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Abstract
The authors consider a quarter-symmetric semi-metric (QSSM) connection in the tangent bundle and 
study the connection on submanifold of co-dimension 2 and hypersurface concerning the QSSM con-
nection in the tangent bundle. Totally geodesic (TG), totally umbilical (TU), Gauss, Weingarten and 
Codazzi equations concerning the QSSM connection on submanifold of co-dimension 2 and hyper-
surface in the tangent bundle are obtained. Finally, we deduce Riemannian curvature tensor, Gauss 
and Codazzi equations on a submanifold of co-dimension 2 and hypersurface of Riemannian manifold 
concerning the quarter symmetric semi-metric connection in the tangent bundle.
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1. Introduction

The study of semi-symmetric metric connection on a differentiable manifold M was initiated and 
developed by Friedmann and Schouten [1] in 1924. It is well known that a linear connection is called 
a semi-symmetric connection if its torsion tensor T is of the form T (X0, Y0) = ω(Y0)X0 − ω(X0)Y0,  
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where the 1-form ω is definedby ω(X0) = g(X0, U ) and U is a vector field. A metric connection with 
non-zero torsion on a Riemannian manifold was introduced by Hayden in 1932 and known as Hayden 
connection. Later on, Golab [2] introduced the quarter-symmetric metric connection in M with the 
linear connection ∇ in 1975. A linear connection ∇ is said to be a quarter-symmetric connection if 
its torsion tensor T satisfies T (X0, Y0) = η(Y0)ϕX0 − η(X0)ϕY0 where X0, Y0 are arbitrary vector fields, 
η is a 1-form and ϕ is a (1,1) tensor field. A QSSM connection ∇̅ defined by ∇X0

Y0 = ∇X0
Y0 − η(X0)Y0 + 

g(ϕX0, Y0)ξ, where X0, Y0 are arbitrary vector fields, ∇ denotes the Levi-Civita connection concern-
ing Riemannian metric g and ξ the vector field defined by g(ξ, X0) = η(X0). The connections such as 
symmetric, semi-symmetric, quarter-symmetric non-metric connection have been recently discussed 
by ([3–15]).

On the other hand, in the foundation of the differentiable geometry of tangent bundles, it is clas-
sical to study some geometrical structures and connections deploy natural operations transforming 
structures and connections on base manifold to its tangent bundle. Tani introduced the notion of 
prolongations of surfaces to tangent bundle and developed the theory of the surface prolonged to the 
tangent bundle concerning the metric tensor [16]. Lifts of a semi-symmetric non-metric connection 
(SSNMC) from statistical manifolds to the tangent bundle studied by Khan et al. [17]. Khan studied 
the lifts from P-Sasakian and an LP-Sasakian manifold to its tangent bundle associated with a QSM 
connection in [18] and [19] respectively.

Submanifold theory is an important topic in differential geometry. Gauss Codazzi and Weingarten 
equations are fundamentals of submanifold theory. We investigate the relation between the con-
nection of the ambient manifold and that of the submanifold in the tangent bundle. Also, We have 
deduced Weingarten, Gauss and Codazzi equations for submanifold of codimension 2 and hypersur-
face of a Riemannian manifold with a QSSM connection in the tangent bundle.

The paper is organized as follows. In Section 2, a brief account of tangent bundle, vertical and 
complete lifts. Section 3 deals with the study of submanifold of codimension 2 and hypersurface con-
cerning QSSM connection in the tangent bundle. Totally geodesic and totally umbilical submanifold 
of codimension 2 and hypersurface concerning such connection in the tangent bundle are investi-
gated in Section 4. Moreover, We establish Weingarten equations concerning QSSM connection in 
the tangent bundle in Section 5. Finally, we calculate the Riemannian curvature tensor, Gauss and 
Codazzi equations for a QSSM connection on a submanifold of codimension 2 and hypersurface in the 
tangent bundle.

2. Preliminaries

2.1. Vertical and complete lifts

Let TMn be tangent bundle of n-dimensional differentiable manifold over Mn with the bundle projec-
tion πMn : TMn → Mn. The vertical and complete (V & C) lifts of a function f, a vector field X0, 1-form 
ω, (1,1) tensor field F and an affine connection ∇ are fV, XV

0, ωV, FV, ∇C and fC, X0
C, ωC, FC, ∇V corre-

spondingly ([20–22]). 
The characteristics of V & C lifts with mathematical operators are presented as ([23], [24])

 0 0 0 0 0 0 0 0 0 0( ,) ,( )V V V C C V V Cf f f f f= = +      (2.1)

 0 0 0 0 0 0 0 0 0 0 0 00, ( ) , ( ) ,V V V C C V V C C Cf f f f f f= = = =       (2.2)

