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Abstract

We consider pseudo-parabolic equations with r(x)-Kirchhoff coefficient and logarithmic nonlinear 
term subject to Dirichlet boundary condions

u m u u u u uut t r x

r x
r x

s xM- - Ñ( )D = -D
( )

( )
( )

( )| | | |.2 ln

Using a method based on differential inequalities, we prove that the solutions become unbounded at 
a finite time T, and, we ascertain an upper limit for this time in the case of negative initial energy. 
Additionally, we determine a lower limit for the time at which blow-up occurs. 
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1.  Introduction

This paper is concerned with the following pseudo-parabolic equation involving an unknown function  
u = u(x,t)

v v M v v v v vt t r x

r x
r x

s x- D - Ñ( )D = ´ ¥-m
( )

( )
( )

( ) , ( , ),2 0 In  in   W  (1)

with homogeneous Dirichlet boundary condition
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v x t( , ) , ( , ),= ¶ ´ ¥0 0on   W  (2)
supplemented with the initial conditions

v x v x x( , ) ( ), ,0 0= Î W  (3)
where W denotes an set of 



n n, ,> 1  with smooth boundary ¶W, D is the Laplace operator, vt v
t r x= ¶
¶

D, ( )  
is the so-called r(x)-Laplace operator which is given by

D = Ñ Ñ( )-
r x

r xdiv v v( )
( ) ,2

and for a,b > 0 we define
M s a bs

v v dx
r x r x

r x r x

( ) ,

.
( ) ( )

( ) ( )

= +

Ñ = Ñ( )
ì
í
ï

îï ò 1
1

W

The logharitmic nonlinearity v v vs x( )-2  ln  plays the role of a source, and the dissipative term Dut is 
a linear strong damping term. The exponents r(.) and s(.) are continuous functions on W  and satisfy

2 < £ £ < £ £ < ¥- + - +r r x r s s x s( ) ( ) ,  (4)
and

2
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-
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= =
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where A, B > 0 and 0 < d < 1.

In recent years, logarithmic nonlinearity appears frequently in partial differential equations which 
describes important physical phenomena (see [10, 11, 32]) and the references therein).

One of the main features of the system (1)-(3) is that the coefficient of Dr(x)u depends on the integration 
of the gradient of the unknown, such equations are usually refrred to as r(x)-Kirchhoff equations or 
non-local equations. When the function r(x) = r = 2, we commonly refer to them as Kirchhoff equations. 
The coefficient of diffusion, denoted as M(.) can depict a potential alteration in the overall condition 
of population density, fluid, or gas resulting from the corresponding movement within the examined 
medium. The investigation of these equations in math began with Kirchhoff’s research [35].

The problem (1)-(3) is not only r(x)-Kirchhoff equations one but also includes logarithmic nonlinearity, 
which is widely used in various fields such as nuclear physics, geophysics, and optics [5, 7, 18]. These 
equations naturally arise in inflation cosmology, physics of semiconductors, and quantum mechanics, 
among other areas [2, 3, 6, 15, 24, 25]. Obviously, if M(s) = m = 1, r(x) = 2, s(x) = s, then the equation 
(1) reduces to the following pseudo-parabolic equation 

v v v v v vt t
s- D - D = -2 ln ,  (7)
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Chen and Tian [9] obtained results of global existence, blow-up at +¥ and asymptotic behavior of solu-
tions for the problem (7). In [8], Cao and Zhao considered the following pseudo-parabolic r-Kirchhoff 
equation  

v v M v v v v vt t r

r
r

s- D - Ñ D = -( ) ,1 ln  (8)

Using the potential well method, they were able to derive the global existence and finite time blow-up 
of the solution for problem (8). In other studies [34], they considered the same pseudo-parabolic 
r-Kirchhoff equation (8) but with the non-local source term v v v vdxs s- -

