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Abstract
This paper investigates the neutron diffusion model with two energy groups in spherical reactors. 
In particular, the integer-order two energy groups neutron diffusion model in spherical reactors is 
resolved using the Laplace transform method by regarding the spherical radius r  as a time domain. 
Next, we transform the neutron diffusion model into fractional-order versions using the Caputo dif-
ferentiator, resulting in what is referred to as the fractional-order two-energy-group neutron diffusion 
model. To address this fractional-order system, we introduce a novel approach to reduce a system of 
2α -order to a duplicated system of α -order, where 0 < 1� � . This converted system is then solved 
using one of the recent modifications of the fractional Euler method called the Modified Fractional 
Euler Method (MFEM). Several numerical simulations are depicted to verify our findings.
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1. Introduction

Control rods, coolants, reflectors, and other components make up the intricate system competition of 
the nuclear reactor. Such reactors’ design and analysis for various operating techniques is a compli-
cated endeavor combining multiple nuclear engineering fields [1–3]. The cylindrically symmetric frac-
tional Helmholtz equation was analytically addressed in an isotropic medium [4]. The solution of the 
neutron diffusion equation is significant to identify the behavior of the neutrons in the nuclear reac-
tors [5]. With the use of a combination of Laplace transform and residual power series techniques, the 
system of coupled fractional neutron diffusion equations was efficiently solved with delayed neutrons, 
and by taking the non-Gaussian case with different fractional-order values, the anomalous diffusion 
was dealt with [6]. With the help of the homotopy perturbation method (HPM), the complex neutron 
diffusion equations was addressed in a spherical nuclear reactor [7, 8]. To reconstruct the neutron 
flux of a reactor from the nuclear parameters, initial and boundary conditions, the one-dimensional, 
mono-energetic diffusion kinetic equation was used in Cartesian geometry with one delayed neutron 
precursor concentration [9].

To explore the nuclear reactors’ behaviors, it is crucial to find a solution the time-dependent two 
energy groups neutron diffusion model. The two energy groups point kinetics equations were analyt-
ically solved with delayed neutrons derived from the neutron diffusion equations in the presence of 
the time-dependent external neutron source, see reference[10]. The distribution of the neutron pop-
ulation in a nuclear reactor can be described by using transport equations. One possible solution of 
the fractional neutron transport equation is given by the fractional neutron diffusion equation [11]. 
A nonlocal scheme for a neutron diffusion equation with a memory might be constructed in terms of 
moments of the displacement kernel with a modified geometric buckling. Such a scheme can lead to 
a class of partial differential equations (PDEs) which belongs to the Swift-Hohenberg equations and 
the Fisher-Kolmogorov family [12]. In literature, there are two schemes that can be applied for homo-
geneous case of those equations: computational and analytical methods [13]. The space-time neutron 
diffusion equations with multigroup of delayed neutrons are a couple of the stiff nonlinear differential 
equations [14]. In [15], the interaction between two hemispheres was theoretically discussed with 
opposite flat faces. With the aim of creating a criticality verification benchmark test set, a couple of 
numerical solutions were summarized in [16] for analytic eigenvalue and eigenfunction equations.

The neutron diffusion equation is among the most significant PDEs which can be used to express 
the neutron behavior in nuclear reactors and numerous physical applications [17]. In the past few 
decades, this topic has drawn a lot of interest from the reactor physics community [18, 19]. Nuclear 
reactors depend on achieving criticality, a precise balance between neutron production and neutron 
loss. This equilibrium is expressed mathematically by the steady-state neutron transport equation 
where the case is independent of time. However, because of its intricacy, fear simplification is used to 
make practical analysis easier. An appropriate simplification is provided by Fick’s law, which creates 
a connection between the neutron current and the neutron flux. Engineers can solve steady state, 
time-independent, and neutron diffusion equations to ensure criticality, which ensures a controlled 
and self-sustaining chain reaction inside the nuclear reactor. The concept of cross-section is essen-
tial to nuclear reactor physics in order to calculate the likelihood that specific reactions will occur. A 
cross-section is the size of a target nucleus that is appropriate for a particular reaction. A measure of 
the probability that a nuclear contact will take place is provided by the interaction of a particle, like 
a neutron, with a nucleus; for further information, consult references [20–23].