 0 0 0 0 0 0 0 0 0 0 0 0( ) 0, ( ) ( ) ( ) , ( ) ( ) ,V V V C C V V C C Cfω ω ω ω ω ω= = = =      (2.3)

 0 0 0 0 0 0 0 0( ) , ( ) ,V C V C C Cf f f f= =     (2.4)
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 0 0 0 0 0 0 0 0 0 0üüüüüüüüV C V V C C C C= = =           (2.5)

 
0 00 00 0 0 0( ) ,       ( )C C

C C C C V V∇ = ∇ ∇ = ∇  
     (2.6)

2.2. Vertical and complete lifts of ℑr
s(Mn−1, Mn+1) to TMn+1

If f0 ̅ is a function on Mn−1, the vertical lift f0 ̅
V̅ of f0 ̅ to TMn+1 is given by f0 ̅

V̅ = f0 ̅ ◦ πMn−1. Let U be neigh-
borhood of p in Mn+1. Then the function f̂  fits with f0 ̅ in U ∪ Mn+1 containing p. The complete lift f̂ Ĉ 
of f̂  is given as ˆ

0
ˆ ˆC i

if f= ∂  in 
1

1 ( ).
nM Uπ
+

−  If X‾0 is an element of ℑr
s(Mn−1, Mn+1), the vertical lift 0

V
  to 

TMn+1 is defined by 0 0
ˆ ˆ( )

V C Vf f=   and complete lift 0
C

  to TMn+1 is defined as 0 0
ˆ ˆ( )

C C Cf f=  , for 
each 0

0 1
ˆ ( )nf M +∈ℑ  along Mn−1. Similarly, If ω̄0 is an element of ℑ0

1(Mn−1, Mn+1). The vertical lift 0
Vω  

and complete lift 0
Cω  to TMn+1 are defined by 0 0 0 0( ) ( ( ))

CV Vω ω=   and 0 0 0 0( ) ( ( ))
CC Cω ω=   for each 

0
0 1 1( )nM +∈ℑ  respectively ([19], [25], [26], [27]).

2.3. Submanifold of codimension 2

Let Mn+1 (dim=n + 1) be a differentiable manifold and Mn−1 (dim=n − 1) submanifold submerged in 
Mn+1 by mapping τ : Mn−1 → Mn+1. The differentaibility dτ of the submerged τ is shownby B ([28–29]). 
Assume that the Riemannian manifold Mn+1 has a metric tensor of g̃. In such case, the submanifold 
Mn−1 likewise has a metric tensor g, making it a Riemannian manifold such that

 0 0 0 0( , ) ( , ),g g B Bφ φ= 

     (3.1)

for all X0, Y0 in Mn−1.
If Mn−1 and Mn+1 are orientable, then mutually orthogonal unit normals N1 and N2 defined along 

Mn−1 such that

 g̃(BϕX0, N1) = g̃(BϕX0, N2) = g̃(N1, N2)

 g̃(N1, N1) = g̃(N2, N2) = 0 (3.2)

forall X0 in Mn−1.
A QSSM connection ∇̃ on manifold Mn+1 provided by ([18], [30], [31])

 






    

0 00 0 0 0 0 0( ) ( , ) ,g Pη φ φ∇ = ∇ − +


  




 
       (3.3)

where ∇̃ be Levi-Civita connection concerning to the Riemannian metric g̃, η̃ is a 1-form, ϕ̃ is a tensor 
of type (1,1) such that g̃(ϕ̃X ̃0, Ỹ0) = g̃(X 0̃, ϕ̃Y0̃) and the vector field P̃ given by g̃(P̃, X 0̃) = η̃(X 0̃).

Let us put

 P̃ = BP + λN1 + µN2, (3.4)

P is a vector field in the tangent space and λ and µ functions of Mn−1.
Let ∇̇ Riemannian connection induced on Mn−1 form ∇̇ on the enveloping manifold wrt normals N1 

and N2, then we infer

 
0 00 0 0 0 1 0 0 2( ) ( , ) ( , ) ,B B B h N k N= ∇ + +∇ 



        (3.5)
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where for all X0, Y0 in Mn−1, h and k denote II fundamental tensors of Mn−1. In the same way, if the 
connection ∇ be induced on Mn−1 from the QSSM connection ∇̃ on Mn−1, we infer

 
0 00 0 0 0 1 0 0 2( ) ( , ) ( , ) ,B B B m N n N∇ = ∇ + +

        (3.6)

m and n are (0,2) tensorfields of Mn−1( [32], [33], [34]).
Let TMn−1 and TMn+1 be the tangent bundles of Riemannian manifolds Mn−1 and Mn−1 respectively. 