- ò
1 1 1

W W
,  they successfully 

demonstrated the existence and nonexistence of global solutions and offered adequate criteria for 
the finite time blow-up of solutions. When the damped term is not present (i.e m = 0, Han and Li [21] 
studied the parabolic Kirchhoff equation 

v M v v v vt
s- Ñ D = -( ) ,

2

2 1

and obtained results of global existence, finite time blow-up and asymptotic behavior of the weak 
solution, with subcritical, critical and supercritical initial energy. In other studies [22], Han et al. 
considered the same problem treated in [21], and they obtained an upper and a lower bound of the 
blow-up rate. Later, He et al. [23] extended the results of [21, 22] to the parabolic r-Kirchhoff equation 

v M v v v vt r

r
r

s- Ñ D = -( ) ,1  (9)
and described the impact of the r-Laplacian. On the other hand, in the recent monograph [29], Pan 
et al. studied the following problem 

v v div v v v v vt t
r x s x- D - Ñ Ñ =- -( ) ,( ) ( )2 2 ln  (10)

which is just the M(s) = 1 case of (1)-(3). Using the energy functional and the classical potential well, 
they were able to derive the global existence and blow-up outcomes of weak solutions with arbitrarily 
high initial energy to the problem (10). In other studies, Lakshmipriya et al. [28] considered the same 
pseudo-parabolic r(x)-Laplacian equation (10) but with the source term v v v v vs x h( ) ,- -+2 2 ln  the local 
existence of a weak solution was achieved by employing the Faedo-Galerkin approximation method, 
alongside the utilization of differential inequality techniques to establish both an upper bound and a 
lower bound for the blow-up rate. It is worth mentioning some other literature concerning the theory 
of our type equation, namely, several studies [4, 8, 10, 11, 13, 14, 19, 20, 26, 30, 31, 32, 33].

Motivated by previous research, this study aims to establish an upper bound for blow-up time based 
on certain conditions of variable exponents and initial data. Additionally, lower bounds on blow-up 
time will be provided under different conditions for the given problem.

The outline of this paper is as follows. Definitions of L p(.)(W) and W 1,p(.) (W) as well as properties are 
recalled in section 2. The blow-up of solutions to the problem (1)-(3) is studied in section 3 and 4.

2.  Function Spaces and Lemmas

Let W be a domain of Rn and p : W ® [1,¥) be a measurable function. The Lebesgue space Lp(.) (W), 
wherein p(.) is a variable exponent is precisely delineated by its definition.

L

v

p(.) ( ) { : \

(

W W W= ®n n

l

  is measurable in 

               and xx dx
p x

)
( )

Wò < ¥ > for some }.l 0

The Luxemburg-type norm is given by 

n l n
lp

p xx dx
(.)

( )

inf : ( ) .= > £
ì
í
ï

îï

ü
ý
ï

þï
ò0 1
W
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Variable exponent Lebesgue spaces are similar to classical Lebesgue spaces in various ways. They are 
Banach spaces, obey the Hölder inequality, and are reflexive if 1 < p(x) < ¥. The Sobolev space W 1, p(.) 

(W) which features a variable exponent is precisely characterized by its definition. 
W L Lp p p1, (.) (.) (.)( ) ( ) : ( ) .W W W= Î Ñ Ñ Î{ }n n n exists and 

This is a Banach space with respect to the norm
n n n

W p pp1, (.) ( ) (.) (.)
.

W
= + Ñ

The space W p
0
1, (.) ( )W  can be characterized as the closure of C0

¥ ( )W  in W 1, p(.) (W).

In the constant exponent case, the space W p
0
1, (.) ( )W  has various definitions. Nevertheless, these definitions  

align when conditionin (6) is satisfied (See [12, 16]).

Lemma 2.1 (Holder’s inequality, [12]) Let a and b be elements of the interval [1,¥) such that 
1 1 1 1

a b
j f jfa b+ = Î Î Î. ( ) ( ), ( ),  and   If L L then LW W W  with 

jf j f
b1

£
a

.