The opening part of the contribution of this work introduces a sufficient procedure based on the 
Laplace Transform Method (LTM) to provide a general solution for the integer-order two energy groups 
neutron diffusion model in spherical geometry. This would be achieved by considering the spherical 
radius r  as a time domain. The LTM is an effective and a suitable technique to solve such a problem 
without discretization or perturbation. The second part of this work focuses on developing a scheme to 
reduce a fractional-order system of order 2α  into another duplicated fractional-order system of order 
α , where 0 < 1� � . This would be carried out by establishing a new result which introduces some aux-
iliary variables, and hence can serve us in performing this reduction. After converting the 2α -order 
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system into an α -order one, we use one of the recent modifications of the fractional Euler method 
called the Modified Fractional Euler Method (MFEM) to solve the resultant system. In a few words, 
by reducing a higher fractional-order differential equations to a duplicated system of fractional-order 
equations, we simplify the problem and make it amenable to numerical methods and computational 
techniques, and this what we have carried out for the fractional-order two energy groups neutron 
diffusion model as it is of order 2α .

Mathematicians who study fractional calculus expand on the ideas of differentiation and integration 
to non-integer orders. It permits differentiation and integration of any real or complex order, including 
fractional-orders, as opposed to limiting these operations to whole integers alone [24]. Fractional cal-
culus has several uses in the field of physics, particularly in the research of complex systems, anoma-
lous diffusion, and fractal phenomena. A foundation for describing physical events that show memory 
or long-range dependency is provided by fractional calculus. In order to simulate systems having 
memory effects, such as viscoelastic materials, electrical circuits, and biological systems, fractional 
differential equations (FDEs) must take fractional derivatives into account. The diffusion equation, a 
second-order PDE, is used in classical physics to model diffusion. However, in some systems, diffusion 
behaves atypically and cannot be adequately predicted by the conventional diffusion theory [25–27]. 
These anomalous diffusion processes may be modeled and examined using fractional calculus, where 
the order of the derivative is a fractional-order value. In this regard, with the aim of addressing 
numerous fractional-order models that appear broadly in biological, physics, and applied mathemat-
ics, a lot of numerical methods have been recently proposed and implemented. In [28], a new modifica-
tion for the fractional Euler method (FEM) called by modified fractional Euler method (MFEM) proved 
its efficiency in solving these models, see references [29]. From this point of view, we intend to apply 
this method to solve the duplicated α -order system generated from the reduction scheme.

2. Preliminaries

In the following content, we review certain primary definitions and theorems connected with frac-
tional calculus. This would lay the foundation to the fractionalization of the two energy groups neu-
tron diffusion model in the spherical reactors later on.

Definition 1: [32, 33] The fractional Riemann-Liouville integral of a function f t( ) of order µ > 0  is 
typically expressed by

J f t f t d t
t� �

�
� � � �( ) = 1

( )
( )( ) ,   > 0, > 0.

0
1

� � � � (1)

Remark 1: [32, 33] A number of Riemann-Liouville integral properties are provided below for the sake 
of completeness: 
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 2. J t a t a a� � � ��
� �

�( ) = ( 1)
( 1)

( ) ,   , .�
�

� �
� � � ���

�
  

 3. J J f t J J f t� � � � � �( ) = ( ),   , 0.�  
 4. J J f t J f t� � � � � �( ) = ( ),   , 0.� �  

Definition 2: [32, 33] The Caputo fractional derivative of order α > 0  is defined as 
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where m is the smallest integer number greater than α  and t > 0. 
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Remark 2: [32, 33] A number of Caputo derivative properties are provided below for the sake of 
completeness:

 1. D cα = 0, where c  is constant. 
 2. For a∈ , we have 

D t a
t a

otherwise

� �
� ��

� �
� �

( ) =
( 1)
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( ) , > 1,

0, .
�

�
� �

� ��

�
�

��

��
� (3)

 3. Dα  is a linear operator, i.e., 

D f t k t D f t D k t� � �� � � �( ( ) ( )) = ( ( )) ( ( )),� �

where µ  and ω  are constants. 
 4. If m m� �1 <� , m∈, then we have 

J D f t f t f t
i

t
i

n
i

i
� � ( ) = ( ) (0 )

!
,  > 0.

=1
�� � (4)

Definition 3: [32, 33] Let � � �  and m = � �� . The Caputo fractional-order derivative operator Dα  can 
be defined in terms of the Riemann-Liouville fractional integral operator as follows: 

D f J D fm m� �= .� (5)

Theorem 1: [28] Suppose that D f x C bk� ( ) (0, ]�  for k n= 0,1,2, , 1 + , where 0 < 1� � . Then we can 
expand the function f  about the node x0  as follows: 

f x x x
i

D f x x x
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n i
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n
( ) = ( )
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(( 1) ( ),n f� � � (6)

� �x b(0, ] with 0 < <ξ x . 

