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Abstract
Consider an infinite-dimentional Banach space denoted as X , and designate ( )X  as the algebra of 
all bounded linear operators on X . Moreover, let σ ( )A  denote the spectrum of A X� � � , and �( ( ))� A  
indicate the boundary of σ ( )A . A map � : ( ) 2 X �   is termed a ∂-spectrum if � � �( ( )) ( ) ( )� �A A A�  
for all A X∈( ) . In this paper, we characterize all surjective maps φ1  and φ2 on ( )X  satisfying 
� �( ( ) ( )) = ( )1 2� �A B AB  for all A B X, ( )∈ .
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1. Introduction and Statement of the Main Result

In this paper, X  represent an infinite-dimentional Banach space, and X *  denote its dual space. As 
per usual, ( )X  denotes the algebra of all bounded linear operators on X . The identity operator on X  
is denoted by 1.

For any operator A  in ( )X , we use σ ( )A , �( ( ))� A , σap A( ) , σ r A( ) , σ l A( )  and σ sur A( ) to represent 
the spectrum, the boundary of spectrum of A , the approximate point spectrum, the right spectrum, 
the left spectrum, and the surjectivity spectrum, respectively. Let ∆(.)  represent any one of σ (.), σap(.), 
σ r (.), σ l (.), σ sur (.) , then the map ∆  is a spectral function on ( )X  that adheres to the conditions

� � �( ( )) ( ) ( ),� �A A A�

for all A X� � � .
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The spectral function ∆(.)  is considered a ∂-spectrum when it satisfies the condition

� � � �( ( )) ( ) ( ), ( ).� �A A A A X�  (1.1)

The ∂-spectrum ∆(.)  is characterized by the property that �( )A � �  for all A X∈( ) , and ∆( )A  is 
countable if and only if σ ( )A  is countable.

It is noteworthy that alternative spectra, such as the Kato spectrum σK (.), the Saphar spectrum 
σ rr (.), and the generalized spectrum σ g (.) , all satisfy property (1.1). Further details can be found in 
references [1, 2].

Extensive focus has been directed toward exploring problems related to preserving local spectra, 
both in linear and nonlinear contexts. The pivotal contribution to this field was initially made by 
Bourhim and Ransford in [3], who characterized all additive maps on ( )X  preserving the local spec-
trum of operators for each vector in X .

In recent years, there has been a noticeable surge in interest regarding the more general problem of 
characterizing maps, whether linear or nonlinear, that preserve various spectral sets and quantities; 
see for instance [4–14].

Cui and Hou, in [15], characterized surjective linear map ϕ  operating from a semi-simple Banach 
algebra   to another algebra  . This characterization states that � �( ( )) ( )� A A�  for all A∈ , where 
∆  denotes a ∂-spectrum.

Additionally, in [16], Miura and Honma delved into multiplicatively peripheral-spectrum preserv-
ing surjections between standard operator algebras on complex Banach spaces. Benbouziane et al., 
as detailed in [17], furnished characterizations for surjective maps preserving the ∂-spectrum of the 
product or triple product of operators. In [18], Bourhim and Lee provided a comprehensive analysis 
concerning the structure of surjective maps φ1  and φ2 on B X( )  that satisfy the condition of having the 
same local spectrum of φ φ1 2( ) ( )T S  and TS  for all T  and S  in B X( ) .

The focal point of this paper is to explore nonlinear maps that preserve any part of the spectrum, 
including the ∂-spectrum, of the product of operators. Employing an alternative approach, our proofs 
draw inspiration from the main results presented in the referenced papers [16, 18].

The main result of this paper is the theorem below.

Theorem 1.1: Let φ2 and φ2 be two surjective maps on ( )X . If φ1  and φ2 satisfying the condition

� �( ( ) ( )) = ( ), ( , ( )),1 2� �A B AB A B X� (1.2)

then one of the statements below is true:

	 1.	 There exists an operator M X∈( ) such that for every A X∈( ) ,

� � � �1 2
1

2 2
1( ) = ( ( ) ) ( ) = ( ) .A MA M and A MAM1 1� �

	 2.	 There exists an operator N X X∈( , )*  such that for every A X∈( ) ,

� � � �1
*

2
1

2 2
* 1( ) = ( ( ) ) ( ) = ( ) .A NA N and T NA N1 1� �

Where 1 is the identity operator on X.

