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1. Introduction

The captivating field of fractal mathematics has enticed scientists, mathematicians, and artists for 
decades, providing profound insights into the complexity and order found in the natural world. Among 
the vast assortment of mathematical shapes and patterns, Julia sets have emerged as a key area of 
study, presenting mesmerizing visual representations and intriguing mathematical relationships. 
Julia sets, named after the French mathematician Gaston Julia, sits at the heart of the broader realm 
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of complex dynamics. These intricate sets are constructed through iterations of complex functions, 
focusing on specific values within the complex plane. P. Fatou [6], another prominent mathemati-
cian, furthered the study of Julia sets, establishing the Fatou set as the complement to the Julia set 
within the domain. One of the most captivating aspects of Julia’s sets lies. The word fractal originates 
from the Latin language that means divide or break. This is tantamount to self-similar patterns in 
complex graphics. Fractals are infinitely complex identical patterns with many real-life applications 
and are common in nature because they adequately describe: leaf patterns, tree branches, electricity, 
clouds, lightning, rivers, crystals, and so on. Fractals play an important role in surveying or examin-
ing various natural or living frameworks, such as microorganism culture. In addition, cryptography, 
image compression, encryption as well as radar frameworks, computational architectural design, and 
engineering models fall into the areas in which fractal theory is widely used, see e.g. [3, 6, 12–14, 16, 
18, 23].

Julia sets are fascinating mathematical objects that can be generated through a process called 
iteration. By repeatedly applying a simple function to a complex number, we can create mesmerizing 
fractal patterns. To generate a Julia set, we must choose a complex number, usually denoted as “c”. 
This constant value is crucial in defining the unique characteristics of each Julia set. The iterations 
start with an initial value, typically denoted as “z”, and then repeatedly apply a function, usually 
f z z c( ) .= +2  The resulting Julia set is the collection of complex numbers that do not diverge to infin-
ity within a given set of iterations. The contrasting colors and intricate shapes within the Julia set 
correspond to the different convergence properties of these complex numbers. The escaping criterion 
determines when to stop iterating and consider a point as part of the Julia set. One common escape 
criterion is to set a maximum number of iterations. If a point reaches this maximum without diverg-
ing to infinity, it is considered as part of the set.

In 2004, Rani et al. [19] studied the chaotic behavior of a complex function f z z c( ) ,= +2  for some 
complex constant c through the iteration schemes known in the fixed point theory. Later on, numerous 
mathematicians used different iterative processes like Mann iteration, Picard iteration, Ishikawa iter-
ation, Noor iteration, S-iteration, Junkck-Ishikawa iteration, Junkck-SP iteration with s-convexity,  
Junkck-CR iteration, implicit iterative scheme, and obtained variants of these sets to study their 
behavior and pattern for different polynomials, complex sine function, complex cosine function and 
transcendental functions because it is known that shape, color, and other characteristics vary with the 
iterative procedures for the same functions, see [1–6, 9–11, 17, 20, 22, 24]. Iteration schemes are not 
only used in the generation of Julia sets, but we can find their applications in the generation of other 
types of fractals, e.g., biomorphs, iterated function system fractals, inversion fractals, root-finding  
fractals etc., see e.g. [3–5, 7, 8, 12–14, 18].

The present work, inspired by Antal et al. [1] and Shatanawi et al. [21], studied Julia sets of com-
plex cosine function using four-step iteration scheme extended by s-convexity to develop the escape 
criterion. We first extend the existing four-step iteration scheme with s-convexity to develop the escape 
criteria for new complex function p z a d z bz cn( ) exp[ sin( )] ,= - +  where n d a b c d,| | , , , ,³ Î2 and   and 
then furnish some graphical examples using the proven escape criteria, developed an escape time 
algorithm, color map, and MATLAB software.

The rest of the paper is organized as follows, Section 2 contains some basic definitions and results 
needed to achieve the goal of this paper. In Section 3, we introduce a more generalized, new complex 
function p z a d z bz cn( ) exp[ sin( )] ,= - +  where n d a b c d,| | , , , ,³ Î2 and   and study the escape criteria 
for the four-step iterations scheme and Jungck-four step iteration with s-convexity for the new consid-
ered complex function. In Section 4, we presents some graphical examples of Julia sets obtained with 
the proposed approach and showing the dependence between the size of the generated Julia sets and 
the values of the parameters. Finally, in Section 5, we conclude our work. 