Definition 4: Suppose that the function f  is defined on [0, )∞ . Then the Laplace transform { }f  is 
another function F s( ) , which can be outlined as 

F s f e f t dtst( ) = { } := ( ) .
0


� �� (7)

Remark 3: Some properties of Laplace transform are listed below for completeness: 

 1.  { } = { }ty d
ds

y− . 

 2.  { ( )} = (0) { } = ( ) (0)f t f s f sF s f' � � � . 
 3. { ( )} = ( ) (0) (0)2f t s F s sf f'' '− − . 

In the subsequent material, we purpose to briefly review the MFEM and illustrate how it can be 
used in solving the following initial value problem: 

D z t t z t� ( ) = ( , ( )),� (8)

with the initial condition: 

z z(0) = ,0 (9)
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where 0 < 1� � . For this purpose, we assume that 0 = < = < = 2 < < = =0 1 0 2 0 0t t t h t t h t t nh bn+ + +  

whereby the mesh points are t t ihi = 0 + , i n=1,2, , ,  with the step size h b a
n

= − . Consequently, with 

the use of the first three terms of Theorem 1, and performing some substitutions, we can obtain 
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where ϕi  denotes the numerical solution of problem (8), for i n=1,2, , 1 − . However, to get a full over-
view about the MFEM algorithm and its analysis, the reader may refer to the reference [28].

3. Two Energy Groups of Neutron Diffusion Model

This part aims to first address the integer-order two energy groups neutron diffusion model in spher-
ical reactors via LTM, and then this model will be dealt with the use of MFEM in its fractional-order 
case.

3.1. Integer-order model

In what follows, with the use of LTM and by letting that the spherical radius r  be a time domain, the 
integer-order two energy groups neutron diffusion model is resolved in spherical reactors. For this 
purpose, it is assumed that the integer-order two energy groups neutron diffusion system has a single 
solution in the interval of integration, and has the following form [1, 2]:

� � �
� � �

2
1 11 1 12 2

2
2 21 1 22 2

( ) ( ) ( ) = 0,
( ) ( ) ( ) = 0,

� � �
� � �
r C r C r
r C r C r (11)

where Cij  is a constant connection between fluxes in different energy groups of neutrons and Cii  is 
known as a group buckling. In particular, these constants can be respectively defined by 

C
x v

D

C
x v

D

ij
sij

i j
fi
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i i
fi i sij
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= ,

=
( )

,

�� �
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�

(12)

where Di  is a group diffusion coefficient that can be defined by 

Di
fi sii sij i

= 1
3( )

.
� � �� �� � �

�

(13)

The constants reported in (12) and (13) are identified in terms of different macroscopic cross-sec-
tions, the fraction of fission neutrons that are emitted with energies in the ithgroup ( )xi , and the 
number of neutrons produced per fission for each group ( )vi . In fact, system (11) characterizes the 
behavior of the neutrons in nuclear reactors, where each flux φi  exhibits the neutron flux with a spe-
cific speed. Each flux is maximum at the center of the reactor, and its derivative vanishes. Hence, the 
initial conditions might be expressed as

� �i i i
'

ih k i(0 ) = , (0 ) = , =1,2,� � (14)
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where the fluxes φi r( )  are functions of independent variable r , and h ki i, ∈ , for i =1,2. Throughout 
it is supposed that φi r( )  are analytic functions for r > 0  and i =1,2.

System (11) might be simplified by taking into account the fact of nuclear reactor theory which 
states that the material buckling must be equal to the geometrical buckling B2 for all energy group 
in the criticality case, i.e.,

� �
� �

2
1

2
1

2
2

2
2

( ) ( ) = 0,
( ) ( ) = 0.

� �
� �
r B r
r B r (15)

Substituting of the values of B2 into above system yields 

� � �
� � �
B r C r C r
B r C r C r

2
1 11 1 12 2

2
2 21 1 22 2

( ) ( ) ( ) = 0,
( ) ( ) ( ) = 0.

� � �
� � �

(16)

 The above system demonstrates that the ratio of each two fluxes is constant. In this regard, a proper 
conventional method such as Cramer’s rule, can identified the value of B2 along with finding each flux 
separately for any number of energy group for any reactor geometry.