Let gC̃ be the complete lift of a Riemannian metric g˜ in TMn−1 and gC induced metric from gC̃ such 
that

 gC((ϕX0)C, Y0
C) = gC̃(B ̃(ϕX0)C, B̃Y0

C), (3.7)

for all X0
C, Y0

C in TMn−1.
Operating complete liftby mathematical operators on both sides of the equation (3.2), we get

 

0 1 0 1

0 2 0 2

1 1 1 1

2 2 2 2

1 2 1 2

1 1 2 2

( ( ) , ) ( ( ) , ) 0,

( ( ) , ) ( ( ) , ) 0,

( , ) ( , ) 0,
( , ) ( , ) 0,
( , ) ( , ) 0,
( , ) ( , ) 1,

C C C C C V

C C C C C V

C C C C V V

C C C C V V

C C C C V C

C V C C V C

g B N g B N

g B N g B N

g N N g N N

g N N g N N

g N N g N N

g N N g N N

φ φ

φ φ

= =

= =

= =

= =

= =

= =

 

 

 

 

 

 

 

 

 

 

 (3.8)

where 1 1 2, ,V C VN N N  and 2
CN  are V & C lifts of N1 and N2, accordingly along with submanifold TMn−1.

Operating complete liftby mathematical operators on both sides of the equations (3.3) and (3.4), 
we get

 
0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

( ( )( )) ( ( , ) )

( ( )( ) ) ( ( )( ) )

( ( ) , ) ( ( ) , )

C C

C C

C C C C C C
B B

C C C C C C V V C C
B B

C C C V C V C C

B B B B g B B P

B B B B B B

g B B P g B B P

η φ φ

η φ η φ

φ φ

∇ = ∇ − +

∇ = ∇ − −

+ +

 

 



  
 






     
 

 

     

 

 

 

     

     

   

 (3.9)

for all X0
C, Y0

C in TMn−1, where C∇  denotes complete lift of ∇  wrt g̃C determined by g̃C(P̃C, X 0̃
C ) = (η̃(X ̃))C  

where η̃C, ϕC̃, PC̃ are complete lifts of form η, (1,1) tensorfield ϕ and vector field P̃.

 1 2

1 2

,
,

C C C C

V V V V

P BP N N

P BP N N

λ µ

λ µ

= + +

= + +

 

 

 (3.10)

where P is a vector field and λ and µ are functions of Mn−1. Now, we are going the prove the following 
theorem:

Theorem 3.1 The connection C∇  induced on the submanifold T (Mn−1) from C∇  of a Riemannian 
 manifold with a QSSM connection is also a QSSM connection.

Proof: Let C∇  be the induced connection from C∇  on the submanifold T (Mn−1) from the connection C∇  
on the enveloping manifold concerning the unit normals N1 and N2 whose complete and vertical lifts 
are N1

C̄, N1
V̄, N2

C̄  and N2
V̄ respectively.

Operating complete lift with mathematical operators on both sides of equation (3.5), we obtain

 0 00 0 0 0 1 0 0 1

0 0 2 0 0 2

( ) ( , ) ( , )

( , ) ( , ) ,

C C
C C C C C C C V V C C C
B

C C C V V C C C

B B h N h N

k N k N

= ∇ + +

+

∇

+










 
     

   
 (3.11)
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where hV , hC, kV and kC are V & C lifts of II fundamental tensors h and k respectively of Mn−1.
In the same way, if ∇C be connection induced on T (Mn−1) from the QSSM connection ∇̃ C on T 

(Mn−1), we have

 0 00 0 0 0 1 0 0 1

0 0 2 0 0 2

( ) ( , ) ( , )

( , ) ( , ) ,

C C
C C C C C C C V V C C C
B

C C C V V C C C

B B m N m N

n N n N

∇ = ∇ + +

+ +






 
     

   
 (3.12)

where mV , mC, nV and nC are V & C lifts of II fundamental tensors m and n respectively of Mn−1.
In the view of equations (3.9), (3.10), (3.11) and (3.12), we have

 

0

0

0 0 0 1 0 0 1

0 0 2 0 0 2

0 0 0 1 0 0 1

0 0 2 0 0 2

0 0 0 0

0

( ) ( , ) ( , )

( , ) ( , )

( ) ( , ) ( , )

( , ) ( , )
( ( )( ) ) ( ( )( ) )
( ( ) ,

C

C

C C C C C V V C C C

C C C V V C C C

C C C C C V V C C C

C C C V V C C C

C C V V C C

C C

B m N m N

n N n N

B h N h N

k N k N
B B B B

g B

η φ η φ

φ

∇ + +

+ +

= + +∇

+ +

− −

+

   

 











    

   

    

   

   

 0 1 2

0 0 1 2

)( )

( ( ) , )( ).

