^*A^*X^*BK + K^*B^*XAS) \end{bmatrix}$

$$
\leq s_j \begin{bmatrix} 2(S^*A^*AS + K^*B^*BK) & 0 \\ 0 & 2(S^*A^*AS + K^*B^*BK) \end{bmatrix}
$$

$$
= 2sj(S^*A^*AS + K^*B^*BK \oplus S^*A^*AS + K^*B^*BK)
$$

Garg and Aujla gave the following lemma in [6].

Lemma 5. Let X be Hermitian and Y be positive definite with $\pm X < Y$, then $|\det(X)| < \det Y$.

Theorem 3. Let $A, B, X, S, K \in \mathcal{M}_{n}(\mathbb{C})$, f and g be non-negative continuous functions on $[0, \infty)$ that satisfy the relation $f(t)g(t) = t$ for all $t \in [0,\infty)$. Then

$$
\prod_{j=1}^k\!s_j\!\left(S^*A^*X^*BK+K^*B^*XAS\right)\!\!\leqslant\!\!\prod_{j=1}^k\!s_j\!\left(\!\left(S^*A^*f\!\left(\big\vert X^*\big\vert\!\right)^2AS+K^*B^*g\!\left(\big\vert X\big\vert\!\right)^2BK\right)\right.\qquad\qquad+\!\left(S^*A^*X^*BK+K^*B^*XAS\right)\!\right)
$$

For $1 \leq k \leq n$.

Proof. From the positivity [1.1 and Lemma 2.2 for $n \times k$ matrices U for which $U^* U = I_k (I_k)$ is identity matrix of order k $1 \leq k \leq n$, we have

$$
\begin{aligned} \pm U^*\Big(S^*A^*X^*BK + K^*B^*XAS\Big)U \leqslant & U^*\Bigg(\Big(S^*A^*f\Big(\big\vert X^*\big\vert\Big)^2\ AS + K^*B^*g\left(\big\vert X\big\vert\right)^2 BK\Big)\\ &\qquad \qquad +\Big(S^*A^*X^*BK + K^*B^*XAS\Big)\Big)U. \end{aligned}
$$

Now, from Lemmas 2.4 and 2.5, we get the result as follows:

$$
\begin{aligned} &\prod_{j=1}^k s_j \left(S^* A^* X^* B K + K^* B^* X AS \right) \leqslant \det \bigg[U^* \bigg(\bigg(S^* A^* f \bigg(\big| X^* \big| \big)^2 \, AS + K^* B^* g \big(\big| X \big| \big)^2 \, BK \bigg) \\ &\quad + \bigg(S^* A^* X^* B K + K^* B^* X AS \big) \bigg) U \bigg] \\ &\leqslant \max \bigg| \det \bigg[V^* \bigg(\bigg(S^* A^* f \big(\big| X^* \big| \big)^2 \, AS + K^* B^* g \big(\big| X \big| \big)^2 \, BK \bigg) + \bigg(S^* A^* X^* B K + K^* B^* X AS \big) \bigg) V \bigg] \\ &\quad = \prod_{j=1}^k s_j \bigg(\bigg(S^* A^* f \big(\big| X^* \big| \big)^2 \, AS + K^* B^* g \big(\big| X \big| \big)^2 \, BK \bigg) + \bigg(S^* A^* X^* B K + K^* B^* X AS \big) \bigg). \end{aligned}
$$

for $n \times k$ matrices V for which V^* $V = I_k$ (I_k is identity matrix of order k) $1 \leq k \leq n$

Remark 2.3. Let A and B be in $\mathcal{M}_n(\mathbb{C})$. Putting $f(t) = g(t) = t^{\frac{1}{2}}$ and $X = S = K = I_k$ in Theorem 2.3, we $obtain$

$$
\prod_{j=1}^k s_j (A^* B + B^* A) \leq \prod_{j=1}^k s_j (A^* A + B^* B + A^* B + B^* A) = \prod_{j=1}^k s_j (|A + B|^2).
$$

This inequality is a refinement of inequality [6, Theorem 2.8].

3. Acknowledgments

Authors thank the referees for their valuable suggestions to improve the paper. Author¹ acknowledges Mashhad Branch, Islamic Azad University, Mashhad, Iran for their encouragement. The corresponding author² thank the Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, for the kind support. The author² acknowledges SERB, Govt. of India for the Teachers Associateship for Research Excellence (TARE) fellowship TAR/2022/000219.

References

- [1] W. Audeh, F. Kittaneh, *Singular value inequalities for compact operators*, Linear Algebra Appl. **437** (2012), 2516–2522.
- [2] R. Bhatia, *Matrix Analysis*, Springer Verlag, New York, 1997.
- [3] R. Bhatia, C. Davis, *More matrix forms of the arithmetic-geometric mean inequality*, Matrix Anal. Appl. **14** (1993), 132–136.
- [4] R. Bhatia, F. Kittaneh, *On the singular values of a product of operators*, Matrix Anal. Appl. **11** (1990), 272–277.
- [5] A. Burqan, F. Kittaneh, *Singular value and norm inequalities associated with* 2×2 positive semidefinite block matrices, Electron. J. Linear Algebra. **32** (2017), 116–124.
- [6] I. Garg, J. S. Aujla, *Some singular value inequalities*, Linear Multilinear Algebra. **66(4)** (2018), 776–784.
- [7] I. C. Gohberg, M. G. Krein, *Introduction to the theory of linear Nonselfadjoint operators*, Amer. Math. Soc., Providence, Rl, (1969).
- [8] O. Hirzallah, F. Kittaneh, *Inequalities for sums and direct sums of Hilbert space operators*, Linear Algebra Appl. **424** (2007), 71–82.
- [9] F. Kittaneh, *Some norm inequalities for operators*, Canad. Math. Bull. **42(1)**, (1999), 87–96.
- [10] H. R. Moradi, W. Audeh, and M. Sababheh, *Singular values inequalities via matrix monotone functions*, Anal. Math. Phys. **13, 71** (2023). https://doi.org/10.1007/s13324-023-00832-8
- [11] M. E. Omidvar, M. S. Moslehian, and A. Niknam, *Unitarily invariant norm inequalities for operators*, Egyptian Math. Soc. **20** (2012), 38–42.
- [12] M. Sababheh, S. Furuichi, S. Sheybani, and H. R. Moradi, *Singular values inequalities for matrix means*, J. Math. Inequal. **16(1)** (2022), 169–179.
- [13] M. Taleb Alfakhr, M. E. Omidvar, *Singular value inequalities for Hilbert space operators*, Filomat. **32(8)** (2018), 2861–2866.