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Abstract
This research article introduces and investigates the concepts of quasi covered ideals and quasi bases 
within the context of semigroup theory a fundamental field of study in algebra. Quasi covered ideals 
represent a novel subset of semigroups, offering a versatile perspective that extends beyond conven-
tional ideals, enabling a more flexible analysis of semigroup structures. In this paper, we delve into 
the properties and attributes of quasi covered ideals, providing a comprehensive exploration of their 
characteristics. Additionally, we establish intricate relationship between covered ideals, the greatest 
ideal, quasi covered ideals, and quasi bases, shedding light on the interconnections among these fun-
damental elements within the realm of semigroup theory.
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1. Introduction and Preliminaries

Semigroup theory provides a fertile ground for exploring algebraic structures with diverse applications 
in various fields of mathematics. Fabrici [1, 2], introduced the notion of covered ideal (C-ideal) for deal-
ing ideals with the complement of a set. Due to relationship between complement of a set and ideals, 
this idea has received much attention in the field of algebraic structures such as semigroups [3, 4, 5],  
ordered semigroups [6, 7, 8], ordered semihypergroups [9], Γ-semihypergroups [10], ternary semi-
groups [11], and so on.
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We are familiar that one-sided ideals are extension of ideals, quasi ideals are extension of left 
(right) ideals and bi-ideals are extension of quasi ideals. In [12, 13], Steinfeld developed the concept of 
quasi ideals in semigroups and then in rings. In [14], Good and Hughes have developed the concept of 
bi-ideals in semigroups and then Lajos introduced bi-ideals in associative rings [15, 16].

Motivated by Fabrici, while studying and analyzing the work related to covered left (right, two-
sided) ideals. We got an idea to generalize this concept to quasi covered ideal (QC-ideal) and try to 
convert results into QC-ideal. In this paper, we introduce QC-ideal, greatest QC-ideal and quasi base 
in a semigroup. We discuss their properties and interconnection with each other. Also, we introduce 
the concept of quasi bases in semigroups with some of their properties. Furthermore, we discuss the 
relationship of covered ideal and greatest ideal with QC-ideal.

Definition 1.1: [1] Let   is proper left ideal of  . Then   is said to be covered left ideal (shortly, CL-ideal) 
of  , if C T T C� �( ) . Accordingly,   is said to be covered right ideal (CR-ideal), if C T C T� �( ) . 

Definition 1.2: [2] Let   is proper two-sided ideal of  . Then   is said to be covered ideal (shortly, 
C-ideal), if C T T C T� �( ) . 

Remark: [2] The L-class containing α1  is defined by, ( )1α T  = 
{ : ( ) = = = ( ) }2 1 1 1 1 1 2 2 2 2 2� � � � � � � � � � �� � � � � � �        T T . The L-class α1  is maximal, 
if ( )1α T  isn’t a proper subset of any principal ideal of   . The L-class α1  is maximal if and only if its 
complement is a maximal ideal of  . Throughout in this paper, we shall denote   as a semigroup.

2. Quasi Covered Ideals in Semigroups

In this portion, we describe QC-ideals in semigroup with some examples and explore some of their 
properties.

Definition 2.1: An ideal   is said to be quasi covered ideal (shortly, QC-ideal) of  . If

C T C T T T C T T C T� � � � � �( ) ( ) ( )

Example 1: Let us Consider  = {1,2,3,4,5...} . Define the binary operation ' *′ by � � � �1 2 1 2* = � , 
� �� �1 2,  . Then  ,∗  is a semigroup and p={ , 1, 2,...}p p p+ + , � �p   is an QC-ideal of  . 

Example 2: Let  = {0,1,2,3,4,5 , }− − − − − −n  be a semigroup define the binary operation ' *′ by 
� � � �* = { , }min  and let  = {0,1,2,3, }� � �� . Then   is an QC-ideal of  . 

Example 3: Consider  = {0,1,2,3}  is a semigroup with the binary operation ' ′
 : 

   0   1  2  3 
0   0  0   0   0  
1  0   0   0   0  
2  0   0   0   0  
3  0   1  0   3 

Then  = {0,1} is an QC-ideal of  . 

Theorem 2.1: Every C -ideal is an QC-ideal of  . Contrary need not be true. 