C V V V

C V C C C C

B BP N N

g B B BP N N

λ µ

φ λ µ

+ +

+ + +

 

  





 

 (3.13)

Comparison of tangential and normal vector fields, we get

 

0 00 0 0 0 0 0

0 0 0 0

( )( ) ( )( )

( ( ) , ) ( ( ) , ) ,

C C
C C C C C C V V C C

C C C V C V C C

B B B B

g B B P g B B P

η φ η φ

φ φ

∇ = ∇ − −

+ +

   


 

   

 

 
     

   

where λ and µ are choosen such that

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

( , ) ( , ) ( ( ) , ),
( , ) ( , ) ( ( ) , ),

( , ) ( , ) ( ( ) , ),
( , ) ( , ) ( ( ) , ).

C C C C C C C C C

V C C V C C C V C

C C C C C C C C C

V C C V C C C V C

m h g B B
m h g B B
n k g B B
n k g B B

λ φ

λ φ

µ φ

µ φ

= +

= +

= +

= +

 



 



 



 



     

     

     

     

 (3.14)

Thus,

 

0 00 0 0 0 0 0

0 0

0 0

0 0

[ , ] ( )( )

( )( )
( )( )
( )( ) .

C C
C C C C C C C C V

V C C

C C V

V C C

B B

B B
B B
B B

η φ

η φ

η φ

η φ

∇ −∇ − = −

−

+

+

 



 



 



 



 
     

 

 

 

 (3.15)

Hence, ∇C induced on TMn−1 is the QSSM connection. Hence the proof is completed.
Let Mn+1 (dim=(n + 1)) be a differentiable manifold and Mn be hypersurface in Mn+1 by mapping 

τ : Mn+1 → Mn and by B the mapping induced by τ from T (Mn) to T (Mn+1), where T (Mn) and T (Mn+1) 
denote tangent bundles of manifold Mn and Mn+1 respectively.

As an immediate consequence of the above theorem, we have the following corollary:

Corollary 3.1 The connection induced on the hypersurface TMn from of a Riemannian manifold with 
a QSSM connection concerning the unit normals NC̄ and NV̄ is also a QSSM connection.
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Proof: Let ∇̇C be the induced connection from C∇  on the hypersurface TMn concerning the unit nor-
mal N whose complete and vertical lifts are NC̄ NV̄. Then we have,
and

 
0 00 0 0 0 0 0( ) ( , ) ( , ) ,C C

C C C C C C C V V C C C
B B B h N h N= ∇ + +∇









 
       (3.16)

where for all X0
C, Y0

C on TMn and h is the II fundamental tensor of the hypersurface Mn whose C & V 
lifts are hC and hV respectively on T (Mn).

Let ∇C be connection induced on hypersurface from C∇  concerning the unit normal N whose C & 
V lifts are NC̄ and NV̄.

 
0 00 0 0 0 0 0( ) ( , ) ( , )C C

C C C C C C C V V C C C
B B B m N m N∇ = ∇ + +





 
       (3.17)

where mC and mV are complete and vertical lifts of (0,2) tensor field m on Mn.
From equation (3.9), we have

 
0 00 0

0 0 0 0

0 0 0 0

( )

ˆ ˆ( ( )( ) ) ( ( )( ) )
ˆ ˆ( ( ) , ) ( ( ) , ) .

C C
C C C C

B

C C V V C C

C C C V C V C C

B B

B B B B n
g B B P g B B P
η φ η φ

φ φ

∇ = ∇

− −

+ +






 

   

     

 
 

   

   

 (3.18)

In view of equations (3.16) and (3.17) in the above equation, we get

 

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

( ) ( , ) ( , )

( ) ( , ) ( , )

( ( )( ) ) ( ( )( ) )
( ( ) , ) ( ( ) , ) .

C

C

C C C C C V V C C C

C C C C C V V C C C

C C V V C C

C C C V C V C C

B m N m N

B h N h N

B B B B
g B B P g B B P
η φ η φ

φ φ

∇ + +

= ∇ + +

− −

+ +



   

 

     

 





    

    

   

   

 (3.19)

Making use of equation (3.10) in equation (3.19), we get

 

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0

0 0

( ) ( , ) ( , )

( ) ( , ) ( , )

( ( )( ) ) ( ( )( ) )
( ( ) , )( )

( ( ) , )( ).