By taking a = b = 2, we obtain the Cauchy-Schwartz inequality 
jf j f

1 2 2
£ .

Lemma 2.2 (Poincare’s inequality [12]) If it is assumed that p(.) satisfies (6), then, 
v C v v W

p p
p

(.) (.)
, (.), ( ),£ Ñ Î 0

1 W

where C > 0 is a constant that depends only on p(.) and W.

Lemma 2.3 (Embedding Proprety [12]) Let W Ú Rn be a bounded domain with a smooth boundary 
¶W. If q2C( W ) such that q ≥ 2 and q(x) < 2* in W  with  

2
2

2* ,

,
= -
¥ £

ì
í
ï

îï

n
n

if

if

     n > 2,

            n  2,

we can establish a continuous and compact embedding H Lq0
1( ) ( ).(.)W W®  Therefore, it follows that 

there exists a positive constant C such that  
v C v
L Hq (.) ( ) ( )

.
W W
£

0
1

Lemma 2.4 ([27, 10]) For all u2[1,¥).
ln u

h

h

£ v
e

,

the variable h represents a positive numerical value. 

3.  Upper Bound for Blow-up Time

Firstly, we begin by considering the existence and uniqueness of a local solution for problem (1)-
(3). This can be achieved by combining the standard Galerkin’s approximation with the Aubin-Lions 
compactness theorem, as explained in [17]. The proof of local solutions to a p(x,t)-Kirchhoff equation, 
which includes the equation (1) as a specific instance, can be found in [17]. For simplicity, we set m = 1.

Theorem 3.1 Let v W Lr s
0 0

1 0Î Ç, (.) (.)( ) ( ) \ { }W W  be given. Assume that the conditions on s(x) and r(x), 
given in Section 1, hold. Then, the problem (1)-(3) has a unique local solution u on [0,T)
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for some T > 0, satisfying u(0) = u0, and for any w W Lr sÎ Ç0
1, (.) (.)( ) ( ),W W  

( ) ( ) ( )( , ), , ( )

( ) ( )v w v w M v v u wt t r x

r x r x+ Ñ Ñ + Ñ Ñ Ñ Ñ-2

= -( , ),( )v v v ws x 2 ln  (11)

where M v a b v a b
r x

v dx
r x

r x

r x

r x r x( ) (
( )

).
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W

Moreover, the following alternatives hold
i) T = +¥  or
ii) T v v

t T
< +¥ + Ñ = +¥

®
 and lim .

2

2

2

2

Remark 3.2 It is easy to see, under the condition (4) that v v vs x( ) ,-2 ln

Ñ Ñ Î-v v Lr x( ) ( ),2 2 W  hence ( ,( )v v v ws x -2 ln  and ( , )( )Ñ Ñ Ñ-v v wr x 2  make sense in formula (11). 

The decay of the energy of the system (1)-(3) is given in the following lemma:

Lemma 3.3 For v W Lr sÎ Ç0
1 0, (.) (.)( ) ( ) \ { }W W . The energy functional E of the problem (1)-(3) is a decreas-

ing function. Here  

E t
v v
s x

dx a
v

r x
dx b v

r x
dx

s x r x r x

( )
( ) ( ) ( )

( ) ( ) ( )
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ø
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v
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s x( )

( )W  (12)

Proof. It is enough to multiply the equation (1) by ut and integrate over W, to obtain 

W W W

W

Dò ò ò
ò

- - Ñ( ) Ñ Ñ( )
=

( )
( ) ( )-u u u u u u u ut t t t r x
r x r x

tdx dx M div dx 

2
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ø
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( )
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( ) ( )
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W

Then, we use the generalized Green formula and the boundary conditions, to find 
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So 
¢ ( ) = - + Ñ( ) £òE t dxtW

u u2 2 0.  (13)

Theorem 3.4 Assume that (4),(5), and (6) hold. Let u be a solution of (1)-(3) and assume that 
u0 0