Proof. Let   be an C-ideal of  . Then, we have C T T C� �( )  and C T C T� �( ) . This implies 
C T T C T C T T T C T� � � � � �( ) ( ) ( ) . Hence,   is an QC-ideal of  . The example below demonstrates 
that the converse need not be correct.
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Example 4: Consider  = {0,1,2,3}  is a semigroup with the binary operation ' ′
 :Â 

   0   1  2  3 
0   0  0   0   0  
1  0   0   0   0  
2  0   0   0   0  
3  0   0   1  1 

Then ( , )   is a semigroup and  = {0,1} is an ideal of  . Now T C− = {2,3},  
T T C ( )− = {0,1} , ( )T C T−  = {0,1}  and T T C T ( )− = {0}. Then, 
T T C T C T T T C T   ( ) ( ) ( )� � � � � = {0,1}. Therefore,   is an QC-ideal of  . But T T C T( )− = {0}. 
It implies that C T T C T ( )− . Hence,   is not an C-ideal of  .

Theorem 2.2: If 1, 2  are two ideals of   such that 1 is an QC-ideal of   and ( )1 2 � � � . Then 
( )1 2 ∩  is an QC-ideal of  . 

Proof. Suppose that 1 and 2  are two ideals of  . Since 1 is an QC-ideal of  . Therefore

( )
( ) ( ) ( )
( ( )) ( (

1 2 1

1 1 1

1 2 1 2

C C C
T C T T T C T T C T
T T C C T C C

� �
� � � � � �
� � � � � � ))) ( ( ) .1 2T T T C C T� � �

Hence, ( )1 2 ∩  is an QC-ideal of  . 

Theorem 2.3: If 1 and 2  are two QC-ideals of  . Then ( )1 2 ∩  is an QC-ideal of  . 

Proof. The proof is similar with the theorem’s 2.2 proof .

Corollary 2.4: If { : }C N� � �  is the family of QC-ideals. Then � �� �N C  is an QC-ideal of  . 

Corollary 2.5: Suppose that 1 is an QC-ideal of   and 1 is sub-semigroup of  . Then ( )1 1C T∩  is 
an QC-ideal of  . 

Theorem 2.6: If 1 and 2  are CL -ideal and CR-ideal of  . Then their intersection is an QC-ideal of 
 . 

Proof. Let 1 and 2  be CL -ideal and CR-ideal of  . Then, we have C T T C1 1( )� � , C T C T2 2( )� � . 
Thus, we have

( ) ( )
( ) ( ) .

( )

1 2 1 1

1 1

1 2 2

C C C T T C

T T C T T C T

C C C

� � � �

� � � �

� �

�

Also, we have

(( )
( ) ( ) .

( ) ( ) ( )

2

2 2

1 2 1 1

T C T

T C T T T C T

C C T T C T T C

�

� � � �

� � � � �
Therefore

TT T C T T T C T

T T C C T T C C T

T C C

� � � �

� � � � � �

� � �

( ) ( )
( ( )) ( ( ))

( ( ))

2 2

1 2 1 2

1 2 TT T T C C T� � �( ( )) .1 2

Hence, ( )1 2 ∩  is an QC-ideal of  . 
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Theorem 2.7: If 1 and 2  are two different proper ideals of   s.t. ( ) =1 2C C T∪ . Then neither 1 nor 
2  is an QC-ideal of  . 

Proof. Suppose that  1 2≠  s.t. C C T1 2 =∪ , thus T C C� �1 2 , T C C� �2 1 . If possible one of them, say 1 is an 
QC-ideal of  . Then C T C T T T C T T C T1 1 1 1( ) ( ) ( )� � � � � � , which implies C TC C T TC T C1 2 2 2 2� � � � .  
i.e.  1 2⊂ , which is a contradiction. Similarly, if 2  is an QC-ideal of  , then we can show that  2 1⊂ ,  
which is again contradiction. Hence, neither 1 nor 2  is an QC-ideal of  .

As a result of Theorem 2.7, the following corollary derives.

Corollary 2.8: If there is more than one maximal ideals in a semigroup  . Then, none of them is an 
QC-ideal of  . 

Theorem 2.9: Suppose 1 and 2  are two QC-ideals of   and ( )1 2 � � � . Then ( )1 2 ∪  is an QC-ideal 
of  . 

