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1. Introduction and Preliminaries

Let n( )  stand for the space of n ´ n complex matrices. We consider unitarily invariant norm 
A UAV=  for all A, U and V nÎ ( )  where U, V are unitary matrices. For two Hermitian matrices  

A B n, ( )Î  , one can write A B£  to mean B – A is positive semidefinite. Especially A ≥ 0 indi-
cates that A is positive semidefinite. Also, A > 0 is named positive definite. The singular value of A 
is restricted by s1(A) ≥ s2(A) ≥ . . . sn(A) ≥ 0, that is the eigenvalues of the positive semidefinite matrix 
| | ( )A A A= * 1

2  (the absolute value of A), arranged in decreasing order are repeated according to mul-
tiplicity. Note that s A s A s Aj j j( ) ( ) ( )= =* � for j = 1,2,...,n. The operator norm of A is represent by 

A s A= 1( ).  We use the direct sum notation A BÅ  for the block-diagonal matrix 
A

B
0

0
é

ë
ê

ù

û
ú .
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For the general theory of unitarily invariant norms and more additional results about 2 ́  2 positive 
semidefinite block matrices and related inequalities, we refer the reader to [4], [7] and [8]. It is evident 

that if A, B and X nÎ ( )  such that A
B X

0 0*

é

ë
ê

ù

û
ú ³ ,  then A and X are positive semidefinite.

In [11] the first author showed that for A B X n, , ( )Î   and f and g be non-negative continuous 
functions on [0,¥) that satisfy the relation f(t)g(t) = t for all t 2 [0,¥), then

A f X A A X B

B XA B g X B

* * * *

* *

( )
( )

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2

2
� (1.1)

is positive semidefinite.
As an immediate consequence of the min-max principle (see, e.g., [2, p.75]), if A B X n, , ( )Î  , then

s AXB A B s Xj j( ) ( ) � (1.2)
for  j = 1,2,...,n. For 1p <¥ ,  the Schatten p-norm of A is described by A tr A

p
p p= ( | | ) ,

1

 where tr is 
the usual trace functional. One can see that

A B A BÅ =max( , )
and

A B A B
p p

p

p

p
pÅ = +( ) .
1

� (1.3)

It has been established by Bhatia and Kittaneh in [4] that if A B n, ( )Î  , then
2 A B AA BB* * *+ � (1.4)

and
A B B A AA BB* * * *+ + � (1.5)

for every unitarily invariant norm.
A singular value inequality due to [5] states that if A B C S K n, , , , ( )Î   are such that 

A B
B C*

é

ë
ê

ù

û
ú ³ 0,  

then
s S BK K B S s S AS K CK S AS K CKj j

* * * * * * *+( ) £ +( ) Å +( )( ) � (1.6)
for j = 1,2,...,n.

In [8, Theorem 2.1] it has been shown that if A B Xi i i n, , ( )Î   for j = 1,2,...,n, then

s A X B A B s Xj
i

n

i i i
i

n

i
i

n

i j i n

n

=

*

=

*

=

*

=å å åæ
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ö
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1

2
1
2

1
2

 � (1.7)
for j = 1,2,...,n.

The above inequalities have attracted the attention of several mathematicians. Different proofs 
and stronger versions of the inequalities mentioned above have been given; see [3,8,10,12].

In this paper, we generalize some inequalities dealing with 2 ´ 2 positive semidefinite block matri-
ces in a different perspective.

2. Main Results

This section gives generalized singular value inequalities associated with 2 ´ 2 positive semidefinite 
block matrices. We should recall the following lemmas that are essential roles in our by-products. The 
first and second lemmas are presented in [5]. The third one has been proved in [1]. Finally, the fourth 
lemma is given in [6].
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Lemma 2.1. Let A,B,C 2 n( )  be such that 
A B
B C*

é

ë
ê

ù

û
ú ³ 0,  then 

B B C U AUC* *£
1
2

1
2

for some unitary matrix U.

Lemma 2.2. Let A B C X Y n, , , , ( )Î   be such that 
A B
B C*

é

ë
ê

ù

û
ú ³ 0,  then 

± + £ +* * * * *( ) .X BY Y B X X AX Y CY

Lemma 2.3. Let A B n, ( )Î   be such that A is Hermitian, A and B A³ ± £0  ,  then 
2s B s A B A Bj j( ) ( ) ( )£ + Å -( )

for j = 1,2,...,n.

Lemma 2.4. Let X be Hermitian, then 

j

k

js X U XU
=

*Õ = ( )
1

( ) max det

where maximum is taken over n ´ k matrices U for which U * U = Ik (Ik is identity matrix of order k) 
1 £ £k n.

In the following, we aim to provide a generalized singular value and norm inequalities associated 
with 2 ´ 2 block matrices.

Theorem 2.1. Let A B n, ( )Î  . Then

det det ( )B A B B s A
j

k

j
*

=
( ) £ Õ2 2

1

2 � (2.1)

for j = 1,2,...,n and 1 £ £k n .

Proof. By Lemma 2.2 in [13] we showed that for A, B and X in n( )  and f and g be non-negative 
continuous functions on [0,¥) that satisfy the relation f(t)g(t) = t for all t 2 [0,¥), the matrix

A f X A A X B

B XA B g X B

* * * *

* *
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2
0 . � (2.2)

Now by Lemma 2.1, we have

B X A X B Bg X B U Af X AU Bg X B* * * *£ ( )( ) ( ) ( )( )æ

è
ç

ö

ø
÷

2 2 2 2
1
2

1
2

.

Put X = In. It follows that

B A B B B U A U B B* * * *£ ( ) ( )æ
èç

ö
ø÷

1
2

1
22 .

