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The main purpose of the current paper is to study certain curvature conditions in Lorentzian para-
Kenmotsu n-manifolds (briefly, ( )LPK n) admitting ρ -Einstein solitons (ρ -ES).
Mathematics Subject Classification: 53E20; 53C21; 53C25. 
Keywords: ρ -Einstein soliton; Einstein manifolds; Lorentzian para-Kenmotsu manifolds

Email addresses: mobinahmad68@gmail.com (Mobin Ahmad)*; mohd7bilal@gmail.com (Mohd Bilal); gazala.math@gmail.com 
(Gazala)

1. Introduction

In the past two decennaries, the geometric flows are too fascinating mathematical tools for describing 
geometric structures in Riemannian geometry. On a Riemannian manifold ( , ) g , the Ricci flow [1] is 

described by an equation of the from �
�

�
g
t

S= 2 , where S  is the Ricci curvature tensor. The metric g  on 

  satisfies the Ricci soliton equation V g S g� �2 2 = 0,�  where V  represents the Lie derivative in 
the direction of a vector field V  on   and Λ  is a constant. The manifolds admitting such structure are 
called Ricci soliton. A Ricci soliton is called shrinking (steady or expanding) if Λ > 0 (Λ = 0  or Λ < 0).

In 1980’s, as a generalization of Ricci flow, Bourguignon introduced the notion of Ricci-Bourguignon 
flow [2]. The Ricci-Bourguignon flow is an equation on a manifold ( , ) g  given as follows

�
�

� �
g
t

S rg g g= 2( ), (0) = ,0� (1)
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where S  is the Ricci curvature tensor, r  is the scalar curvature and �( 0)�  is a real constant. It should 
be noticed that for specific values of ρ  we obtain the following circumtances for the tensor S rg� �  
appearing in equation (1). The evolution equation (1) is of special interest, in particular [3]

	 1.	 ρ = 1
2

, the Einstein tensor S r g−
2

, (for Einstein soliton)

2.	 ρ = 1
n

, the traceless Ricci tensor S r
n
g− ,

3.	 � = 1
2( 1)n �

, the Schouten tensor S r
n

g−
−2( 1)

,  (for Schouten soliton),

4.	 ρ = 0 , the Ricci tensor S  (for Ricci soliton).

For n = 2, the tensors (1) -(3)  are zero, hence the flow is static and in higher dimension the value 
of ρ  are strictly ordered as above in descending order. Short time existence and uniqueness for the 
solution of (1) has been proved in [4]. In actual, for sufficiently small t  the equation (1) has a unique 
solution for � < 1

2( 1)n �
.

A more general type of Ricci soliton, i.e., “Ricci-Bourguignon soliton” is the soluion of Ricci-
Bourguignon flow. An ( , ) g  of dimension n ≥ 3 is named as a Ricci-Bourguignon soliton or ρ -Einstein 
soliton (ρ -ES) if

V g S r g� � �2 2( ) = 0.� � (2)

A ρ -ES is called shrinking if Λ < 0, steady if Λ = 0  and expanding if Λ > 0. We refer the papers [5–13] 
for more details about the concerned studies on different types solitons.

We present our study as follows: In section 2, we give some basic definitions and results of ( )LPK n.  
In section 3, we investigate ( )LPK n admitting ρ -ES. In section 4, ρ -ES on ( )LPK n admitting cyclic 
η -recurrent Ricci tensor have been studied. Sections 5 deals with the study of ρ -ES in ( )LPK n with 
torse forming vector field. In section 6, the curvature condition R X S( , ). = 0ξ  in ( )LPK n admitting ρ - 
ES have been studied. In section 7, we discuss ρ -ES in conharmonically flat, ϕ -conharmonically flat 
and conharmonically ϕ -semisymmetric flat conditions in ( )LPK n.

2. Preliminaries

A differentiable manifold   of dimension of n with the structure ( , , )� � �  is termed a Lorentzian 
almost paracontact manifold, where ϕ , ζ  and η  refer to a (1,1)  type tensor field, a contravariant 
vector field, and a 1-form, respectivey such that [14, 15]

� � � � �( ) = 1 = ,2� � �and I (3)

which infer that 

�� � � �= 0, = 0, ( ) = 1. rank n � (4)

Let g  be a Lorentzian metric of   fulfilling 

g g g( , ) = ( ) ( , ) = ( , ) ( ) ( ).� � � � � � � � �� � � � � �and (5)

Then the structure ( , , , )� � � g  is called an almost paracontact structure and   is termed as an almost 
paracontact metric manifold.

