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Abstract
Topological structures defined in the context of multisets, a set that allows multiple occurrences of 
objects, are referred to as M-topological spaces. This article introduces the concept of maximal and 
minimal open submsets in M-topological spaces. The role of whole elements and part elements in 
maximal open and minimal open submsets and their uniqueness, together with the topological sit-
uation in which an open submset becomes both maximal open and minimal open, is analysed. Some 
conditions for disconnectedness in M-topological spaces are obtained in light of the fact that the exis-
tence of a non-empty proper clopen submset is not enough to establish the disconnectedness of an 
M-topological space.
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1. Introduction

Two basic requirements in any type of mathematical analysis are precision and accuracy. Often, this 
lacks in many real-world problems, and imprecision, ambiguity, and repetition are abundant there. 
Deviations from the conventional way of logic has always resulted in fruitful structures in dealing 
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with such scenarios. Predominant among them are fuzzy sets, rough sets, and soft sets, where each 
has its roots in violating one or more orthodox schools of thought [1–3]. Duplicates occur naturally 
at various stages of information retrieval, and this is the situation where the need for multisets 
occurs. Multisets are sets like associative containers where we relax the condition of distinctness 
from the set structure. Multisets (in short, msets) or bag is a collection of objects in which repetition 
is allowed. Various studies on multisets have been done by a number of authors [4–9].

The branch of topology in mathematics formalises the study of mathematical objects called topo-
logical spaces and their qualitative properties, which do not change under certain types of transfor-
mations called continuous mappings. Furthermore, multisets rather than classical sets are a more 
appropriate option in many real-world scenarios where the objects being studied are non-distinct. 
Hence, topology defined on multisets (M-topology) is very useful in the sense that similarities and 
dissimilarities among universes that are multisets can be measured more efficiently.

The study of topological structures on multisets can be seen in a series of papers by Girish and 
John [10, 11, 4, 5] and by Rajish and John [12–14]. Developed by Pawlak [2], rough set theory pro-
vides tools for dealing with incomplete or imprecise information. A rough multiset is an extension of 
rough set theory to the realm of multisets, which are collections where elements can appear multiple 
times. In their study, Girish et al. [15, 16] investigated Pawlak’s rough set theory within the frame-
work of multiset topology. By replacing the traditional universe with multisets, they employoed a 
multiset-induced topology to generalize the concept of rough multisets, offering a broader and poten-
tially more nuanced understanding. The importance of M-topology is underscored by the recent surge 
in research, reflected in the numerous and diverse results obtained by various authors [17–21]. 

In 2001, Nakaoka and N. Oda [22, 23] introduced the concepts of minimal open sets and maximal 
open sets in general topology. They studied the relations between these concepts and its connection 
with the similar concepts defined in terms of closed sets. Further, minimal open sets and maximal 
closed sets appear in spaces which are locally finite, such as the digital line [24, 25].

This paper is an attempt to introduce minimal open submsets and maximal open submsets in 
M-topological spaces, discuss how they differ in M-topological spaces, and describe the properties 
satisfied by the submsets of these categories in M-topological spaces. Further, it’s relation with the 
disconnectedness of an m-space is also analyzed.

The results outlined in the paper can be summarised as follows: In Section 2, all the basic defi-
nitions and notions needed for further discussion is collected. Section 3 introduces the concepts of 
minimal open submsets and maximal open submsets in M-topological spaces. It defines the concept 
of whole core and whole complement of a submset and analyzes their role in M-topology in connec-
tion with the maximal and minimal open submsets. Further it discusses the M-topological situations 
in which there is only one maximal open submset. It studies the role of maximal and minimal open 
submsets in connectedness of a M-topological space. Establishes a relation with the count of maxi-
mum possible maximal open submsets for an M-topological space with the cardinality of core of a 
maximal open submset. Also, we explore how they behave in both of the two subspace mtopologies of 
a submset. The properties satisfied by the closure of a maximal open submset and the interior of the 
complement of a maximal open submsets are also studied. The existence of a submset which is both 
maximal open and minimal open restricts the M-topology on it and studied all possibilities.

2. Preliminaries

In this section, we give the ineluctable definitions, concepts, and developments discussed in [12], 
[24], [11], [25] and [26] that are necessary for our study.

Definition 2.1. [10] For any ordinary set Y, an mset B drawn from the set Y is a function, Count B or 
CB and is given by CB : Y → N, where N = {0, 1, 2, 3, ...}.
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We denote the number of occurrence of an element y in the mset B by CB(y). We can also call it as 
the multiplicity of the element y in B.

If Y = {y1, ..., yr} and the multiplicity or count of yi in B is mi, then we represent mset B as B = {m1/
y1, m2/y2, ..., mr/yr}.

If the number of occurrence of an element in B is zero, we exclude that element in this 
representation.

Example 2.2. Let Z = {x, y, z}, then B = {9/x, 8/y} is an mset drawn from Z.