The energy spectrum of neutrons in a two energy groups neutron diffusion model is split into fast 
and thermal energy groups. A set of diffusion equations roughly approximates the neutron behavior 
inside each energy group, which represents a particular range of neutron energies. In the following 
content, the integer-order two energy groups neutron diffusion model is resolved in spherical reactors. 
This would be achieved with the use of LTM and by letting the spherical radius r  be a time domain. 
To do so, we should review the following fact:

�
�
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�
�

2
2

2= 1 .
r r r

(17)

Accordingly, system (11) can be rewritten as 

r r r rC r rC r
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� �

1 1 11 1 12 2

2 2

( ) 2 ( ) ( ) ( ) = 0,
( ) 2 ( )

� � �
� � 221 1 22 2( ) ( ) = 0,� �r rC r�

(18)

with the following initial conditions: 

φ
φ
i i

i
'

i

a i
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(0) = , =1,2,
(0) = , =1,2. (19)

By taking the Laplace transform to the both sides of (19), we get 
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By using Remark 3, we can have 
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With the help of assuming { ( )}) = ( )φi ir T s , for all i =1,2, we obtain 
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Consequently, simplifying system (22) yields 

� � �
� � �
( ) ( ) ( ) = ,

( ) ( ) ( ) = .
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11 1 12 2 1

21 1
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22 2 2
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 The above system can be written in its corresponding matrix form as 

� � �
� � �

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

( )
( )

( )
( )

=
2

11 12

21
2

22

1

2

1s C C
C s C

T s
T s

a
a

'

'
22

,�

�
�

�

�
� (24)

or 
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As a consequence, by assuming that A s( ) is invertible, we can have 

T s A s K' ( ) = ( )1− (27)

Thus, system (27) can be then solved numerically by using a prepared MATLAB code with noting that 
�i ir T s( ) = { ( )}1� , for all i =1,2. This would give the solution φi r( )  of system (18).

3.2. Fractional-order model

In this subsection, we intend first to fractionalize system (18) by applying the Caputo differentiator 
operator to its equations. This would generate the fractional-order two energy groups neutron diffu-
sion model in the spherical reactors, which would be in the form

D r
r
D r C r C r

D r
r
D r

2
1 1 11 1 12 2

2
2 2

( ) 2 ( ) ( ) ( ) = 0,

( ) 2 ( )

� �
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� � � �
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� �CC r C r21 1 22 2( ) ( ) = 0,� ��
(28)

with the following initial conditions: 
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�
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i i

i i

a i

r
b i

(0) = , =1,2,

(0) = , =1,2.�
�

(29)

It is clear that system (28) is of order 2α . For this reason, we need to develop a manner that can deal 
with such a system with such a fractional-order. To do so, we introduce the following lemma that aims 
to reduce the system of 2α -order into another duplicated system of α -order, where 0 < 1� � .

Lemma 1: Any FDE of order nα , n� �  and � � (0,1], with functions possessing values in   can be 
converted into a system of FDEs of order α  with values in nd .

Proof 1. To prove this result, we should first take the scalar case that takes place whenever d =1, and 
then we will consider the remaining case that is hold when d >1. For this reason, we should note that 
the general form of the FDE of order nα  in its scaler case can be given by 

D y t G t y t D y t D y t D y tn n� � � �( ) = ( , ( ), ( ), ( ), , ( )),2 ( 1)


� (30)
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where G  is a continuous function defined on the subset I × × × ×   , so that it takes values in   for 
a given intend I . Now, define 

�( , , , , ) = ( , , , ( , , , , ))0 1 1 1 2 0 1 1t v v v v v G t v v vn n  � � (31)

as a continuous function on I × × × ×    as G , but it takes the values in n . In this regard, we 
consider the following equation: 

D Y t t Y t t I� ( ) = ( , ( )), .� for � (32)

Now, we want to show that x I: →   is a solution of equation (31) if and only if the function 
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is a solution of equation (32). To this end, we assume that X  is a solution to equation (31) such that X  
is defined above. Then we have 
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Herein, the converse of the above discussion is similar. Now, for the case of d >1, one can reread the 
above proof again, and substitute each occurrence of   by d  to get the result. 