Define Φ , the second fundamental form as:

� �( , ) = ( , ) = ( , )1 2 2 1 1 2     g � (6)
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for any vector fields X X M1 2, ( )∈X , where X( )  refers to the Lie algebra of vector fields on  . If 
d�( , ) = ( , )1 2 1 2   � , d  is an exterior derivative, then ( , , , , ) � � � g  is named as a paracontact metric 
manifold [16].

Definition 2.1: A Lorentzian almost paracontact manifold   is called an ( )LPK n if [17] 

( ) = ( , ) ( )
1 2 1 2 2 1� � �X X X E X X� � � � �g (7)

 for any  1 2,  on ( ) .LPK n  
In an ( )LPK n, we have

� � �  
1 1 1( ) = 0,� � � (8)

( ) ( , ) ( ) ( ) = 0,
1 2 1 2 1 2� � �X E X X X X� � �g (9)

where ∇  is called the Levi-Civita connection with respect to g .
Moreover, in an ( )LPK n we have [17]:

g g g( ( , ) , ) = ( ( , ) ) = ( , ) ( ) ( , ) ( ),1 2 3 1 2 3 2 3 1 1 3 2R X X X R X X X X X X X X X� � � �� (10)

R X X R X X X X X X( , ) = ( , ) = ( , ) ( ) ,1 2 1 2 1 2 2 1� � � �� �g (11)

R X X X X X X( , ) = ( ) ( ) ,1 2 2 1 1 2� � �� (12)

R X X X( , ) = ( ) ,1 1 1� � � �� (13)

S n S n( , ) = ( 1) ( ),  ( , ) = ( 1),1 1 � � � �� � � (14)

� �= ( 1) ,n � (15)

for any   1 2 3, ,  on ( )LPK n, where   and   denote the curvature tensor and the Ricci operator, 
respectively.

Definition 2.2: An ( )LPK n is said to be η -Einstein manifold if its Ricci tensor S( 0)≠  satisfies the fol-
lowing relation 

S g( , ) = ( , ) ( ) ( ),1 2 1 1 2 2 1 2     � � � �� (16)

for smooth functions σ1  and σ2 . If σ2 = 0 , then ( )LPK n reduces to an Einstein manifold. 

Remark 2.3: In an ( )LPK n, we have [18] 

� ( ) = 2( ( 1)).r r n n� � (17)

Remark 2.4: From the relation (17), it is observed that if an ( )LPK n is of constant scalar curvature, 
then r n n= ( 1)− . 

3. ρ -Einstein solitons on ( )LPK n

Let an ( )LPK n admit a ρ -ES, then (2)  holds. Thus we have

( )( , ) 2 ( , ) 2( ) ( , ) = 0.1 2 1 2 1 2L X X X X X X� �g S r g� � �� (18)

As we know that 
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( )( , ) = ( , ) ( , ) = 2 ( , ) 2 ( ) ( ).1 2 1 2 1 2 1 2 1 2L X X X X X X X XX X� � � � �g g g g� � � � � (19)

Thus (18) leads to

S r g( , ) = ( 1) ( , ) ( ) ( ).1 2 1 2 1 2     � � � �� � � � (20)

Putting 2 = ζ  in (19) then using (3) and (5) we have 

S r( , ) = ( ) ( ).1 1 � � �� �� (21)

This implies that 

Q r� � �= ( ) .� �� (22)

From (14) and (21), we get the following relation 

� = ( 1).�r n� � (23)

Now, if we acknowledge that r  is constant, then in view of Remark 2.4, (23) turns to 

� = ( 1)( 1).n n� �� (24)

Thus, we have the following result: 

Theorem 3.1: An ( )LPK n admitting a ρ -ES is an η -Einstein manifold and the soliton constant is 
given by � = ( 1)( 1)n n� �� . 