C

C

C C C C C V V C C C

C C C C C V V C C C

C C V V C C

C C C V V

C V C C C

B m N m N

B h N h N

B B B B

g B B BP N

g B B BP N

η φ η φ

φ λ

φ λ

∇ + +

= ∇ + +

− −

+ +

+ +



   

 

  



  







    

    

   

 

 

 (3.20)

Comparison of tangential and normal vector fields, we get

 

0 00 0 0 0 0 0

0 0 0 0

( )( ) ( )( )

( ( ) , ) ( ( ) , )

C C
C C C C C C V V C C

C C C V C V C C

B B B B

g B B P g B B P

η φ η φ

φ φ

∇ = ∇ − −

+ +

   


 

   

 

 
     

   

 

0 0 0 0 0 0

0 0 0 0 0 0

( , ) ( , ) ( ( ) , )
( , ) ( , ) ( ( ) , ) .

C C C C C C C C C V

V C C V C C C V C C

m h g B B P
m h g B B P

λ φ

λ φ

= +

= +
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Thus,

 

0 00 0 0 0 0 0

0 0

0 0

0 0

[ , ] ( )( )

( )( )
( )( )
( )( ) .

C C
C C C C C C C C V

V C C

C C V

V C C

B B

B B
B B
B B

η φ

η φ

η φ

η φ

∇ −∇ − = −

−

+

+

 



 



 



 



 
     

 

 

 

 (3.21)

Hence, ∇C induced on Mn is QSSM connection. Thus, the proof is completed.

4. Applications

Let e1, e2, ....., en−1 be (n − 1)-orthonormal vector fields on the submanifold Mn−1. Then the function

 

1

1

1 [ ( , ) ( , )]
2( 1)

n

i i i i
i

h e e k e e
n

−

=

+
− ∑

 

is mean curvature of Mn−1 wrt ∇̇ and

 

1

1

1 [ ( , ) ( , )]
2( 1)

n

i i i i
i

m e e n e e
n

−

=

+
− ∑

is mean curvature of Mn−1 wrt ∇.

Definition 4.1. If h and k are zero, Mn−1 is said to be TG wrt the Riemannian connection ∇̇.

Definition 4.2. Mn−1 is said to be TU wrt ∇̇ if h and k are propotional to g.

Now, we call TMn−1 is TG and TU wrt the QSSM connection ∇C for mC, mV, nC and nV are zero indi-
vidually and are proportional to gC respectively.

Theorem 4.1. In order that the mean curvature of TMn−1 wrt the connection ∇̇C may coincide with that 
of TMn−1 wrt the connection ∇C it is necessary and sufficient that P̃C and P̃V are in the tangent space of 
TMn+1.

Proof: In the view of equations (3.14), we have

 

( , ) ( , ) ( , ) ( , ) ( ) ( ( ) , )
( , ) ( , ) ( , ) ( , ) ( ) ( ( ) , ).

C C C C C C C C C C C C C C C
i i i i i i i i i i

V C C V C C V C C V C C C V C
i i i i i i i i i i

m e e n e e h e e k e e g B e Be
m e e n e e h e e k e e g B e Be

λ µ φ

λ µ φ

+ = + + +

+ = + + +

 



 



Summing up for i = 1, 2, ..., (n − 1) and dividingby 2(n − 1), we get

 

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

C C C C C C C C C C C C
i i i i i i i i

V C C V C C V C C V C C
i i i i i i i i

m e e n e e h e e k e e
m e e n e e h e e k e e

+ = +

+ = +

iff λ = µ = 0.
In the view of equation (3.10), it follows that P̃C = BPC and P̃V = BPV. Thus the vector fields PC̃ 

and PṼ are in the tangent space of TMn−1. Hence, the proof is completed.

Theorem 4.2. The submanifold TMn−1 is TU wrt the Riemannian connection C∇  iff it is TU wrt the 
QSSM connection ∇C.

Proof: From equation (3.14), the proof is simply obtained.
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As an immediate consequence of theorem 4.1 and theorem 4.2, we have the following corollaries 
on hypersurface:

Corollary 4.1. In order that the mean curvature of TMn−1 wrt the connection ∇̇C may coincide with 
that of TMn−1 wrt the connection ∇C it is necessary and sufficient that P̃C and P̃V are in the tangent 
space of TMn+1.

Proof: The proof is trivial.

Corollary 4.2. The hypersurface TMn is TU wrt the Riemannian connection ∇̇C iff it is TU wrt the 
QSSM ∇C.

Proof: The proof is trivial.

5. Weingarten equations for the QSSM connection in the tangent bundle

In this section, Weingarten Equations concerning the QSSM connection ∇̃C on the submanifold TMn−1 
in TMn+1 are investigated.