Let A and B be two msets drawn from the same ordinary set Z. Then the operations on mset are 
defined as follows:

• A = B ⇔ CA(z) = CB(z), ∀z ∈ Z.
• A ⊆ B ⇔ CA(z) ≤ CB(z), ∀z ∈ Z.
• If E = A ∪ B ⇔ CE(z) = max{CA(z), CB(z)}, ∀z ∈ Z.
• If E = A ∩ B ⇔ CE(z) = min{CA(z), CB(z)}, ∀z ∈ Z.
• If E = A ⊕ B ⇔ CE(z) = CA(z) + CB(z), ∀z ∈ Z.
• If E = A ⊖ B ⇔ CE(z) = max{CA(z) − CB(z), 0}, ∀z ∈ Z, where ⊕ is the mset addition and ⊖ is the 

mset subtraction.

Definition 2.3. [10] The support set or root set of an mset B drawn from an ordinary set Z, denoted by 
B*, is the subset of Z given by B* = {z ∈ Z: CB(z) > 0}.

Definition 2.4. [10] The ordinary set Z which we consider for the construction of msets is called its 
domain. We denote the family of all msets drawn from Z such that the multiplicity of each element is 
not more than w by [Z]w.

The set of all msets drawn from Z such that there is no limit on the number of occurrences of an 
element is denoted by [Z]∞.

Definition 2.5. [10] If count of every element of the domain Z is zero in an mset, then it is called the 
null mset or the empty mset. i.e., an mset N is empty if and only if CN (z) = 0, ∀z ∈ Z.

Definition 2.6. [12] Let N be an mset and M be a partial whole submset of M, then x ∈ N is called 
whole element of N if CN (x) = CM (x) and it is called a part element of N if CN (x) < CM (x).

The concept of submset in mset theory is defined in terms of the values of count function and 
hence there are several types of submsets as follows:

Definition 2.7. [10] If the count of every element of a submset C of D is equal to that of D, i.e., each 
element has full multiplicity as in D, then C is called whole submset of D.

Definition 2.8. [10] If count of atleast one element of the submset C of D is having full multiplicity as 
in D, then C is called partial whole submset of D.

Definition 2.9. [10] If C ⊆ D with support sets of C and D are equal, then C is called a full submset 
of D.

Definition 2.10. [12] Let N be an mset and C be a partial whole submset of N, then y ∈ C is called 
whole element of C, if CC(x) = CN (x) and it is called a part element of C if CC(x) < CN (x).

Definition 2.11. [10] (Power Mset) Let C be an mset. The power mset of C,denoted by P(C), is the col-
lection of all submsets of C. That is, D ∈ P(C) if and only if D ⊆ C.

Definition 2.12. [10] The power set of C is the support set of P(C) and is denoted by P*(C).

Now we list the definition of M-topology and a few concepts in M-topological spaces that are 
needed for our work.
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Definition 2.13. [10] Let N be an mset and τ ⊂ P*(N). Then τ is an M-topology on N if it satisfies the 
following three conditions:

(1) ∅, N ∈ τ.
(2) the operation mset union is closed in τ.
(3) the operation finite mset intersection is closed in τ.

Let N be an M-topological space with M-topology τ, then a submset V of the mset N is said to be 
open, if V belongs to the collection τ.

Definition 2.14. [11] Let N be an M-topological space with M-topology τ and M ⊆ N. Then the collec-
tion τM = {M ∩ U ; U ∈ τ } is an M-topology on M. The M-topology τM on the submset M is called open 
subspace M-topology or subspace M-topology on M. In this case, M is an M-topological subspace of N 
and the open submsets of M with respect to subspace M-topology on M are obtained by intersecting 
open submsets of N with M.

Definition 2.15. [11] (Closed Submset) A submset F of an M-space N is said to be closed if the mset 
complement of it is open, i.e., N ⊖ F ∈ τ.

Definition 2.16. [10] Let E be a submset of an M-topological space M in [Y ]w.

• The interior of the submset E is defined as the mset union of all submsets which are open in M 
and contained in E, and we denote the interior of E by int(E). i.e., Cint(E)(y) = C∪H(y) where the 
mset union is over all H which are open in M and H ⊂ E.

• The closure of the submset E is defined as the mset intersection of all submsets which are closed 
in M and containing E. We denote the closure of E by cl(E). i.e., Ccl(E)(y) = C∩K(y) where the mset 
intersection is over all K which are closed in M and E ⊂ K.

Definition 2.17. [12] Let A be a submset of an M-topological space N with M-topology τ. The closed 
subspace M-topology on A is defined by τc = {A ⊖ (A ∩ Uc) : U is open in N }.

Definition 2.18. [12] Let N be an mset and M be a submset of N, then x ∈ M is called whole element 
of M if CM (x) = CN (x) and it is called a part element of M if CM (x) < CN (x).

Example 2.19. Let N = {10/x, 10/y, 10/z} be an mset with M-topology τ = {N, ∅, {9/x, 8/y, 7/z}, 
{2/y, 2/z}}. Then M = {5/x, 3/y, 6/z} is a submset of N and the open subspace M-topology on M is  
given by

 τo = {M ∩ N, M ∩ ∅, M ∩ {9/x, 8/y, 7/z}, M ∩ {2/y, 2/z}}
 = {M, ∅, {2/y, 2/z}}

The closed submsets of N are N ⊖ N = ∅, N ⊖∅ = N, N ⊖{9/x, 8/y, 7/z} = {1/x, 2/y, 3/z} and N ⊖ 
{2/y, 2/z} = {10/x, 8/y, 8/z}.