Now we have the following corollary:

Corollary 3.2 Let an ( )LPK n admit a ρ -ES. Then we have 

Values of ρ Soliton type Soliton constant
Conditions for ( , = , , )g V � ��  to be 
expanding, shrinking or steady 

ρ = 1
2

 
 Einstein soliton 

 � = ( 1)( 2)
2

n n� � ( , = , , )g V � ��  is expanding. 

ρ = 1
n

 
 traceless Ricci soliton  Λ = 0   ( , = , , )g V � ��  is steady. 

� = 1
2( 1)n �

 
 Schouten soliton 

 � = ( 2)
2

�
�n  

 ( , = , , )g V � ��  is shrinking. 

ρ = 0   Ricci soliton  � = ( 1)� �n   ( , = , , )g V � ��  is shrinking. 

Lemma 3.3: [19] Let an ( )LPK n admit a ρ -ES ( , = , , )g V � ��  such that V b= ζ , where b is a function. 
Then

	 (i)	 V  is a constant multiple of ζ  and ( )LPK n is an η -Einstein manifold of the type 

S b g b( , ) = ( ) ( , ) ( ) ( ).1 2 1 2 1 2     � �� � � (25)

	(ii)	 Moreover, ρ -ES ( , , , )g V � �  reduces to the Ricci soliton. 

Proof. ( )i  This part of the lemma can be esaily proved in similar way as in [19].
( )ii  Now, putting 2 = ζ  in (25), we have

S( , ) = ( ).1 1 � ��� (26)

From the relations (14), (24) and (25), we obtain ρ = 0 . This implies that ρ -ES reduces to the Ricci 
solitons.
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4. ρ -Einstein solitons on ( )LPK n admitting cyclic η -recurrent Ricci tensor

Definition 4.1: An ( )LPK n is said to have cyclic η -recurrent Ricci tensor, if

( )( , ) ( )( , ) ( )( , )

= ( ) ( , ) (
1 2 3 2 3 1 3 1 2

1 2 3

� � � � �

�

       

  

S S S

S� �      2 3 1 3 1 2) ( , ) ( ) ( , )S S��
(27)

for any   1 2 3, ,  on ( )LPK n. 
Let an ( )LPK n admitting ρ -ES has cyclic η -recurrent Ricci tensor then (27) holds. The covariant 

differentiation of (20) with respect to 1  leads to

( )( , ) = ( ) ( , ) ( , ) ( ) ( , ) ( ) 2
1 2 3 1 2 3 1 2 3 1 3 2� � � �           S r g g g� � � �� � �( ) ( ) ( ).1 2 3   (28)

Similarly, we have 

( )( , ) = ( ) ( , ) ( , ) ( ) ( , ) ( ) 2
2 3 1 2 3 1 2 3 1 1 2 3� � � �           S r g g g� � � �� � �( ) ( ) ( ).1 2 3   (29)

and 

( )( , ) = ( ) ( , ) ( , ) ( ) ( , ) ( ) 2
3 1 2 3 1 2 3 1 2 3 2 1� � � �           S r g g g� � � �� � �( ) ( ) ( ).1 2 3  

(30)

By using (28)-(30) in (27), we arrive at 

� � � �[( ) ( , ) ( ) ( , ) ( ) ( , )] = 9 ( ) ( ) (1 2 3 2 3 1 3 1 2 1 2          r g r g r g� � 

        
3

2 3 1 1 3 2 1 2 3

)
( 3)[ ( , ) ( ) ( , ) ( ) ( , ) ( )],� � � � �� � � � �r g g g

which by putting  2 3= = ζ  and using (3) and (4), we have 

� � � � �[ ( ) 2( ) ( )] = 3( ) ( ).1 1� � �Xr r r � (31)

Now putting 1 = ζ  in (31) and using (3), we infer 

	 � = [ ( )].� �r r� (32)

Let r  is constant, then ζ r = 0 . Thus in view of (17), (32) gives 

� = ( 1).�n n � (33)

Thus, we have the following result: 

Theorem 4.2: If an ( )LPK n with the constant scalar curvature admitting ρ -Einstein solitons has 
cyclic η -recurrent Ricci tensor, then the soliton constant is given by � = ( 1)�n n � . 