In light of Lemma 1, we look forward to convert system (28), which is of order 2α , into its corre-
sponding fractional system of order α , where 0 < 1� � . To do so, we can rewrite system (28) again as
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Now, we take the assumptions below into account: 
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( ) = , ( ), ( ), ( ), ( ) ,

( ) = ,

� � �

�

� � � � �

� �

� �
(( ), ( ), ( ), ( ) .1 2 2r D r r D r� �� � �� � (37)

Let u r D ri i( ) = ( )�� , for all i =1,2. Then we have 

D r u r g r r u r r u r
D u r D

�

� �

� � �

�
1 1 1 1 1 2 2

1
2

1

( ) = ( ) = , ( ), ( ), ( ), ( ) ,
( ) = (

� �
rr f r r u r r u r

D r u r g r r
) = , ( ), ( ), ( ), ( ) ,

( ) = ( ) = , ( ),
1 1 1 2 2

2 2 2 1

� �

� ��

� �
uu r r u r

D u r D r f r r u r r
1 2 2

2
2

2 2 1 1 2

( ), ( ), ( ) ,
( ) = ( ) = , ( ), ( ), (

�

� � �� �

� �
)), ( ) ,2u r� �

(38)
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with the following initial conditions:

φi i i ia u b i(0) = , (0) = , =1,2.forall (39)

In what follows, we intend here to consider the spherical radius r  as a time domain, as well. Thus, in 
order to solve the converted system (38) with the help of MFEM [34], we divide the interval I T= [0, ] 

as 0 = < = < = 2 < < = =0 1 0 2 0 0r r r h r r h r r nh Tn+ + +  such that r r ihi = 0 +  and h T
n

= , for i =1,2. For 

simplicity, we denote respectively g r r u r r u ri ( , ( ), ( ), ( ), ( ))1 1 2 2φ φ  and f r r u r r u ri ( , ( ), ( ), ( ), ( ))1 1 2 2φ φ  by gi ( )  
and fi ( ) , where  = ( , ( ), ( ), ( ), ( ))1 1 2 2r r u r r u rφ φ , for all i =1,2. Now, based on the main formula of the 
MFEM (10), we can obtain the following states: 

� �
� �

�
�

� � �

1 1 1 1 1 1( ) = ( )
( 1)

(
2 ( 1)

, ( )
2 ( 1)

r r h g r h r h gi i i i� �
�

�
�

�
�� � �

(( ), ( )
2 ( 1)
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( )
2 ( 1)

( ), ( )

1 1

2 1 2
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
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�
�

�
�
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�
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(40)

for i =1,2. System (40) represents an approximate solution of system (38) and hence ( ( ), ( ), )1 2φ φt t  is 
then the defined solution of system (28).

4. Numerical Experiments

In numerical simulations and mathematical models used to explore physical processes, boundary 
conditions are a key component. For appropriate findings to be obtained when examining reactor 
systems, boundary conditions must be accurately represented. Since it has an impact on a number 
of reactor performance and safety factors, the behavior of the flux near the reactor’s surface is of 
significant interest. It is frequently believed that the flux, which represents the passage of neutrons 
through the reactor, disappears at the surface. The zero flux boundary condition is frequently used to 
mimic reactor activity. The zero flux boundary condition aims to mimic the behavior of the real system 
by assuming zero flux at the surface. In actuality, the flow may continue at the reactor’s surface 
despite declining in magnitude due to phenomena including dispersion and leakage. An extrapolated 
boundary condition (EBC) can be used to overcome this restriction. The EBC assumes that the flux 
diminishes at a short distance from the surface in order to account for the behavior of the flux beyond 
the reactor’s surface. The EBC gives a more accurate picture of the reactor system by extrapolating 
the flux behavior. Physical factors and the unique features of the reactor under study can be used to 
define the distance over which the flux is supposed to disappear in the EBC. The EBC gives a more 
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accurate simulation of the real-world problem while the zero flux boundary condition offers simplicity 
and computing economy.

The purpose of this section is to look at how boundary conditions, namely the zero flux boundary 
condition and the extrapolated boundary condition, affect the numerical outcomes of reactor simula-
tions. We compare the results produced by various boundary conditions in an effort to determine how 
these decisions affect the precision and dependability of the simulation results. In what follows, we 
aim to depict the numerical solutions of the integer- and fractional-order two energy groups neutron 
diffusion model in spherical reactors by using the LTM and MFEM, respectively. For this purpose, we 
list the parameters’values in Table 1 and Table 2, which are taken from the reference [35].