2. Preliminaries

For any x  in X  and f  in X * , take x f⊗  to represent a rank-one operator defined as ( ) = ( )x f y f y x⊗  for 
every y X∈ . Importantly, it should be emphasized that any finite-rank operator in ( )X  can be rep-
resented as a finite sum of rank-one operators. Take note that ( ) =*x f f x⊗ ⊗  , where x  signifies the 
canonical representation of x  in the bidual space X ** . Additionally, the spectrum � ( ) = { ( ),0}x f f x� . 
The notations 1( )X  and  ( )X  represent, respectively, the set of all rank one operators and the ideal 
of all finite rank operators in ( )X .
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In this section, we introduce certain results essential for establishing our main result. We com-
mence with the following notation, wich will be employed throughout this paper.

�*( ) = 0 0
0 0

A
A A

A
� � �

� �
�
�
�

( ) { } ( )
{ } ( )

,\ if
if (2.1)

where ∆(.)  is ∂-spectrum and A X∈( ) . Hence,

�* *( ) = { ( )}, , .x f f x x X f X� � � (2.2)

The subsequent lemma provides the conditions both necessary and sufficient for two operators to be 
identical in term of the ∂-spectrum.

Lemma 2.1: Consider A B X, ( )∈ . The following assertions are equivalent. 

	 1.	 A B= .
	 2.	 ∆ ∆( ) = ( )AP BP  for all P X∈1( ) .
	 3.	 ∆ ∆* *( ) = ( )AP BP  for all P X∈1( ) .

Proof. The implications ( ) ( ) ( )a b c⇒ ⇒  are evident.
To establish ( ) ( )c a⇒ , suppose that ∆ ∆* *( ) = ( )AP BP  for every P x f X= ( )1� � , where x X∈  and 

f X∈ * . Then,

{ ( )} = ( )
= ( )
= { ( )}.

*

*

f Bx Bx f
Ax f

f Ax

�

�

�

�

Consequently, f Ax f Bx( ) = ( ), leading to Ax Bx= . Since this holds for any arbitrarily chosen x , it is 
evident that A B= .� 

The subsequent result characterizes all rank one operators in relation to the ∂-spectrum.

Lemma 2.2: Consider a nonzero operator P  in ( )X , then the following statements are equivalent. 

	 1.	 P X∈1( ) .
	 2.	 ∆*( )PA  is a singleton for all A X∈( ) .

Proof. The implication ( ) ( )a b⇒  stems from Eqs. (2.1) and (2.2).
Now, to establish ( ) ( )b a⇒ , consider that ∆*( )PA  consists of only one element for every A X∈( ) , 

then �*( ) = ( )PA PA�� , where � � � �� ( ) := { ( ) / | |= ( )}A A r A�  represents the peripheral spectrum of 
A . As a result, based on [16, Lemma 2.1], it follows that P  has rank one.� 

Lemma 2.3: For any rank-one operator P X∈1( )  and any operators A B X, ( )∈ , the following holds:

� � �* * *(( ) ) = ( ) ( ).A B P AP BP� �

Proof. Consider P x f X= ( )1� �  as a rank-one operator, where x X∈  and f X∈ * .
Utilizing Eqs. (2.1) and (2.2), we derive that

� �* *(( ) ) = (( ) )
= { (( ) )}
= { ( ) ( )}
= { ( )}

A B P A B x f
f A B x
f Ax f Bx
f Ax

� � �
�
�
� {{ ( )}

= ( ) ( )
= ( ) ( ).

* *

* *

f Bx
Ax f Bx f
AP BP

� �

� �

� � �

�
� 
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The following Lemma, proved in [13, Theorem 3.3], describes bijective linear maps on  ( )X  that pre-
serve the rank one operators in both directions.

Lemma 2.4: (See [13, Theorem 3.3]) Consider a complex Banach space X  with dimX ≥1 . Assuming 
� : ( ) ( ) X X�  is an additive surjective map that preserves rank-one operators in both directions, 
then one of the statements below holds:

	 1.	 There is a bijective linear transformations M X X: →  and M X X' * *: →  such that

�( ) = ,'x f Mx M f� �

for all x X∈  and f X∈ * .
	 2.	 There is a bijective linear transformations N X X: * →  and N X X' *: →  such that

�( ) = ,'x f Nf N x� �

for all x X∈  and f X∈ * .

3. Proof of the Main Result

Within this section, we move forward to prove our main theorem, namely Theorem 1.1. The proof is 
extensive, so we’ve organized it into six steps.

Step 1. φ1  is injective and φ1(0) = 0 .
Firstly, suppose that φ φ1 1( ) = ( )A B  for some A  and B  in ( )X , then

� �

�

�

* *
1 2

*
1 2

*

( ) = ( ( ) ( ))
= ( ( ) ( ))
= ( )

AP A P
B P

BP

� �

� �

for all P X∈1( ) . Lemma 2.1 entails that A B= . Thus, φ1  is injective.
For the second part, consider x X∈  and f X∈ *  such that f x( ) = 0 . Given the fact that φ2 is surjec-

tive, there exists A X∈( )  such that �2( ) =A x f� . Then,

{ ( (0) )} = ( (0) )
= ( (0) ( ))
= (0 )
= {0}.