1 0Î ( ) Ç ( ) { }W Lr s, (.) (.)W W   satisfies 

W W Wò ò ò
( ) ( ) ( )

( ) - ( )
æ

è
ç
ç
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u u Ñu Ñu0 0 0 0
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s x r x r x
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))
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- ( ) ³ò
( )

W

u0
2 0
s x

s x
dx ,  (14)

then the solution u blow-up at finite time Tmax > 0 in H0
1 W( ) -norm. Additionally, there exists an upper 

bound for the time as determined by 

T
G
r K

r

max ,£
( )( )
-( )
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2 0
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where K is a suitable positive constant is given later and the constant G
H

0 0
2

0
1( ) = ( )u
W
.  

Proof. Let us define the auxiliary function 

G t v v dx v dx
H( ) = = +( ) ò ò0

1

2 2 2

W W W
Ñ  (16)

Our goal is to show that G satisfies a differential inequality which leads to blow-up in finite time.

Multiply (1) by u and integrate over W to get 

W W Wò ò ò+ = - ( )( )( )
( )
( ) ( )vv dx v v dx v v M v v dxt t

s x
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.  (18)

By (14) and the fact that E t E E t( ) £ ( ) ( ) £( )0 0'  (See Lemma 3.3), we have 
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Using (18) and (19), we have 
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Adopting the Cauchy-Schwartz inequality on the last term of the right-hand side of (20), we can easily 
conclude that 

W W
Wò ò( ) ( )( ) £ ( )Ñ Ñv dx v dxr x r x2 2
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Then (20) becomes 
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It follows from (5) that 
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As s+ > 0, we may drop the last term of (21) to get 

G t C v dxr x' ,( ) ³ ò ( )
0 W

Ñ  (22)

where C as
r s0 2 1 1 0= -
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ø
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Using the fact that v C v r2
£  for all r > 2, we have 
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1
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ø
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Here the sets W- and W+ are defined as follows: 

W W W W- += Î <{ } = Î ³{ }x v x v: ,� :Ñ Ñ1 1 .
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The Poincare inequality gives Ñ ³v v
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2
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2l , where l is the first eigenvalue of (–D). Therefore, we get 
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It follows from (23) and (24) that 
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2 2

2 3 2
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+ ( )min C C v
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2

1 0
1, l

l W

= ( )C G t4 .  (25)

Since we have G t G( ) ³ ( ) >0 0  (because G t' ( ) ³ 0),  and from (25), we get 
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G t C G t C G G t C G t C Gr r'  or ( )( ) ³ ( ) ³ ( ) ( )( ) ³ ( ) ³ ( )+ -
2

4 4
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4 4

2 2
0

2 2
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This implies that 
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' ' .( ) ³ ( )( ) ( ) ³ ( )( )
+ -

5
2

5
20 0 or 

Now put b = ( )( ) ( )( )ì
í
î

ü
ý
þ

+ -

min C G C G
r r

5
2

5
20 0, ,  then we get 

G t' ( ) ³ b ,  (27)
(25) implies that 

G t G t C G tr r r' '( )( ) + ( )( )æ

è
ç

ö

ø
÷ ³ ( )- +

-
-

æ
è
ç

ö
ø
÷

2 2 1 1

41 .  (28)

From (4), we observe that 2 1 1 0
r r+ -

-
æ

è
ç

ö

ø
÷ £ . Making use (27), we get 

G t K G t
r

' ( ) ³ ( )( )
-

2 ,  (29)

where K C

r r

r

=

+

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

+ -

-

-
æ

è
çç

ö

ø
÷÷

4

2 1 1

2

1 b

 is a positive constant.