Proof. Suppose that 1 and 2  are two QC-ideals of  . To prove  1 2∪  is an QC-ideal of  . Let 
x  ∈ 1, C T C T T T C T T C T1 1 1 1( ) ( ) ( )� � � � � � . It implies that there exists a� �( )1T C  s.t. x  ∈ 
( )   a a a∪ ∪ . Thus, we have the following two possibilities:

 (i) If a� � �T C C( )1 2 , then x  ∈ T T C C T C C T T T C C T( ( )) ( ( )) ( ( ))1 2 1 2 1 2� � � � � � � � .
 (ii) If a� � �( )1 2T C C , then a� � � � � � �C T C T T T C T T C T2 2 2 2( ) ( ) ( )  so, � � �b ( )2T C  s.t. 

a b b b� � �( )    . This implies a  ∈ b  or a b∈   or a  ∈  b . Now, the element b∉1 , other-
wise a  ∈ ( ) 1 1 1 1T T T T TC C T TC T Cb b b� � � � � � , since 1 is an ideal of  . This implies a∈1 , 
which is contradiction, so b� �( )1T C . Therefore, b� �( )1T C  and b� �( )2T C , so b� � �T C C( )1 2 . 
Now, we have three cases:

Case (1): If a b∈ , then x b b b b b b b b� � � � � � � �( ) ( ) ( )             .
Case (2): If a b∈  , then x b b b b b b b b� � � � � � � �( ) ( ) ( )             .
Case (3): If a b∈  , then x b b b b b b b� � � � � � �( ) ( )              .

In all the three cases, we have x b b b� � � � � � � � � � � �( ) ( ( )) ( ( )) ( ( ))1 2 1 2 1 2T T T T T T C C T C C T T T C C T . 
Thus, C T T C C T C C T T T C C T1 1 2 1 2 1 2( ( )) ( ( )) ( ( ))� � � � � � � � � . In the same way we 
can prove that C T T C C T C C T T T C C T2 1 2 1 2 1 2( ( )) ( ( )) ( ( ))� � � � � � � � � . Therefore 
C C T T C C T C C T T T C C T1 2 1 2 1 2 1 2( ( )) ( ( )) ( ( ))� � � � � � � � � � . Hence, ( )1 2 ∪  is an QC-ideal of  .

Theorem 2.10: If   is not simple semigroup with the condition that any two proper ideals of   having 
intersection is non-empty. Then, there exists at least one QC-ideal in  . 

Proof. Let   be a proper ideal of   and consider an ideal C T T C T C T T T C T1 = ( ) ( ) ( )� � � � �  with 
the condition that ( )1 � � � , then ( )1 ∩  is an ideal of  . Consider ( ) =1 2  ∩ , thus  2 1⊂  
and  2 ⊂ . Therefore, C C T T C T C T T T C T2 1 =� � � � � �( ) ( ) ( )  and  2 ⊂ , then T C T C� � �2 .  
Thus, C T T C T C T T T C T2 2 2 2( ) ( ) ( )� � � � � � . Hence, 2  is an QC-ideal of  .

Theorem 2.11: Let us consider two ideals 1 and 2  of   s.t.  1 2⊆ . If 2  is an QC-ideal of  , then 1 
is also an QC-ideal of  . 

Proof. Suppose 2  is an QC-ideal of   such that  1 2⊆ . Then, we have ( ) ( )1 2T C T C� � � . It implies 
C T T C T C T T T C T2 1 1 1( ) ( ) ( )� � � � � � . Thus, we have C C T T C T C T T T C T1 2 1 1 1( ) ( ) ( )� � � � � � � . 
Hence, 1 is an QC-ideal of  .

Theorem 2.12: Every proper ideal of   with identity 1 is an QC-ideal. 

Proof. Let C T⊂ . Then, 1∉ . If possible 1∈ . Then,  = .1 ⊆ ⊆TC C . i.e. T C , it is a contradiction. 
Hence 1� �T C , it follows that T T C T T C T T C T T( ) ( ) ( ) =� � � � � .

Hence, T T C T T C T T C T C( ) ( ) ( )� � � � � � . It implies that   is an QC-ideal of  .
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3. The Greatest Ideal and QC-ideal

In the following section, we define the greatest ideal in a semigroup and provide the conditions for the 
greatest ideal to be an QC-ideal.

Definition 3.1: [2] An ideal C T⊂  is said to be greatest ideal of  , if   contains every proper ideals of 
 . If such an ideal exists, it is indicated by * . 