1
*

1
*

1 2
*

f x x f
A

A

� �

� �

�

�

�

�

We get that � �1(0) = 1 for some � �. Now, consider y X∈  and g X∈ * such that g y( ) =1 . Similary to 
the previous method, there is an operator B X∈( )  such that �2( ) =B y g� . Therefore,

{ } = ( (0) )
= ( (0) ( ))
= (0 )
= {0}.

*
1

*
1 2

*

� �

� �

�

�

�

y g
B

B

�

Consequently, λ = 0, leading to φ1(0) = 0 .
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Step 2. φ1  and φ2 preserve rank-one operators in both directions.
Consider a rank-one operator P X∈1( )  and notice that �1( ) 0P � . Let A X∈( )  be an operator, 

then there exists B X∈( )  such that φ2( ) =B A . Thus Eqs. (1.2), (2.1) and Lemma 2.2 tell us that

� �

�

*
1

*
1 2

*

( ( ) ) = ( ( ) ( ))
= ( )

� � �P A P B
PB

contains one element for all B X∈( ) . Using Lemma 2.2 again, we deduce that φ1( )P  has a rank one.
Conversely, assume that �1 1( ) ( )P X�  for some operator P X∈( ) and note that P ≠ 0. Eqs. (1.2), 

(2.1) and Lemma 2.2 implies that � �* *
1 2( ) = ( ( ) ( ))PA P A� �  is a singleton for every A X∈( ) . Again, 

from Lemma 2.2, we conclude that P  has rank one.
Using similar discussion, we deduce an equivalent outcome for φ2.

Step 3. φ1  is linear.
To begin, let’s demonstrate the homogeneity of φ1 . Consider P X∈1( )  as a rank one operator, then 

we obtain

� �

�

�

�

*
1 2

*
1 2

*

*

*
1

( ( ) ( )) = ( ( ) ( ))
= ( )
= (( ) )
= ( (

�� � � � �

�

�

� �

A P A P
AP
A P
A)) ( )),2� P

for any � � and A X∈( ) . The surjectivity of φ2, Lemma 2.1, and Step 2 entails that � � ��1 1( ) = ( )A A .
To finalize the proof, let’s demonstrate the additivity of φ1 . Consider a rank-one operator P X∈1( ). 

Since φ1( )P  has a rank one too, then for every A B X, ( )∈  Lemma 2.3 ensures that

� �

� �

� �

*
1 2

*

* *

*
1 2

( ( ) ( )) = (( ) )
= ( ) ( )
= ( ( ) ( ))

� �

� �

A B P A B P
AP BP
A P

� �

�

� **
1 2

*
1 1 2

( ( ) ( ))
= (( ( ) ( )) ( )).

� �

� � �

B P
A B P� �

Lemma 2.1 implies that � � �1 1 1( ) = ( ) ( )A B A B� �  and thus φ1  is additive.

Step 4. Either there exists a bijective linear transformations M X X: →  and M X X' * *: →  such that

f x M f Mx x X f X( ) = ( )( (1) ), , ,'
2

*� � �

or there exists a bijective linear transformations N X X: * →  and N X X' *: →  such that

f x N x Nf x X f X( ) = ( )( (1) ), , .'
2

*� � �

Given the fact that φ1  is a bijective linear map on  ( )X  that preserves rank one operators bidi-
rectionally, then Lemma 2.4 ensures that either there is a pair of bijective linear transformations, 
M X X: →  and M X X' * *: → , such that

�1
' *( ) = ,x f Mx M f for all x X and f X� � � � (3.1)

or there exists another pair of bijective linear transformations, N X X: * →  and N X X' *: → , such 
that

�1
' *( ) = .x f Nf N x for all x X and f X� � � � (3.2)
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Case 1: Suppose that φ1  take the first form (3.1). Eqs. (2.1) and (2.2) implies that

{ ( )} = ( )
= ( ( ) (1))
= (( ) (1))
= {( )(

*

*
1 2

* '
2

'

f x x f
x f

Mx M f
M f

�

�

�

�

�

�

� �

�

�22(1) )},Mx

for every x X∈  and f X∈ * . Then,

f x M f Mx x X f X( ) = ( )( (1) ), , .'
2

*� � � (3.3)

Case 2: Assume that φ1  take the second form (3.4). Using the same approach of the first case, we find 
that

f x N x Nf for all x X and f X( ) = ( )( (1) ), .'
2

*� � � (3.4)

Step 5. M  and N  are continuous and the invertibility of φ2(1)  is affirmed.
Firstly, let’s demonstrate the injectivity of φ2(1) . Suppose by the way of contradiction that φ2(1)  is 

not injective, and let y X∈  such that φ2(1) = 0y .