Integrating (29) from 0 to t gives 

G t

G
r Ktr r

( ) ³
( )( ) +

-( )æ

è
çç

ö

ø
÷÷

- -
-- -

1

0
2

2
1

2

2
2

,

which implies that G t( ) ® ¥  as t T® max  in H0
1 W( ) ,  where 

T
G
r K

r

max £
( )( )
-( )

-æ
è
ç

ö
ø
÷

-

-

2 0
2

2
2

.

Consequently, the solution to the problem (1)-(3) blows up in finite time.

Hence the proof is completed.

4.  Lower Bound for Blow-up Time

In this section, we determine a lower bound for the blow-up time of the problem (1)-(3).

Theorem 4.1 Suppose that the conditions on s x( ) ,  r x( ) ,  and A, given in section 1, hold. Additionally, 

assume that 2 < < ¥+s  if n £ 2,  2 2
2

< <
-+s
n

n
if n > 2,  v W Lr s

0 0
1Î ( ) Ç ( )( ) ( ), . .W W  and u represents a 

blow-up solution of problem (1)-(3), then, it is possible to establish a minimum estimate for the blow-up 
time Tmin  in the following manner 
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T
C s

G
s

min 
1 1

2
0 2

1

a h

h

+ -( ) ( )( )
+

-
+

++ ,  (30)

where C,h  are a positive constants, a  is the optimal constant satisfying the Sobolev embedding 

inequality v v
L Hs+ ( ) ( )£

W W
a

0
1  and G v

H
0 0

2

0
1( ) = ( )W .  

Proof. Consider G t( )  as in (16) G t v
H( ) = ( )0

1

2

W
.

Multiply (1) by u  and perform the process of integration over the domain W to get 

W W W Wò ò ò ò+ Ñ Ñ = - + Ñ( ) Ñ( )
( )
( ) ( )vv dx v v dx v v dx a b v v dxt t

s x

r x

r x r xln .

A direct differentiation of G t( )  yields 

G t vv v v dxt t' ( ) = + Ñ Ñ( )ò2 W

= - + Ñ( ) Ñé
ëê

ù
ûúò ò( )

( )
( ) ( )2

W W
v v dx a b v v dxs x

r x

r x r xln .

Then 
¢ ( ) £ ò ( )G t v v dxs x2

W
ln .  (31)

Defining the sets 
W W W W+ -= Î ³{ } = Î <{ }x v x v: : .1 1 and 

Thus, we have 

W W Wò ò ò( ) ( ) ( )= +
+ -

v v dx v v dx v v dxs x s x s xln ln ln

£
+
ò ( )
W
v v dxs x ln

due to the negativity of the term 
W-ò

( )v v dxs x ln .

Since we have v v e- -£ ( )h hln 1  for all h > 0  and u ≥ 1 (See Lemma 2.4), we can deduce 

W W+ +

+ò ò( ) £v v dx v v dxs x sln ln

£ ( )- +

+

+òe dxsh u h1

W

£ =ò
+

+

++

+

+C dx Cs

s

s

W
u uh

h

h  (32)

Thus, the combination of (31) and (32) implies that 
G t C

s

s' ( ) £ +

+

+

+2 u
h

h .  (33)

Using Sobolev embedding (See Lemma 2.3), we have 

u a u
h

h h

+

+

( )
+

+

+ +£
s

s

H

s

0
1 W

,

where a  is the corresponding embedding constant. Therefore, (33) becomes 

G t C G t
s

' ( ) £ ( )( )
+ +

2 2a
h

.
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By performing integration on both sides of the last inequality over the interval 0,T( ) , we obtain. 

G

G T

s
d

C
T

0
22

( )
( )

+ò +
£x

ax
h .

If u  blow-up in H0
1 -norm, then we establish a lower bound for Tmin  by the form 

T d

C
G smin ³ ( )

¥

+ò +0
22

x

ax
h ,

Clearly, the integral is bound since exponents h + >+s 2  and 

T
C s

G
s

min 
1 1

2
0 2

1

a h

h

+ -( ) ( )( )
+

-
+

++

which is the desired result.
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