2. Preliminaries

Definition 2.1. (Julia set [6]) Let p : . ®  The filled Julia set of p is denote by Jp and is defined as 



Ahmad I., et al. Results in Nonlinear Anal. 7 (2024), 1–18 3

J z p zp
k

k= Î ={ : {| ( )|} }. 0
¥ ��is bounded

Noticeably, it is a set of complex numbers for which the orbits do not converge to a point at infinity. The 
Julia set of p is the boundary of Jp, that is, J Jp p= ¶ .  

Definition 2.2. (s-convex combination [14]) Let z z z z sn1 2 3 0 1, , , , ( , ]. Î Î and  The s-convex combi-
nation is described as 

l l l l1 1 2 2 3 3
s s s

n
s
nz z z z+ + + + .

where l lk
k

n

kand for k n³ = Î
=
å0 1 1 2 3

1
    , { , , , , }.

For s = 1, the s-convex combination diminishes to the standard convex combination.
Consider the sequence {zk} of iterates for the initial point z and S T0 Î ®    , :  be a complex- 

valued mappings so that S is injective. Then sequence {zk} of iterates for any initial point 
z and k0 0 1 1 2 3Î Î Î ¼, , , , ( , ], { , , , }m n x h   , is known as the Jungck four-step iterative method with 
s-convexity and written as: 

Sz Sz Ty
Sy Sz Tx
Sx

k
s

k
s

k

k
s

k
s

k

k

= - +

= - +

=

- -

- - -

-

( ) ,
( ) ,
(

1
1
1

1 1

1 1 1

1

m m

n n

-- +

= - +

ü

ý

ï
ï

þ

ï
ï

- -

- - -

x x

h h

) ,
( ) .

s
k

s
k

k
s

k
s

k

Sz Tt
St Sz Tz

1 1

1 1 11�

 (2.1)

Consider the sequence {zk} of iterates for the initial point z and p0 Î ®    :  be a complex-val-
ued mapping. Then, the sequence {zk} of iterates for any initial point z s0 0 1Î Î, , , , , ( , ],m n x h  and
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Remark 2.1. The Jungck-four step iterative method with s-convexity reduces to: Jungck-Noor iteration 
with s-convexity [11] when h = 0, Noor iteration [16] when S z z and s( ) , ,= = =h 0 1   Ishikawa iteration 
with s-convexity [18] when S z z and s( ) , , ;= = = =h x1 1 1   Jungck-Mann iteration with s-convexity [21] 
when S z z and s( ) , , , .= = = = =n h x1 1 1 1  
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where 0 1< £a  and satisfying the bound 
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3. Escape criteria for a new considered complex functions

Motivated by numerous applications of transcendental function in science and engineering, we estab-
lish the escape time algorithm via Jungck four-step iterative method with s-convex combination as 
well as four-step iterative method for novel complex function of the type p z a d z bz cn( ) exp( sin( )) ,= - +
where n d,  ³ 2 and a, b, c and d are complex numbers. Consequently, we establish a novel threshold 
escape radii and utilize these to visualize some non-classical variants of classical fractals in the fol-
lowing results.

3.1. Escape criterion for Jungck-four step iterative method with s-convex combination

We establish the escape criteria for Jungck-four step iterative method with s-convex combination for 
novel complex function of the type p z a d z bz cn( ) exp( sin( )) ,= - +  where n d,  ³ 2 and a, b, c and d are 
complex numbers. We break the complex function p(z) into two maps S and T so that p z Tz Sz( ) ,= -  
where Sz is injective.
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Corollary 3.1. If we consider z c
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where m then z zm k
k

k³ > ++0 1, ( ) | |  l  and the Jungck four-step iterative method with s-convexity of 
sequence {zk} of iterates for any initial point z0 tends ton ¥ as k tends to ¥.

3.2. Escape Criterion for four step iterative method

First, we derive the escape criterion for the complex function of type p z a d z bz cn( ) exp[ sin( )] ,= - +  
where  and n d a b c d,| | , , ,³ Î2  utilizing the four-step iteration (2.2). 

Theorem 3.2.  Let p z a d z bz cn( ) exp[ sin( )] ,= - +  be a complex function where n d and a b c d   ,| | , , ,³ Î2  .  