The Weingarten equations for ∇̇C are presented by

 

0

0

0

0

1 0 0 2

1 0 0 2

2 0 0 1

2 0 0 1

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

C

C

C

C

C V V C C V
B

C C C C C C
B

C V V C C V
B

C C C C C C
B

a N BH l N

b N BH l N

c N BK l N

d N BK l N

∇ = − +

∇ = − +

∇ = − +

∇ = − +





























 

 

 

 

 (5.1)

where HC, HV, KC and KV are complete and vertical lifts of tensor fields H and K of type (1,1) such that

 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

( ) ( , ) ( , )
( ) ( , ) ( , )
( ) ( , ) ( , )
( ) ( , ) ( , ).

C C C C C C C

C C C C C C C

V V C C V C C

V V C C V C C

a g H h
b g K k
c g H h
d g K k

=

=

=

=









   

   

   

   

Making use of (3.3) and (5.1a), we get

 0

0

1 0 0 2 0 1 0 1

1 1 0 0 2

( ) ( ( ) ( ) )

( ) ,

C

C

C C C C C C C C V V C C
B

C C C C C
B

N BH l N B

N BM l N

η ξ η ξ∇ = − + + +

∇ = − +





 









   

 
 (5.2)

where M1X0
C = HCX0

C − ηC(X0
C)ξ1

V − ηV (X0
C)ξ1

C

 0

0

2 0 0 1 0 2 0 2

2 0 0 1

( ) ( ( ) ( ) )

( ) ,

C

C

C C C C C C C C V V C C
B

C C C C C
B

N BK l N B

N BM l N

η ξ η ξ∇ = − + + +

∇ = − +





 









   

 
 (5.3)

where M2X0
C = KCX0

C − ηC(X0
C)ξ2

V − ηV(X0
C)ξ2

C.
Similarly,

 0

0

1 0 0 2 0 1

1 1 0 0 2

( ) ( ( )

( ) ,

C

C

C V V C C V C C V
B

C V C C V
B

N BH l N B

N BM l N

η ξ∇ = − + +

∇ = − +





 









  

 
 (5.4)
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where MVX0
C = HVX0

C − ηC(X0
C)ξ1

V

 0

0

2 0 0 1 0 1

2 2 0 0 1

( ) ( ( )

( ) .

C

C

C V V C C V C C V
B

C V C C V
B

N BK l N B

N BM l N

η ξ∇ = − + +

∇ = − +





 









  

 
 (5.5)

where M2
VX0

C = HVX0
C − ηC(X0

C)ξ1
V.

The equations (5.2), (5.3), (5.4) and (5.5) are Weingarten equations concerning the QSSM connec-
tion in the tangent bundle. We have the following theorem:

Theorem 5.1. The connection ∇̇C induced on the submanifold T (Mn−1) from C∇  of a Riemannian man-
ifold with a QSSM connection. The Weingarten equations concerning the QSSM connection are given 
by (5.2), (5.3), (5.4) and (5.5).

As an immediate consequence of the above theorem, we have the following corollary on 
hypersurface:

Corollary 5.1 The connection induced on TMn from the Riemannian manifold concerning the QSSM 
connection C∇ . The Weingarten equations concerning the QSSM connection ∇̃C on TMn in TMn+1 are 
given by (5.11) and (5.13).

Proof: The Weingarten equations are given in the following form

 0

0

0

0

C

C

C V V C
B

C C C C
B

N BH

N BH−∇

= −

=

∇


















 (5.6)

where for all X0, Y0 on Mn and H is a (1,1)-tensor field of Mn defined by

 gC̃(HCX0
C, Y0

C) = hC(X0
C, Y0

C) (5.7)

 gṼ(HVX0
C, Y0

C) = hV(X0
C, Y0

C) (5.8)

In the view of equation (3.3), we have

 0 0

0

0 0

0 0

( )( ) ( )( )

( )( ) ( )( ) .

C C

C

C C C C C C V V C C
B B

C C C C V V C C
B

N N B N B N

N B N B N

η φ η φ

η φ η φ

∇ = ∇ − −

= ∇ − −

 





 
 

 



 


 

 



 

 
 (5.9)

Put ϕN = −Bξ, where ξ is a vector field on Mn.

 
0 0 0 0(( ) ( ) )C C

C C C C C C V V C C
B BN N B B Bη ξ η ξ∇ = ∇ + +
 




 

 
   (5.10)

Making use of equation (5.7) in equation (5.10), we get

 0

0

0 0 0

0

( ( ) ( ) )

,

C

C

C C C C C C V V C C
B

C C C C
B

N BH B

N BM

η ξ η ξ∇ = − + +

∇ = −





 









  


 (5.11)

where

 MX0
C = HCX0

C − ηC(X0
C)ξV – ηV(X0

C)ξC 

for arbitrary vector field X0 on Mn.
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Similarly,

 
0 0 0( )C C

C V C V C C V
B BN N B η ξ∇ = ∇ +
 




 

 
  (5.12)

Making use of equation (5.7) in equation (5.12), we get

 0 0 0

0

( ( )

,

C
C V V C C C V
B

V C

N BH B

BM

η ξ∇ = − +

= −



 





 


 (5.13)

where

 MVX0
C = HVX0

C − ηC(X0
C)ξV.