Table 1: Data of the two energy groups neutron diffusion model
  Fast Energy group  

f
cm

1

1= 0.0010484� �   
�1

1= 0.0010046� �cm   
S

cm
11

1= 0.62568� �

S
cm

12
1= 0.029227� �   v1 = 2.5   χ1 =1.0  

 Thermal Energy group  

f
cm

2

1= 0.05063� �   
�2

1= 0.025788� �cm   
S

cm
22

1= 2.443838� �

S
cm

21
1= 0.00000� �   v2 = 2.5   χ2 = 0.0

Table 2: The values of the coefficients Cij  calculated based on (12)
 Cij   i =1   j = 2
i =1   –0.0564834  0.220978

j = 2   0.249474  –0.577793

The integer-order two energy groups of neutron reactor diffusion system related to the spherical 
reactor can be redescribed as follows:

r r r rC r rC r
r r r rC

'' '

'' '
� � � �
� �

1 1 11 1 12 2

2 2

( ) 2 ( ) ( ) ( ) = 0,
( ) 2 ( )

� � �
� � 221 1 22 2( ) ( ) = 0,� �r rC r�

(41)

with initial conditions 

φ φ φ φ1 2 1 2(0) = 2.766976, (0) =1, (0) =1, (0) = 0.' ' (42)

On the other hand, the fractional-order two energy groups of neutron reactor diffusion system related 
to the spherical reactor can be redescribed in the following manner: 

rD r D r rC r rC r
rD r D r

2
1 1 11 1 12 2

2
2 2

( ) 2 ( ) ( ) ( ) = 0,
( ) 2 (

� �

� �

� � � �
� �

� � �
� )) ( ) ( ) = 0,21 1 22 2� �rC r rC r� �

(43)

with initial conditions 

� � � �� �
1 2 1 2(0) = 2.766976, (0) =1, (0) = 0, (0) = 0.D D (44)

Now, in order to verify the validity of the scheme of fractionalization performed via Lemma 1, we 
make a numerical comparison between the LTM’s solution of system (18) and the MFEM’s solution 
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of system (28) in Figure 1. In light of such figure, it can obviously notice that those two solution are 
completely coincided, and hence the two energy groups of neutron reactor diffusion model is well sim-
ulated when α =1  with the use of MATLAB.

In Figure 1, we make comparisons between MFEM and the exact solution when α =1  for two-en-
ergy groups of neutrons reactors diffusions system. In the context of computational simulations, it has 
been observed that as the mesh is refined, the solution obtained using the (MEFM) converges to the 
exact solution at every point within the solution domain. This convergence demonstrates the accuracy 
and reliability of the MEFM as the mesh density increases.

In Figure 2 and Figure 3, we depict respectively two further numerical comparisons for φ1( )r  and 
φ2( )r , which are performed between several MFEM’s solutions according to different fractional-order 
values, i.e. α = 0.95,0.975,1.
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Figure 2: MFEM’s numerical solutions for φ1( )r  according to α = 0.95,0.975,1, where the radius r  in 
centimeters.

Figure 1: The LTM’s solution and the MFEM’s solution for the two energy groups of neutrons reac-
tors diffusion system, where the radius r  in centimeters.
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In Figure 4, we present a comparison for φ1( )r  between MFEM and exact solutions when 
α = 0.95,0.975,1. In this figure 4, the flux distribution in the system is visually depicted. The high-
est flux value is observed at the sphere’s axis r = 0 , and it gradually diminishes toward the surface. 
Notably, it has been observed that the solution obtained using the Modified Equation Fractional 
Method (MEFM) converges to the exact solution at all points within the solution domain."

For further insights on the MFEM’s numerical solutions ( ( ), ( ))1 2φ φr r  of system (28), we plot respec-
tively in Figure 4 and Figure 5, several MFEM’s solutions of such system in accordance with different 
fractional-order values, i.e. α = 0.95,0.975,1.

Figure 3: MFEM’s numerical solutions for φ2( )r  according to α = 0.95,0.975,1, where the radius r  in 
centimeters.

Figure 4: MFEM’s solutions for different for φ1( )r  according to different fractional-order values, 
where the radius r  in centimeters.
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5. Conclusion

 In this paper, we successfully developed two schemes to solve the integer- and fractional-order two 
energy group neutron diffusion model in spherical reactors. We solved the integer-order model using 
the Laplace transform method, and the fractional-order model with the use of the Modified Fractional 
Euler Method (MFEM). In specifically, we presented a novel method to reduce a 2α -order system to 
a duplicated α -order system, where 0 < 1� � , in order to address the fractional-order system. We can 
obviously observe that the solution of the integer-order two energy group neutron diffusion model, 
which was generated by the Laplace transform method, is completely coincided with the solution of 
the fractional-order version of the same model when we use the MFEM at α =1 . This assertion was 
verified by performing several numerical comparisons.
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