Assume that z z c
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,
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m a
 where h x n m a a a a w w w w, , , , , , , ( , ], , , , [ . ,           1 2 3 4 1 2 3 40 1 0 5 1Î Îand ]].  If the  

sequence {zk} is a four-step iterative method defined by (2.2). Then z as kk ® ®¥ ¥, .  
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Proof. For k = 1, here 
t z p zk k k- - -= - +1 1 11( ) ( )h h

implies t z p z

z a d z bz c

a d

n

0 0 0

0 0 0

1

1

= - +

= - + - +
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Since d and³ Î2 0 5 11  w [ . , ],  by (2.3) and (2.4), we have sin( ) ,z zn n³ w1  which implies that 
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For k = 1, here 
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As a result, 
z z1 01³ +( ) .l

Following the same pattern repeatedly, we obtain z zk
k> +( ) .1 0l  Consequently, z kk ® ®¥ ¥ as ,  

that is, the orbit of z0 tends to infinity. 

Corollary 3.2. If we consider z c
b
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b
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n  where m then z zm k
k

k³ > ++0 1, ( ) | |  l  and the Jungck four-step iterative method of 

sequence {zk} of iterates for any initial point z0 tends ton ¥ as k tends to ¥.

4. Application of Fractals

To visualize the fractals, some convergence conditions are required, and actually, these are the main 
tools to execute the algorithm properly and sketch the desired type of fractals. In this section, we 
adjust two algorithms: one for Julia set via Jungck four-step iterative method and other for the Julia 
set via four-step iteration method. Finally, we visualize some Julia sets for different involve parame-
ters, and the different value of n.
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4.1. Julia Sets

In this subsection, we sketch some graphs of Julia set at different input parameters. We generate 
Julia sets for Jungck four-step iteration method by using Algorithm 1 and compare the images of 
Julia set for proposed methods. Throughout the paper, we are using a maximum number of iterations 
k = 100.

Algorithm 1 Geometry of Julia set

Input: Tz a d z c Sz bz a b c d n d An= + = Î ³ Ìexp( sin( )) , , , , , , ; where  and  2 -area; K-a maximum 
number of iterations, 0 1 0 5 11 2 3 4 1 2 3 4< £ £ £h x n m a a a a w w w w, , , , , , , , , . , , ,s  and -parameters of 
the Jungck-four step iteration with s-convexity; colourmap [0..C-1]-color with C colors

Output: Julia set for area A
for z A do0 Î  �
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+
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if  

break
end if

k = k + 1
end while

i C k
K

= -[( ) ]1

colour z0 with colourmap [i]
end for
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For n = 3, the parameter values as given in Table 1, we get amazing fractal objects, which are visible 
in Figure 1 [(i) to (iii)]. We notice that all Julia sets for n = 3 have six bunches of lashes and one of 
them have symmetry about x-axis. The size of lashes gradually decrease from the center of the bunch, 
and the angle between every two bunches is p

3 . As the value of s increases, the amount of black colour 
in the Julia set increases from the center of the bunches, and the red colour decreases.

Table 1: Effect of parameter s on Julia sets

a b c d m n x h s |a1| |a2| |a3| |a4| |w1| |w2| |w3| |w4|

(i) i –3+i 3i 2i 0.002 0.003 0.001 0.004 0.1 0.04 0.07 0.08 0.03 0.7 0.8 0.7 0.6
(ii) i –3+i 3i 2i 0.002 0.003 0.001 0.004 0.5 0.04 0.07 0.08 0.03 0.7 0.8 0.7 0.6
(iii) i –3+i 3i 2i 0.002 0.003 0.001 0.004 0.9 0.04 0.07 0.08 0.03 0.7 0.8 0.7 0.6

            
(i)                                             (ii)                                               (iii)

Figure 1: Julia sets for n = 3 via Jungck four-step iteration with s-convexity.

As s and the absolute value of b increase, the amount of black colour in the Julia set increases from 
the center of the bunches, and the red colour decreases. The size of lashes gradually increase from the 
center of the bunches, and the angle between every two bunches is p

3 .  

Table 2: Effect of parameters s and b on Julia sets
a b c d m n x h s |a1| |a2| |a3| |a4| |w1| |w2| |w3| |w4|

(i) i 1+i 11i 2i 0.002 0.003 0.001 0.004 0.2 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(ii) i 75i 11i 2i 0:002 0.003 0.001 0.004 0.5 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(iii) i 231 11i 2i 0:002 0.003 0.001 0.004 0.85 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6

                     
(i)                                             (ii)                                               (iii)

Figure 2: Julia sets for n = 3 via Jungck four-step iteration with s-convexity.
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For n = 3 and the values of the parameter as given in Table 3, we get amazing fractal objects, which 
are visible in Figure 3 [(i) to (iii)]. As the different values of the parameters m,n,x and h decreases, the 
amount of black colour in the Julia set increases from the center of the bunches and the red colour 
decreases.