Finally, from lemma 2.4 and some property of determine function, we obtain

det det det det det

det ( )

B A B BU A U B B U A U B

B s A
j

k

j

* * *

=

( ) £ ( )=
= Õ

2 2 2

2

1

2

for j = 1,2,...,n and 1 £ £k n
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Theorem 2.2. Let A B X S K n, , , , ( ),Î   f and g be non-negative continuous functions on [0,¥) that  
satisfy the relation f(t)g(t) = t for all t 2 [0,¥). Then

2
2 2

s S A X BK K B XAS s S A f X AS K B g X BKj j
* * * * * * * * * *+( ) ( ) + ( )æ

èç
ö
ø÷

+

æ
èç



SS A X BK K B XAS S A f X AS K B g X BK

S A X

* * * * * * * * * *

* * *

+( ) Å ( ) + ( )æ
èç

ö
ø÷

-

 
2 2

BBK K B XAS+( ))* * .

Proof. We can obtain the result quickly from the positivity of [1.1], Lemmas 2.2 and 2.3.

We get the following corollary as an application of Theorem 2.2.

Corollary 1. Let A B X S K n, , , , ( ).Î   Then, 

2
2 2

S A X BK K B XAS S A f X AS K B g X BK

S A X BK

* * * * * * * * *

* * *

+ ( ) + ( )æ
èç

ö
ø÷

+ +

*

KK B XAS S A f X AS K B g X BK

S A X BK K B XAS

* * * * * *

* * * * *

( ) Å ( ) + ( )æ
èç

ö
ø÷

- +

*
2 2

(( )
for every unitarily invariant norm. In particular, 

S A X BK K B XAS max S A X BK K B XAS S A f X AS K B g X* * * * * * * * * * * * * * *+ £ +( ) ( ) ++
2 (( )æ

èç
ö
ø÷

æ
èç

ö
ø÷

+( ) - ( ) + ( )* * * * * * * * *

2

2 2

BK

S A X BK KB XAS S A f X AS K B g X BBKæ
èç

ö
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and 

S A X BK K B XAS S A X BK KB XAS S A f X AS K B g X
p

* * * * * * * * * * * * * *+ £ +( ) + ( ) + ( )2 2
BBK

S A X BK KB XAS S A f X AS K B g X BK

p

p
æ
èç

ö
ø÷

æ
èç

+ +( ) - ( ) + ( )* * * * * * * * *(
2 2

pp

p pö

ø
÷

1

� (2.3)
for 1 ≤ p < ¥.

Remark 2.1. Let A and B be in Mn(C). Putting f t g t t( ) ( )= =
1
2  and X = S = K = Ik in Theorem 2.2, we get 

2s A B B A s A A B B A B B A A A B B A B B A

s

j j( ) ) (( ) ( ) ( )* * * * * * * * * *+ £ + + + Å + - +( )
= jj A B A B+ Å -( )2 2

for j = 1,2,...,n, which was given in [1, Theorem 2.7] and [9].

Remark 2.2.  The inequality in Theorem 2.2 is sharper than [1.6]. In fact, for A B X S K n, , , , ( ).Î   
and f t g t t( ) ( )= =

1
2  in Theorem 2.2 and by the Weyls monotonicity principle, we have 

sj S A AS K B BK S A X BK K B XAS S A AS K B BK S A X* * * * * * * * * * * * * * *+( ) + +( ) Å +( ) - ** *

* * * * * * * * *

* *

+( )( )
=

+( ) + +( )
BK KB XAS

s
S A AS K B BK S A X BK K B XAS

S A
j
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0 AAS K B BK S A X BK K B XAS+( ) - +( )
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* * *

s
S A AS K B BK

S A AS K B BK

sj S A AS K

j

2

2

2

0

0

BB BK S A AS K B BK* * * * *Å +( )
Garg and Aujla gave the following lemma in [6].

Lemma 5. Let X be Hermitian and Y be positive definite with ±X < Y, then |det(X)|< detY.

Theorem 3. Let A B X S K n, , , , ( ).Î  , f and g be non-negative continuous functions on [0,¥) that  
satisfy the relation f(t)g(t) = t for all t 2 [0,¥). Then

j

k

j
j

k

js S A X BK K B XAS s S A f X AS K B g X BK
=

* * * * *

=

* * * * *Õ Õ+( ) ( ) + ( )æ
1 1

2 2
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èèç
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èç

+ +( ))* * * * *��� � S A X BK K B XAS

For 1 £ £k n .

Proof. From the positivity [1.1 and Lemma 2.2 for n ´ k matrices U for which U * U = Ik (Ik is identity 
matrix of order k) 1 £ £k n , we have

± +( ) ( ) + ( )æ
èç

ö
ø÷

æ
èç

* * * * * * * * * * * *U S A X BK K B XAS U U S A f X AS K B g X BK
2 2

���� �+ +( ))* * * * *S A X BK K B XAS U.

Now, from Lemmas 2.4 and 2.5, we get the result as follows:

j

k

js S A X BK K B XAS U S A f X AS K B g X BK
=

* * * * * * * * * * *Õ +( ) ( ) + ( )æ
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g X BK S A X BK K B XAS V

s S A
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f X AS K B g X BK S A X BK K B XAS
2 2 � .

for n ´ k matrices V for which V * V = Ik (Ik is identity matrix of order k) 1 £ £k n

Remark 2.3. Let A and B be in n( ) . Putting f t g t t( ) ( )= =
1
2  and X = S = K = Ik in Theorem 2.3, we 

obtain 
s A B B A s A A B B A B B A s A Bj

j

k

j
j

k

j
j

k

= = =
Õ Õ Õ+( ) + + +( ) = +( )

1 1 1

2* * * * * * .

This inequality is a refinement of inequality [6, Theorem 2.8].
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