The equations (5.11) and (5.13) are Weingarten equations concerning the QSSM connection on TMn 
in TMn+1. Hence, the proof of corollary is completed.

6. Riemannian curvature tensor and Gauss and Codazzi equations for the QSSM 
connection in the tangent bundle

This section deals with the study of Riemannian curvature and equations of Gauss and Codazzi con-
cerning the QSSM connection on TMn−1 in TMn+1.

Let K̃C and KC be the curvature tensors of TMn and TMn+1 concerning C∇  and ∇̇C respectively. Thus

 0 0 0 0

0 0

0 0 0 0 0

0[ , ]

( , ) C C C C

C C

C C C C C C C C C C
B B B B

C C
B B

K B B B B B

B

= ∇ ∇ −∇ ∇

−∇

   

 

   

     
   






   

 

    


 (6.1)

and

 
0 0 0 0 0 00 0 0 0 0 0[ , ]( , ) C C C C C

C C C C C C C C C C C CK = ∇ ∇ −∇ ∇ −∇
     

       (6.2)

Then the equation of Gauss is given by

 

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

( , , , ) ( , , , )
( , ) ( , )
( , ) ( , )
( , ) ( , )
( , ) ( , ).

C C C C C C C C C C

V C C C C C

C C C V C C

V C C C C C

C C C V C C

K B B B BU K B B B BU
h U h
h U h
h U h
h U h

=

+

+

−

−

             

  

  

  

  

where K̃C(B̃X0
C, B̃Y0

C, B̃Z0
C, B̃U0

C) = gC̃(K ̃C(B ̃X0
C, B̃Y0

C, B̃Z0
C, B̃U0

C) and the similar expression for KC(X0
C, 

Y0
C, Z0

C, U0
C) for Mn+1.

The equation of Codazzi is given by

 

0 0

0 0

0 0 0 0

0 0 0 0

0

( , ) ( )

( , ) ( )

( , ) 0.

C C

C C

C C C V C V C C V C

C C C C C C C C C C

C V C C

K B B N B H H

K B B N B H H

K N N B

= ∇ −∇

= ∇ −∇

=
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Let RC̃(B̃X0
C, B̃Y0

C)B̃Z0
C be the Riemannian curvature tensor field of the enveloping manifold TMn+1 

concerning the QSSM connection ∇̃C. Then

 

0 0

0 0 0 0

0 0 0 0

0 0[ , ]

( , ) C C

C C C C

C C C C C C C
B B

C C C C C
B B B B

R B B B B

B B

= ∇ ∇

−∇ ∇ −∇

 

   

    
 

 
  

 

   

   

 

In the view of the equations (3.12), (5.2), (5.3), (5.4), (5.5) and (3.15), we get

 

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 1

( , ) { ( , )

{( ( )) ( ) ( ( )) ( ) , )}
{( ( )) ( ) ( )) ( )

( ( )) ( ) ( )) ( ) , )}
{( ( )) ( ) ( ( )) ( ) , )}

C C C C C C C C

V V V V V C C

V V C C V

V C V C C V

V V V V V C V

R B B B B R

m N
m

N

m N

η φ η φ

η φ η φ

η φ η φ

η φ η φ

=

+ −

+ +

− −

+ −

   

 

 

 

 

     

    

   

    

    

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

{ ( , ) ( , )
( , ) ( , )
( , ) ( , )
( , ) ( , ) }

{ ( , ) ( ) ( , ) ( )
( , ) (

V C C C C C C C V C

V C C C C C C C V C

V C C C C C C C V C

V C C C C C C C V C

V C C C C C C C V C

V C C C C

B m H m H
m H m H
n H n H
n H n H
B m m
m

η η

η

+ +

− −

+ +

− −

− +

−

 



     

     

     

     

     

   0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0 2

0 0 0 0 0 0

) ( , ) ( )}
{ ( , ) ( ) ( , ) ( )}
{ ( , ) ( ) ( , ) ( )
( , ) ( ) ( , ) ( )}

{ ( , ) ( ) ( , ) ( )}

C C C V C V

V C C V C V C C V C C
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V C C C C C C C V C V
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η ξ

η η ξ

η η

η η ξ

η η

−

− −

− +
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− −



 

 

 

 

  

     

     

     

     

0 0

2
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0 0 0 0 0 2
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C

V V V V V C C

V V C C V

V C C V C V

C V V V V C V

C V C C C V
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n

N

n N
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ξ

η φ η φ

η φ η φ

η φ η φ

η φ η φ
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+ +
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0 1
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0 0 1 0
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C C C C V V C C C