Example 5: Consider  = {0,1,2,3}  is a semigroup with the binary operation ' ′
 : 

   0   1  2  3 
0   0  0   0   0  
1  0   0   0   0  
2  0   0   0   0  
3  0   0   1  1 

Then clearly 1 = {0,1,2} and 2 = {0,1} are two ideals of   s.t.  2 1⊂ . Therefore 1 is the greatest ideal 
of  . 

Theorem 3.1: Let there be only a maximal ideal   of  . Then the greatest ideal   is an QC-ideal of  . 

Proof. It is simple to show because if 1 is proper ideal of  , then  1 ⊆ . Therefore,  = *  i.e.   is 
greatest ideal of  . By Theorem 2.7,   is an QC-ideal of  .

Theorem 3.2: If an ideal *  is an QC-ideal of  , then  2 3= . 

Proof. Let *  be an QC-ideal of  . Then, C T T C T C T T T C T* * * *( ) ( ) ( )� � � � � � . Since *  is also a 
maximal ideal of  . Thus ( ) =*T C− I a  is the exact one maximal L-class in   by [2]. So, either  2 ⊂  
or  2 = . If  2 = , then  3 2= . If  2 ⊂  then either  3 2⊂  or  3 2= . If possible  3 2⊂
, then C T T C T C T T T C T* * * *( ) ( ) ( )� � � � � �  � � �  2 2 3  i.e. C T* 2⊂ . Consequently, at least 
two separate L-classes would have been included in ( )*T C− , these are  2 3−  and  − 2 . This is 
contradictory, as ( )*T C−  contains a maximal of one L-class, hence we get  2 3= .

Theorem 3.3: Let a semigroup   satisfies one of the following criteria:

 (i) If   contains *, which is an QC-ideal of  .
 (ii) If  = 2 , for any proper ideal   and for every principal ideal ( )1� q �  , there is a principal 

proper ideal ( )2α q , whose generator �2 � �( )T C  and ( ) ( )1 2α αq q . Then each and every proper 
ideal of   is an QC-ideal of  . 

Proof. Consider   is an proper ideal of  . If (i) is true, then  ⊂ * . Given that *  is an QC-ideal, then 
C C T T C T C T T T C T� � � � � � �* * * *( ) ( ) ( ) . It implies that C T T C T C T T T C T� � � � � �( ) ( ) ( ) .  
Since  ⊂ * , then T C T C� � � * . Thus   is an QC-ideal of  . Let (ii) be satisfied. If �3 � ,  
thus ( )3� q �  , then there exists �2 � �( )T C  and ( ) ( )3 2� �q q� , it is obvious that ( ) ( )3 2� �q q� .  
As  = 2  implies  = 3 , and �2 � , then �2

3� . Thus, we have �2
3 3 3� � �   , then 

�2
2 2 3� � �   . Then �2 � � �    which implies � � � �2 4 4 4� � �    , for some 

�4 � . Thus � �2 4�  or � �2 4�   or � �2 4�   , for some �4 � . Let � �2 4� , for some �4 � ,  
we show that �2 � , if �2 � , then T C�4 �  and � �2 4� �T C . Hence �2 � , which is a con-
tradiction as �2 � �( )T C . Therefore, for arbitrary �3 �  there exists �4 � �( )T C  s.t. � �3 4� .  
Thus, �3 � �T T C( ) . Similarly, � �3 4�   implies �3 � �( )T C T  and � �3 4�   implies �3 � �T T C T( ) . 
Thus, we get �3 � � � � � �T T C T C T T T C T( ) ( ) ( ) . It implies that C T T C T C T T T C T� � � � � �( ) ( ) ( )
. Hence,   is an QC -ideal of  .
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Theorem 3.4: Assuming that *  is the greatest ideal of   such that  = 2 , then *  is an QC-ideal. 

Proof. Suppose that T T C T C T T T C T( ) ( ) ( )* * *� � � � �  is an ideal of   and *  be the greatest ideal 
of  , then either T T C T C T T T C T T( ) ( ) ( ) =* * *� � � � �  or T T C T C T T T C T C( ) ( ) ( )* * * *� � � � � �
. Therefore, three cases are obtained.

  Case (a): If T T C T C T T T C T T( ) ( ) ( ) =* * *� � � � � , then C T T C T C T T T C T* * * *( ) ( ) ( )� � � � � � .  
It implies * is an QC-ideal.