Table 3: Effect of parameters m,n,x and h on Julia sets
a b c d m n x h s |a1| |a2| |a3| |a4| |w1| |w2| |w3| |w4|

(i) i –30+i 11i 2i 0.8 0.7 0.8 0.9 0.7 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(ii) i –30+i 11i 2i 0.008 0.007 0.008 0.009 0.7 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(iii) i –30+i 11i 2i 0.00008 0.00007 0.00008 0.00009 0.5 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
  

             
(i)                                             (ii)                                               (iii)

Figure 3: Julia sets for n = 3 via Jungck four-step iteration with s-convexity

For values of the parameter as given in Table 4, we get amazing fractal objects, which are visible in 
Figure 4 [(i) to (iii)]. As the different values of the parameters a, b, c and d as real, pure imaginary and 
complex, the amount of black colour in the Julia set slightly decreases from the center of the bunches.  

Table 4: Effect of parameters a, b, c and d on Julia sets
a b c d m n x h s |a1| |a2| |a3| |a4| |w1| |w2| |w3| |w4|

(i) 1 85 13 2.5 0.0004 0.0006 0.0008 0.0009 0.75 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(ii) i 11i 31i 2i 0.0004 0.0006 0.0008 0.0009 0.75 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(iii) 4+2i 2–i 3+2i 2+i 0.0004 0.0006 0.0008 0.0009 0.75 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6

                  
(i)                                             (ii)                                               (iii)

Figure 4: Julia sets for n = 3 via Jungck four-step iteration with s-convexity
 

For values of the parameter as given in Table 5, we get amazing fractal objects, which are visible 
in Figure 5 ((i) to (ix)). We notice that all Julia sets have bunches of lashes, and one of them have 
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symmetry about x-axis. For integer and non-integer values of n, the amount of black colour in the 
Julia set increases from the center of the bunches, and the red colour decreases.  

Table 5: Effect of change in the value of n on Julia sets
n a b c d m n x h s |a1| |a2| |a3| |a4| |w1| |w2| |w3| |w4|

(i) 4 2i 31i 91i 3i 0.0004 0.0006 0.0002 0.0007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(ii) 5 2i 31i 91i 3i 0.0004 0.0006 0.0002 0.0007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(iii) 7 2i 31i 91i 3i 0.0004 0.0006 0.0002 0.0007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(iv) 9 2i 31i 91i 3i 0.0004 0.0006 0.0002 0.0007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(v) 12 2i 31i 91i 3i 0.0004 0.0006 0.0002 0.0007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(vi) 1800 2i 31i 91i 3i 0.0004 0.0006 0.0002 0.0007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(vii) 8.41 2i 31i 91i 3i 0.0004 0.0006 0.0002 0.0007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(viii) 10.15 2i 31i 91i 3i 0.0004 0.0006 0.0002 0.0007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(ix) 13.65 2i 31i 91i 3i 0.0004 0.0006 0.0002 0.0007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6

                   
(i) Julia set for n = 4                    (ii) Julia set for n = 5                   (iii) Julia set for n = 7

                  
(iv) Julia set for n = 9               (v) Julia set for n = 12                 (vi) Julia set for n = 1800

                  
(vii) Julia set for n = 8.31           (viii) Julia set for n = 10.15               (ix) Julia set for n = 13.65

Figure 5: Julia sets for integer and non-integer values of n via Jungck-four step iteration with 
s-convexity
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Algorithm 2 Geometry of Julia set

Input: p z a d z bz c a b c d n d An( ) exp( sin( )) , , , , , ;= - + Î ³ Ì where  and  -a 2 rrea;  K-a maximum 
number of iterations, 0 1 0 51 2 3 4 1 2 3 4< £ £h x n m a a a a w w w w, , , , , , , , , . , , ,s  and  £ 1-parameters of the  
Jungck-four step iteration with s-convexity; colourmap [0..C-1]-color with C colors

Output: Julia set for area A
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break
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end while
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colour z0 with colourmap [i] end for

For values of the parameter as given in Table 6, we get amazing fractal objects, which are visible in 
Figure 6 [(i) to (iii)]. We notice that all Julia sets for n = 3 have six bunches of lashes and one of them 
have symmetry about x-axis, and the angle between every two bunches is p

3 . As the different values 
of the parameters m,n,x and h decreases, the amount of black colour in the Julia set increases from the 
center of the bunches and the red colour decreases. 