C C C V V C

N
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n n N

n n N

l m N m N

n N n
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   0 1
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0 0 1 0 0 1
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( ){ ( , ) ( , )

( , ) ( , ) },

C C

C C C C V V C C C
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N

l m N m N

n N n N
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 (6.3)
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where RC(X0
C, X0

C)Z0
C being the Riemannian curvature tensor of the submanifold TMn−1 with QSSM 

connection ∇C. We have the following theorem:

Theorem 6.1. Let RC(X0
C, X0

C)Z0
C be the Riemannian curvature tensor of submanifold TMn−1 with 

QSSM connection ∇C, then the Riemannian curvature tensor R̃C(B ̃X0
C, B̃Y0

C)B ̃Z0
C ∇̃C of the enveloping 

manifold TMn+1 concerning the QSSM ∇̃C is given by equation (6.3).

Substituting

 R̃C(B̃X0
C, B̃Y0

C, B ̃Z0
C,B̃U0

C) = gC̃(R̃C(B ̃X0
C, B̃Y0

C)B ̃Z0
C,B̃U0

C)

and

 RC(X0
C, Y0

C, Z0
C, U0

C) = gC(RC(X0
C, Y0

C)Z0
C, U0

C).

Then from (6.6) we can easily show that
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0 0 0
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R B B B BU R U
m g H U
m g H U
m g H U
m g H U

=

+

+

−

−

        

  

  

  

  

 (6.4)

 

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0

( , , , ) ( , ) ( ) ( , )
( , ) ( ) ( , ) ( )
{( ( )) ( ) ( ( )) ( )

( ( )) ( ) ( ( )) ( ) , )}
{( ( )) ( ) ( (

C C C C C V C C C C C C C V C

V C C C C C C C V C

V V C C V

V C C V C

C V V
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m
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η η

η φ η φ

η φ η φ

η φ η
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− −

+ +
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  0 0 0)) ( ) , )}V V Cφ  

 (6.5)

The equations (6.4) and (6.5) are known as Gauss and Codazzi equations concerning the QSSM con-
nection in the tangent bundle. We have the following theorem:

Theorem 6.2. Let K ̃ C and KC be the curvature tensors of TMn+1 and TMn−1 concerning C∇  and ∇̇C 
respectively. The Gauss and Codazzi concerning the QSSM connection are given by equations (6.4) 
and (6.5).

The curvature tensor concerning the QSSM connection ∇̃C of TMn is

 

0 0

0 0 0 0

0 0 0 0

0 0[ , ]

( , )
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C C

C C C C
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−∇ ∇ −∇

 

   

    
 

 
  

 

   

   

 
 

By virtue of (3.17), (5.11) and (3.21), we get
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 (6.6)
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where 
0 0 0 0 0 00 0 0 0 0 0[ , ]( , ) C C C C C C

C C C C C C C C C C C CR = ∇ ∇ −∇ ∇ −∇
     

       is curvature tensor of the QSSM 
connection.

As an immediate consequence of the theorem (5.1) and theorem (5.2), we have the following 
corollaries:

Corollary 6.1. Let RC(X0
C, Y0

C)Z0
C be the Riemannian curvature tensor of hypersurface TMn with QSSM 

connection ∇C, then the Riemannian curvature tensor R̃C (B ̃X0
C, B̃Y0

C)B ̃Z0
C ∇̃C of the enveloping mani-

fold TMn concerning the QSSM connection ∇̃C is given by equation (6.6).

Corollary 6.2. Let KC̃ and KC be the curvature tensors of TMn and TMn+1 concerning C∇  and ∇̇C respec-
tively. The Gauss and Codazzi equations con cerning the QSSM connection are similar equations 
obtained from Theorem 6.2.
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[38] K. Suwais, N. Ta¸s, N. Özgür and N. Mlaiki, Fixed Point Theorems in symmetric Controlled M-Metric type Spaces, 

Symmetry, 15 (2023), 1665. https://doi.org/10.3390/sym15091665.
[39] R. Qaralleh, A. Tallafha and W. Shatanawi, Some Fixed-Point Results in Extended S-Metric Space of type (α, β), 

Symmetry, 15 (2023), 1790. https://doi.org/10.3390/sym15091790.
[40] M .Rahim, K. Shah, T. Abdeljawad, M. Aphane, A. Alburaikan, and H. A. E. W. Khalifa, Confidence levels-based p, 

q-quasirung orthopair fuzzy operators and its applications to criteria group decision making problems, IEEE Access, 
1 (2023), 109983-109996. 10.1109/ACCESS.2023.3321876

[41] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker Inc. New York, (1973).