  Case (b): If T T C T C T T T C T C( ) ( ) ( ) =* * * *� � � � � , then *  is an QC-ideal of  .
  Case (c): If T T C T C T T T C T C( ) ( ) ( )* * * *� � � � � � , then as given  2 =  implies  3 = , 

then T T TC T T T C T C T T T C T TC T C C C T3 * * * * * * * *= = ( ) ( ) ( ) =� � � � � � � � � � . It implies 
 3 ⊂ . This is a contradiction. Hence by case (b) and case(c), *  is an QC-ideal. 

4. Quasi Base and the Greatest QC-ideal

In the section, we define quasi base and greatest QC-ideal of a semigroup with the support of some 
examples. Also we have proved some results based on quasi base of a semigroup and given example of 
a semigroup which do not have any quasi base.

Definition 4.1: If an QC-ideal   contains every QC-ideal of  . Then   is called the greatest QC-ideal 
of  . If it exist, it is denoted by the symbol  g . 

Remark: Consider a semigroup   that contains maximal ideals. If the maximal ideals of   are 
{C N� �, � }. Then Æ  = � ��� � �N C . If  g  is contained in  . So it is required that  g ⊂ Æ. But, if there is 
even one λ  s.t  g  λ . Then by Theorem 2.11,  g  is not an QC-ideal of  . We can now demonstrate 
that even if   contains maximal ideals, this does not imply that   also contains  g .

Example 6: Consider  = {0,1,2,3}  is a semigroup with the binary operation ' ′
 : 

   0  1  2  3 
 0  0  0  0 
 0  0  0  0 
 0  0  0  0 
 0  0  1  1 

Here,   contains two maximal ideals 1 = {0,1,2} and 2 = {0,1,3} . Although, the greatest QC-ideal is 
not contained in  . 

Definition 4.2 ( )� � �C T  is called Quasi base (Shortly,  -base) of  . If

 (i) C TC CT TCT T� � �( ) =
 (ii) There does not exist any proper subset D C⊂  s.t. ( ) = = (D T Cq q) . It is denoted by ( )q  

Example 7: Consider  = {0,1,2,3}  is a semigroup with the binary operation ' ′
 : 

   0   1  2  3 
0   0  0   0   0  
1  0   0   0   0  
2  0   0   0   0  
3  0   1  0   3 
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Let  = {2,3} be a subset of  . Then there does not exist any proper subset D C⊂  s.t. ( =D T)q . Hence, 
  is a quasi base of  . 

Remark: QB-semigroup is a semigroup of   that contains at least one quasi base. Quasi 
base element is an element α1  in a semigroup  , such that � � � �1 1 1 1( ) =� � �    
. Additionally, we define the principal quasi ideal, which is generated by an element α1  and it is 
denoted by ( )1α q . i.e. ( ) = { } ( )1 1 1 1 1� � � � �q � � �     and we define  -class containing α1  by 
Q T T T T T T T T T� � � � � � � � � � � �1

1 1 1 1 1= { : ( ) = ( ) = ( ) = ( ) }� � � � � � �q q . An  -class α1  is max-
imal quasi, if there does not exist any principal quasi ideal of   which properly contains ( )1α q .

Corollary 4.1: A semigroup can be without any quasi base. 

Example 8: Consider  = {0,1,2,3}  is a semigroup with the binary operation ' ′
 : 

   0   1  2  3 
0   0  0   0   0  
1  0   0   1  1 
2  0   1  2  3 
3  0   1  2  3 

Let  = {2,3} be a subset of  . Then, T C C T T C T   = {0,1,2,3}, = {0,1,2,3}, = {0,1,2,3} Now, 
( ) = ( ) ,( ) = {0,1,2,3} =C C T C C T T C T C Tq q� � �    . We observe that a proper subset exists i.e. 
D C⊂  s.t. (D T) =q . Hence,   is not a quasi base of  . 

Example 9: Let   be a collection of all natural numbers with the binary operation defined by a a1 2  
=min a a{ , }1 2 , � �a a1 2,  . Then we define ( ) = {1,2,3,4,5,6... }1 1a aq  and a a1

1= , for every a1 ∈ , there-
fore, (1) (2) (3) (4) ...( ) ...q q q q qa⊂ ⊂ ⊂ ⊂ ⊂ . Hence   has no quasi base. 

Lemma 4.2: Consider a quasi base   of  , and � �1 2, � . If � � � �1 2 2 2( )� � �    , then α α1 2= . 