Case 1: Suppose that the case (3.3) occurs, and take x X∈  and f X∈ *  such that Mx y=  and f x( ) 0≠ . 
The previous step entails that

{0} { ( )} = {( )( (1) )}
= {( )( (1) )}
= {0}.

'
2

'
2

� f x M f Mx
M f y

�

�

This is a contradiction. Therefore φ2(1)  is injective.

Case 2: If the case (3.4) occurs, then N X X: * →  and N X X' *: →  are invertible. Through a compara-
ble discussion, we determine that φ2(1)  is injective.

Secondly, let’s demonstrate the continuity of both M  and N .

Case 1: If the case (3.3) occurs, consider a sequence ( )xn n  in X  converging to x X∈ , and let y X∈  such 
that n nMx y���lim = . For every f X∈ * , we obtain

( )( (1) ) = ( )( (1) )

= ( )

= ( )
= (

'
2

'
2

'

M f y M f Mx

f x

f x
M

n
n

n
n

� �
���

���

lim

lim

ff Mx)( (1) ).2�

Given that φ2(1)  is injective and taking into account the arbitrariness of the linear func-
tional f X∈ * , the closed graph theorem entails the continuity of M . Consequently, we have 
( (1) ) ( ) = ( )( (1) ) = ( )2

* ' '
2φ φM M f x M f Mx f x  for every x X∈  and f X∈ * . Therefore, 1 = ( (1) )* 2

* '
X

M Mφ . 

Given the invertibility of both M  and M ' , it follows that the inverse of φ2(1)  exists and M M'*
2

1= ( (1) )� � .

Case 2: If the case (3.4) occurs, then let π  the canonical embedding of X  in X ** . Since N  and N '  are 
invertible and using similar discussion, we show that N  is continuous and 1 = (1)*

'*
2X

N N�� . Hence, 
φ2(1)  is invertible and X  is reflexive, and N N'

2
1= ( (1) )� � .
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Step 6. φ1  and φ2 takes the desired forms.

Case 1: If the case (3.3) occurs, then based on the preceding step, we find that for every x X∈  and 
f X∈ *

�1
'

'*

( ) =
= ( ) .

x f Mx M f
M x f M

� �

�

As a result, Eqs. (1.2) and (2.1) implies that

� �

�

�

* '*
2

*
1 2

*

* '

( ( ) ( )) = ( ( ) ( ))
= (( ) )
= ( ( )

M x f M A x f A
x f A
M x f M

� �

�

�

� � �

** '* 1 1( ) ),M AM� �

for every A X∈( ) . Therefore, Lemma 2.1 enthails that � �2
'* 1 1

2
1( ) = ( ) = (1)A M AM MAM� � �  for all 

A X∈( ) .
Now, observe that for any A X∈( )  and P X∈1( )  we have

� �

�

�

* '*
2

* '* '* 1 1

*

*
1 2

( ( )) = ( ( ) )
= ( )
= ( ( ) ( )).

MAM P MAM M PM
AP
A P

�

� �

� �

By employing Lemma 2.1 once more, we conclude that � �1
'*

2
1( ) = = ( (1) )A MAM MA M �  for all A X∈( ).

Case 2: If the case (3.4) occurs, a similar analysis reveals that

�1
'

* '

* '

( ) =
= ( )
= ( ) ,

x f Nf N x
N f x N
N x f N

� �

�

�

for every x X∈  and f X∈ * . Thus, Eqs. (1.2) and (2.1) entails that

� �

�

�

* * '
2

*
1 2

*

* *

( ( ) ( )) = ( ( ) ( ))
= (( ) )
= ( ( )

N x f N A x f A
x f A
N x f N

� �

�

�

� � �

'' ' 1 * 1 ),N A N� �

for all A X∈( ) . As a result, Lemma 2.1 indicates that � �2
' 1 * 1

2
* 1( ) = = (1)A N A N NA N� � �  for all 

A X∈( ) .
Now, consider any A X∈( )  and P X∈1( ) . It holds that

� �

�

�

�

* * '
2

* * ' ' 1 * 1

* * *

*

*
1

( ( )) = ( )
= ( )
= ( )
= ( ( )

NA N P NA N N P N
A P
AP
A

�

�

� �

��2( )).P

Using Lemma 2.1, we infer that � �1
* ' *

2
1( ) = = ( (1) )A NA N NA N �  for every A X∈( ) .

This concludes the proof.� 
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