Now we have the following corollary:

Corollary 4.3: Let the metric of an ( )LPK n with constant scalar curvature be a ρ -Einstein soliton. 
Then we have 

Values of ρ  Soliton type Soliton constant 
Conditions for ( , = , , )g V � ��  to be 
expanding, shrinking or steady 

ρ = 1
2

 
 Einstein soliton 

 � = ( 1)
2

n n �  ( , = , , )g V � ��  is expanding. 

ρ = 1
n

 
 traceless Ricci soliton  � = 1n �   ( , = , , )g V � ��  is steady. 

� = 1
2( 1)n �

 
 Schouten soliton 

 Λ =
2
n  

 ( , = , , )g V � ��  is shrinking. 

ρ = 0   Ricci soliton  Λ = 0   ( , = , , )g V � ��  is shrinking. 
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5. ρ -Einstein Solitons on ( )LPK n with Torse-forming Vector Field

Definition 5.1: A vector field V on a ( )pseudo -Riemannian manifold ( , )M g  is called torse-forming 
[20] if

� �  
1 1 1= ( )V f V� (34)

where f : a smooth function, ω : a 1-form and ∇ : the Levi-Civita connection of g. 
Let us consider an ( )LPK n admitting a ρ -ES ( , = , , )g V � �� , and also considering ζ , the Reeb 

vector field as a torse-forming vector field. Thus, from (34) we have

� �  
1 1 1= ( )� � �f (35)

for any 1  on ( )LPK n.
The inner product of (35) with ζ  gives

g f( , ) = ( ) ( ).
1 1 1� �  � � � � (36)

Also from (8), we obtain 

g( , ) = 0.
1

� � � (37)

Thus, from (36) and (37) we find � �= f , and hence (35) becomes 

� �  
1 1 1= ( ( ) ).� � �f (38)

Now, in view of (38), we have 

( )( , ) = 2 { ( , ) ( ) ( )}.1 2 1 2 1 2£� � �g f g     � (39)

By virtue of (39), (18) turns to 

S f r g f( , ) = ( ) ( , ) ( ) ( ).1 2 1 2 1 2     � � � �� � � � (40)

By putting  1 2= = ζ  in (40) then using (3) and (14), we obtain 

� = ( 1)( 1).n n� ��

Thus, we have: 

Theorem 5.2: Let an ( )LPK n of constant scalar curvature admit a ρ -ES ( , = , , )g V � ��  with a 
torse-forming vector field ζ , then ( )LPK n is an η -Einstein. Moreover, for the particular values of ρ , 
the nature of solitons can be discussed as in Corollary 4.3 . 

6. ρ -Einstein Solitons on ( )LPK n Satisfying R S( , ) = 01�  �

Let an ( )LPK n admitting ρ -ES satisfies the condition R S( , ) = 01�  � . Then we have

S R S R( ( , ) , ) ( , ( , ) ) = 0,1 2 3 2 1 3� �     �

which by using (11) yields 

g S S g S S( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( ) ( ,1 2 3 2 1 3 1 3 2 3 1 2           � � � �� � � )) = 0.

Putting 3 = ζ  in the foregoing equation then using (3) and (21), we infer 

S r g( , ) = ( ) ( , ).1 2 1 2   � �� � (41)
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Now putting 2 = ζ  in (41) and using (21), we obtain 

� = ( 1)( 1).n n� �� (42)

Now we state: 

Theorem 6.1: Let an ( )LPK n of constant scalar curvature tensor admit a ρ -ES ( , = , , )g V � ��  and 
satisfies R S( , ) = 01�  � , then ( )LPK n is an Einstein. Moreover, for the particular values of ρ , the 
nature of solitons can be discussed as in Corollary 4.3 . 

7. Conharmonic Curvature Tensor on ( )LPK n Admitting ρ -ES

In 1950’s, Ishii [21] introduced the idea of conharmonic transformation under which a harmonic func-
tion transform into a harmonic function. The conharmonic curvature tensor C  of type (1,3) on a 
(pseudo)-Riemannian manifold   of dimension n is defined by [22, 23]

C R
n

S S g( , ) = ( , ) 1
( 2)

[ ( , ) ( , ) ( ,1 2 3 1 2 3 1 3 2 2 3 1 1 3             �
�

� � )) ( , ) ]2 2 3 1Q g Q   � (43)

for all   1 2 3, ,  on  .
In this section, first we study conharmonically flat ( )LPK n admitting ρ -ES, i.e., C( , ) = 01 1 3   . 