Proof. Let � � � �1 2 2 2( )� � �     and if possible � �1 2� . Consider  1 1= �� , then �2 1�  and given 
� � � �1 2 2 2( )� � �     implies ( ) ( ) ( )1 2 2 2 1� � � �q q� � � �T T T T Q , it follows that T Q Q= ( )1⊂ q . But 
this is contradiction because   is quasi base. Hence α α1 2= .

Remark: Now, we define a relation which is called quasi ordering relation in  , namely � �1 2�  
means � � � � � � � �1 1 1 1 2 2 2 2( ) ( )� � � � � � �        , we write ( ) ( )1 2� �q q� .

Lemma 4.3: Let   be a quasi base of a semigroup  . If � �1 2, � , � �1 2� , then neither � �1 2� , nor 
� �2 1� . 

Proof. Consider that � �1 2� , then ( ) ( )1 2� �q q� . It implies � � � �1 2 2 2( )� � �    . Lemma 4.2 implies 
that α α1 2= , which is contradiction. Similarly if � �2 1� , then we have a contradiction. Hence neither 
� �1 2�  nor � �2 1� .

Theorem 4.4: ( )� � �Q T  is quasi base of   if and only if   satisfies the following:

 (i) For � � , there exists �1 �  s.t � �� 1.
 (ii) If � �1 2, �  s.t. � �1 2� , then neither � �1 2� , nor � �2 1� . 

Proof. Let us consider (i) and (ii) holds for  , let � � , then it implies � �� �1  , i.e. � �� �( ) ( )1 q q .  
Thus, it follows T Q⊂ ( )q  that would be T Q= ( )q . That is yet left to prove   is the smallest subset 
with the condition T Q= ( )q . Let  1 ⊂  and  1 ≠  s.t. T Q= ( )1 q , if �1 1� �  , there exists �2 1�  s.t. 
� � � �1 2 2 2( )� � �  S . Then we have, ( ) ( )1 2� �q q� , However, this is contradicts with ( )ii . Hence   
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is quasi base of  . Conversely, let us suppose that   is quasi base of  . Then T Q= ( )q . Thus if � � ,  
then � � ( ) q , there exists �1 �  such that � �� ( )1 q . It implies � �� 1, therefore ( )i  is satisfied, and by 
Lemma 4.3 validity for ( )ii  is satisfied. 

Theorem 4.5: Let 1 and 2  be any two quasi bases of a semigroup  . Then both quasi bases have the 
same cardinality. 

Proof. Let a mapping � : 1 2 �  is defined as if � �1 , then � � �( ) = , � �2  if and only if � �� . We 
show that this mapping is defined for every � �1 . As 2  is a quasi base, there exists � �2  s.t. � �� ,  
because 1 is a quasi base of  . Also for the element � �2 , there exists � �1 such that � �� . We 
get � � �� � . It implies � ��  and therefore � �= , this implies ( ) = ( )� �q q , so � �� . We show that 
ψ  is one-one and onto. Let � �1 2 1, � , such that � � � �( ) = ( )1 2 , then ( ) = ( )1 2α αq q  the condition ( )ii  of 
Theorem 4.4 implies that α α1 2= . Now for onto, if � �2  then there exists �1 1�  s.t � �� 1 . For the 
same reason, an element �1 1�  there exists some �1 2�  s.t. � �1 1� , thus � � � �� � �1 1 2,  , there-
fore by condition ( )ii  of Theorem 4.4, β β= ( )1, so ( ) = ( )1β βq q  and ( ) = ( )� �q q  i.e. � � �( ) =1 1 for �1 1� . 
Therefore, ψ  is onto. Hence 1 and 2  have the same cardinality.

Lemma 4.6: Let   be quasi base of   and any element α1  of  . If ( ) = ( )1 2α αq q  for some �2 �  and 
� �2 1� . Then any element α2 belongs to quasi base of   distinct from  . 