Table 6 : Effect of parameters m,n,x and h on Julia sets
a b c d m n x h s |a1| |a2| |a3| |a4| |w1| |w2| |w3| |w4|

(i) i –30+i 11i 2i 0.8 0.7 0.8 0.9 0.7 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(ii) i –30+i 11i 2i 0.008 0.007 0.008 0.009 0.7 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(iii) i –30+i 11i 2i 0.00008 0.00007 0.00008 0.00009 0.5 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
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(i)                                             (ii)                                               (iii)

Figure 6: Julia sets for n = 3 via four-step iterative method

For values of the parameter as given in Table 7, we get amazing fractal objects, which are visible in 
Figure 7 [(i) to (iii)]. As the different values of the parameters a, b, c and d as real, pure imaginary and 
complex, the amount of black colour in the Julia set slightly decreases from the center of the bunches.  

Table 7: Effect of parameters a, b, c and d on Julia sets
a b c d m n x h s |a1| |a2| |a3| |a4| |w1| |w2| |w3| |w4|

(i) 1 85 13 2.5 0.0004 0.0006 0.0008 0.0009 0.75 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(ii) i 11i 31i 2i 0.0004 0.0006 0.0008 0.0009 0.75 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(iii) 4+2i 2–i 3+2i 2+i 0.0004 0.0006 0.0008 0.0009 0.75 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6

                      
(i)                                             (ii)                                               (iii)

Figure 7: Julia sets for n = 3 via four-step iterative method

For values of the parameter as given in Table 8, we get amazing fractal objects, which are visible in 
Figure 8 ((i) to (ix)). We notice that all Julia sets have bunches of lashes and one of them have symme-
try about x-axis. For integer and non-integer values of n, the amount of black colour in the Julia set 
increases from the center of the bunches, and the red colour decreases. 

Table 8: Effect of change in the value of n on Julia sets
n a b c d m n x h s |a1| |a2| |a3| |a4| |w1| |w2| |w3| |w4|

(i) 4 2i 31i 91i 3i 0.000004 0.000006 0.000002 0.000007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(ii) 5 2i 31i 91i 3i 0.000004 0.000006 0.000002 0.000007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(iii) 7 2i 31i 91i 3i 0.000004 0.000006 0.000002 0.000007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(iv) 9 2i 31i 91i 3i 0.000004 0.000006 0.000002 0.000007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(v) 12 2i 31i 91i 3i 0.000004 0.000006 0.000002 0.000007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(vi) 1800 2i 31i 91i 3i 0.000004 0.000006 0.000002 0.000007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(vii) 8.41 2i 31i 91i 3i 0.000004 0.000006 0.000002 0.000007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(viii) 10.15 2i 31i 91i 3i 0.000004 0.000006 0.000002 0.000007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
(ix) 13.65 2i 31i 91i 3i 0.000004 0.000006 0.000002 0.000007 0.9 0.04 0.07 0.08 0.03 0.6 0.8 0.7 0.6
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 (i) Julia set for n = 4                     (ii) Julia set for n = 5                      (iii) Julia set for n = 7

                        
(iv) Julia set for n = 9                   (v) Julia set for n = 12                   (vi) Julia set for n = 1800

                         
(vii) Julia set for n = 8.31              (viii) Julia set for n = 10.15             (ix) Julia set for n = 13.65

Figure 8: Julia sets for integer and non-integer values of n via four-step iterative method

5. Conclusion

Escape criteria is proved by considering a new complex function p z a d z bz cn( ) exp[ sin( )] ,= - +  
where  and n d a b c d,| | , , , ,³ Î2   using Jungck-four step iterative method with s-convexity as well as 
four step iterative method. These results are implemented in Algorithm 1 and 2 to visualize the Julia 
sets. We discussed and analyzed the behavior of variants of the Julia sets for different parameter 
values after obtaining fascinating non-classical variants of the Julia fractals using MATLAB soft-
ware. We also observed that Julia sets for considered a new complex function had n bunches of lashes 
and one of them have symmetry about x-axis. The size of lashes gradually decreases from the center 
of the bunch and the angle between every two bunches is Knp ,  where K represented the positions of 
attractors from the initial attractor and same argument for Julia set with an extra characteristic that 
image of Julia sets contains n type of Julia set at center for every n. Also, the size of fractals explored 
using the Jungck-four step iterative method with s-convexity as well as four step iterative method 
depends on the parameter b,m,n,x,h and s. As n increases the area occupied by the fractals decrees. We 
hope that these findings are useful to study different types of fractals which were mentioned initially. 
The results of this paper can also be used in cloth industry for designing and printing purposes.
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