Then from (43), we have

R
n

S S g Q g( , ) = 1
( 2)

[ ( , ) ( , ) ( , ) ( ,1 2 3 1 3 2 2 3 1 1 3 2 2            �
�

� � �  3 1) ],Q

which by putting 3 = ζ  and using (12), (21) and (22) reduces to 

( 2)( ( ) ( ) ) = ( ) ( ) .2 1 1 2 2 1 1 2� � � � � �� � � � �r n Q Q        (44)

By putting 2 = ζ , (44) leads to 

Q r n r n  1 1 1= ( 2) (2 2 2) ( ) .� �� � � � � � �� � � � (45)

The inner product of (45) with 2  gives 

S r n g r n( , ) = ( 2) ( , ) (2 2 2) ( ) ( ).1 2 1 2 1 2     � �� � � � � � �� � � � (46)

Now taking 2 = ζ  in (46) then using (3), (5) and (14), we obtain 

� = ( 1).�r n� � (47)

Now, let r  is constant, then in view of Remark 2.4, (47) turns to 

� = ( 1)( 1).n n� �� (48)

Thus, we have the following result: 

Theorem 7.1: If the metric of a conharmonically flat ( )LPK n whose scalar curvature r  is constant be 
ρ -ES ( , , , )g � �� , then ( )LPK n is an η -Einstein and the soliton constant is given by � = ( 1)( 1)n n� �� . 

Next, we consider a ϕ -conharmonically flat ( )LPK n that admits a ρ -ES, i.e., 
ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ2

1 2 3 1 1 3 4( , ) = 0 ( ( , ) , ) = 0C g C       . Then from (43), it follows that

g R
n

g S g( ( , ) , ) = 1
( 2)

[ ( , ) ( , ) ( ,1 2 3 4 1 4 2 3 2 4� � � � � � � � � �         
�

� )) ( , )

( , ) ( , ) ( , ) ( , )].

1 3

1 4 2 3 2 4 1 3

S

S g S g

� �

� � � � � � � �

 

       � �
(49)
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Let � � � �1 2 1, ,....., ,n�� � be a local orthonormal basis of the vector fields in ( )LPK n. Using that 
�� �� �� �1 2 1, ,....., ,n�� � is also a local orthonormal basis of ( )LPK n. If we set  1 4= = εi  in (??) and sum 

up with respect to i , then

i

n

i i
i

n

ig R
n

S g
=1

1

2 3 2 3
=1

1
( ( , ) , ) = 1

( 2)
[ ( , ) ( ,

� �

� ��
�� � � �� � � ��    ���

�� � � �� � � �� �

i

i

n

i i
i

n

iS g g S

)

( , ) ( , ) ( , ) ( ,
=1

1

3 2 2 3
=1

1
� �

� �

� �    ��

�� � � ��

i

i

n

i ig S

)

( , ) ( , )].
=1

1

3 2�
�

�  

(50)

As we know that 

i

n

i ig R S g
=1

1

2 3 2 3 2 3( ( , ) , ) = ( , ) ( , ),
�

� ��� � � �� � � � �      (51)

i

n

i iS g S
=1

1

3 2 2 3( , ) ( , ) = ( , ),
�

� �� � � �� � �    (52)

i

n

i iS r n
=1

1
( , ) = ( 1),

�

� � ��� �� (53)

i

n

i ig n
=1

1
( , ) = 1.