Proof. Let  1 2= ( ) { }� �� � . Without any uncertainty,  ≠ 1 . To prove that 1  is also quasi base of 
 . It is sufficient to show that 1  satisfies condition ( )i  of Theorem 4.4. Let γ  is arbitrary element of 
 . Then, because   is quasi base of  , if ∃ � �  such that � �� . Now there are two possibilities: 
(i) � �1 �  (ii) � �1 = . If � �1 � , then �1 1� . If � �1 = , then �1 1� , but ( ) = ( )2� �q q , so if � ��  then, 
{ } ( ) { } ( ) = { } ( )1 1 1 1 2 2 2 2� � � � � � � � � � � �� � � � � � � � � �            , it follows that � �� 2  
and �2 1� . It means that 1  satisfies condition ( )i  of Theorem 4.4. Now, let � �1 2 1, �  be two distinct 
arbitrary elements. If both elements are distinct form α2, then � �1 2, �  and   is a quasi base of 
. Thus neither � �1 2� , nor � �2 1� . But, for � �1 2= . If � �1 2�  thus � �� 2, where � � , �2 � . But 
  is quasi base of  , Consequently, this is not feasible similarly, we can prove that the relationship 
� �2 1�  can not be satisfied. It implies that 1  fulfils the condition (ii) of Theorem 4.4 therefore, 1  is 
quasi base of   different from  . Hence α2 is an element of quasi base 1  of   which is different from 
 .

Theorem 4.7:Let   be the union of all quasi bases of  . If C T D= ( � �) � . Then   is always left or 
right ideal but need not be an QC-ideal of  . 

Proof. We must prove this if � �� � �T C T D, 1 = . It implies ��1 � . For if we assume ��1 � . 
Thus � ��2 1= �  and then �2 1�  (at least one quasi base) of   and that is here � �2 1� , hence 
   � � � � � �2 1 2 2 1 1� � � � � , now we will show that ( ) ( )2 1� �q q� . If ( ) = ( )2 1α αq q , therefore �2 �
, by Lemma 4.6 �1 � . But this is contradiction with the assumption �1 � �T D . It implies that 
( ) ( ) ,( ) ( )2 1 2 1� � � �q q q q� �  and since 1  is quasi base, then for an element α1 , ∃ �3 1�  s.t. � �1 3� , 
we know � � �2 1 3� � , therefore � �2 3�  but this is contradiction to Lemma 4.3, because � �2 3 1, � . 
Therefore ��1 � �T D , implies ��1 � . Hence   is left ideal of  . With the help of a counter example, 
we can demonstrate that it need not be an QC-ideal.

Example 10: Consider  = {0,1,2,3}  is a semigroup with the binary operation ' ′
 : 

   0  1  2  3 
 0  1  0  0 
 0  1  0  0 
 0  1  2  2 
 0  1  3  3 
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Let 1 = {1,2}, 2 = {1,3}, D C C= = {1,2,3}1 2∪  and C T D− = {0} . s.t T C C C T C = {0} , = {0,1}⊂  . 
So,   is not an ideal of  . Therefore   need not be an QC-ideal of  . 

Lemma 4.8: If  ≠ 2  then, ( ) =α αq , for any � � �  2. 

Proof. Let � � �  2, then it implies ( ) =α αq . For if, we assume that ( )� �q �  then ∃ � � � �1 2 1 2, , , � .  
s.t α α α1 > , or α α α2 > , or � �� �1 2 > . Since α α α α1 2, , and � ��1 2

2� , therefore we have � � 2 this 
contradict to � � �  2. Hence, for any � � �  2, if  ≠ 2 , then ( ) =α αq .

5. Open Problems

In this section, we highlight some open problems and questions that arise from our research on quasi 
bases and greatest QC-ideals in semigroup theory. These open problems can serve as directions for 
future research in this area.

Problem 1: Investigate necessary and sufficient conditions under which a semigroup possesses a 
unique quasi base. Are there any algebraic or structural properties that can determine when a semi-
group has exactly one quasi base?

Problem 2: Investigate the properties of greatest QC-ideals in specific classes of semigroups, such 
as regular semigroups or inverse semigroups. How do these properties vary in different semigroup 
structures, and can they be used to simplify the analysis of such semigroups?

6. Conclusion

This research paper has explored the concepts of quasi covered ideals and quasi bases within semi-
group theory, shedding light on their significance in understanding the structure and properties of 
semigroups. The study introduces the notion of the greatest quasi covered ideals, providing valu-
able insights into semigroup analysis. Quasi bases, distinct subsets of semigroups, have also been 
examined for their unique properties in relation to quasi covered ideals. These findings underscore 
the importance of quasi covered ideals and quasi bases as essential tools for dissecting semigroup 
structures.

In summary, this research enhances our understanding of semigroup theory, offering valuable 
insights into quasi covered ideals and quasi bases, which serve as foundational elements for the study 
of semigroups and related mathematical structures. These concepts continue to be instrumental in 
advancing our knowledge of semigroups, paving the way for further exploration in this field.
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