�

� ��� �� (54)

Now by using (51)-(54) in (??), we lead to 

S r g( , ) = ( 1) ( , ).2 3 2 3� � � �   � (55)

By putting  2 2= ϕ  and  3 3= ϕ  in (55) and using (3), (21), we find 

S r g r r( , ) = ( 1) ( , ) ( 1) ( ) ( ).2 3 2 3 2 3     � � � � �� � � � (56)

From (20), we find 

S r g( , ) = ( 1) ( , ).2 3 2 3� � � � �   � � �� (57)

Thus from the equations (55) and (57), we obtain 

� = ( 1) 2.� � �r (58)

If we assume that r  of ( )LPK n is constant, then ζ r = 0 . Thus in view of Remark 2.4, (57) takes the 
form 

� = ( 1)( 1) 2.n n � � �� (59)

Thus we state the following: 

Theorem 7.2: If a ϕ -conharmonically flat ( )LPK n with the constant scalar curvature r  admits a  
ρ -ES ( , , , )g � �� , then ( )LPK n is an η -Einstein and the soliton constant is given by � = ( 1)( 1) 2n n � � �� .  

Now we have the following corollary:

Corollary 7.3: Let the metric of a ϕ -conharmonically flat ( )LPK n with constant scalar curvature be a 
ρ -ES. Then we have 
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Values of ρ  Soliton type Soliton constant 
Conditions for ( , = , , )g V � ��  to be 
expanding, shrinking or steady 

ρ = 1
2

 
 Einstein soliton 

 � = ( 1)
2

2�
�

�
n n  ( , = , , )g V � ��  is shrinking. 

ρ = 1
n

 
 traceless Ricci soliton  � = ( 1) 22� � �n   ( , = , , )g V � ��  is shrinking. 

� = 1
2( 1)n �

 
 Schouten soliton 

 � = 3
2

22� � �n n  
 ( , = , , )g V � ��  is shrinking. 

ρ = 0   Ricci soliton  � = ( 1) 2� � �n n   ( , = , , )g V � ��  is shrinking. 

Lastly, we consider a conharmonically ϕ -semisymmetric ( )LPK n that admits a ρ -ES, i.e., 
C( , ) = 01 2  ��  [24]. This implies that 

C C( , ) ( , ) = 0,1 2 3 1 2 3     � ��

which by putting 1 = ζ  takes the form 

C C( , ) ( , ) = 0.2 3 2 3� � � �   � (60)

From (43), we have 

C R
n

S S

g

( , ) = ( , ) 1
( 2)

[ ( , ) ( , )

( ,

2 3 2 3 2 3 3 2

2

� � � � � � � �

�

       

 

�
�

�

� 33 3 2) ( , ) ].Q g Q� � ��  
(61)

By using (4), (11), (20)–(23), (61) reduces to 

C( , ) = 0.2 3� �  (62)

Also from (43), we have 

C r n
n

( , ) = 2 2 2
2

( ( ) ( ) ( ) ),2 3 3 2 2 3�
�

� � � �     �
� � �

�
�

�

from which we infer 

� �
�

� �C r n
n

( , ) = 2 2 2
2

( ) .2 3 3 2   �
� � �

�
� (63)

From the equations (60), (62) and (63), we lead to 

2 2 2 = 0.� � � ��r n (64)

If we assume that r  of ( )LPK n is constant, then ζ r = 0 . Thus in view of Remark 2.4, from (64) we 
obtain 

� = ( 1) 2
2

.n n n
� �

�
� (65)

Thus we state the following: 

Theorem 7.4: If a conharmonically ϕ -semisymmetric ( )LPK n with constant scalar curvature r  admits 

a ρ -ES ( , , , )g � �� , then the soliton constant is given by � = ( 1) 2
2

.n n n
� �

�
�
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Now we have the following corollary:

Corollary 7.5: Let the metric of a conharmonically ϕ -semisymmetric ( )LPK n with constant scalar 
curvature be a ρ -Einstein soliton. Then we have 

 Values of ρ   Soliton type  Soliton constant 
 Conditions for ( , = , , )g V � ��  to be 
expanding, shrinking or steady 

ρ = 1
2

 
 Einstein soliton 

 � = 2 2
2

2n n� �  ( , = , , )g V � ��  is expanding. 

ρ = 1
n

 
 traceless Ricci soliton 

 Λ =
2
n  

 ( , = , , )g V � ��  is expanding. 

� = 1
2( 1)n �

 
 Schouten soliton  Λ =1  ( , = , , )g V � ��  is expanding. 

ρ = 0   Ricci soliton 
 � = 2

2
�

�n  
 ( , = , , )g V � ��  is shrinking. 
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