By taking intersection of these closed submsets with M, we get the submsets ∅, M, {1/x, 2/y, 3/z}.
Again, by taking complements of the above submsets in M, we get

 τc = {M, ∅, {4/x, 1/y, 3/z}} ≠ {M, ∅, {2/y, 2/z}} = τo.

Note that the open subspace M-topology on M is different from Closed sub-space M-topology on M.
Take E = {3/x, 3/y, 3/z} which is a submset of N. Then the largest open submset contained in E is 

{2/y, 2/z}. Therefore int(E) = {2/y, 2/z}.
Now, the smallest closed submset containing E is {10/x, 8/y, 8/z} and cl(E) = {10/x, 8/y, 8/z}.
Consider P = {10/x, 6/y, 3/z} as a submset of N, then x is a whole element of P and y and z are 

part elements of P.
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3. Maximal and minimal open submsets in M-topological spaces

This section introduces the concepts of maximal open submsets and minimal open submsets in 
M-topological spaces and also we discuss several properties and characteristics of these sets in 
M-topological spaces.

Definition 3.1. Let N be an mset with τ as an M-topology on it. A proper nonempty open submset U 
of N is called a maximal open submset of N if there is no proper open submsets properly containing U.

Definition 3.2. Let N be an mset and τ be an M-topology on it. A nonempty open submset U of N is 
called a minimal open submset of N if there is no non-empty open submset properly contained in U.

Example 3.3. Let N = {8/c, 8/d} and τ = {N, ∅, {4/c, 8/d}, {8/c, 4/d}, {4/c, 4/d}}. Then, τ is clearly 
an M-topology on N. Moreover, {4/c, 8/d} and {8/c, 4/d} are maximal open submsets and {4/c, 4/d} 
is a minimal open submset.

Definition 3.4. Let A be a subset of an mset N. Then the whole core of A is the submset of all whole 
elements in A with full multiplicity and it is denoted by Ã.

Definition 3.5. Let A be a submset of an mset N. The mset complement of whole core of A in N is 
called whole complement of A and is denoted by Aw.

Here both the whole core and the whole complement of a submset are whole submsets. So a 
submset A of N is a whole if and only if Ã = A. If A is a whole submset, then the complement opera-
tion and the whole complement operation coincides. Hence Aw = Ac, for some whole submset A.

Theorem 3.6. If V and U are open submsets of an M-topological space N with V being maximal open, 
then either U ⊆ V or V ∪ U = N. Hence part elements of V are whole elements in any other open subm-
sets U not contained in V. In general V w ⊆ U for any open submset U ̸⊆ V.

Proof. Given that V and U are open submsets. Then V ∪ U is an open submset containing V. But 
since V is maximal open, the only open submsets containing V are V and N. So V ∪ U is V or N. If V ∪ 
U is V, then U ⊆ V. Hence, the only possibilities are V ∪ U = N or U ⊆ V. If y ∈ V w, then y is either a 
part element of V or not an element of V. In both cases, CV (y) < CN (y). If U ̸⊆ V, then the only possi-
bility is V ∪U = N. Therefore, CV ∪U (y) = CN (y), i.e., max{CV (y), CU (y)} = CN (y). Since y is an element 
of V w, CV (y) < CN (y), and it follows that CU (y) = CN (y). Hence, y is a whole element of U and V w ⊂ U.

Theorem 3.7. If V and U are open submsets of an M-topological space N with V as a minimal open, 
then either V contained in U or V and U are disjoint. Hence any two distinct minimal open submsets 
are always disjoint.

Proof. By assumption, V and U are open submsets. Then V ∩ U is an open submset contained in V. 
Since V is minimal open, the only open submsets contained in V are V and ∅. So V ∪ U is either V or 
∅. If V ∩ U is V, then V ⊆ U. Therefore the only possibilities are either V ∩ U = ∅ or V ⊆ U. If V and 
U are two distinct minimal open submsets, then V ⊆ U is not possible. Hence the the only possibility 
is V ∩ U = ∅.

Theorem 3.8. Let V be maximal open submset of an M-topological space N and y ∈ V w. If there is no 
proper open submsets in which y appears as whole element, then V is the only maximal open submset 
of N and V contains all proper open submsets of N.

Proof. Let y be an element of V w. Suppose U is a proper open submset of N. Then V ∪ U is an open 
submset containing V and is contained in N. By assumption, y is not a whole element of U and hence 
CU (y) < CN (y). Then y ∈ V w ⇒ y is a part element of V or not an element of V. In either of the cases, 
CV (y) < CN (y). Hence max{CU (y), CV (y)} < CN (y) and V ∪U ≠ N. This follows that the only possibility 
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is V ∪ U = V. Consequently U ⊆ V and thus every proper open submset U is contained in V. Therefore 
V is the only maximal open submset.

Theorem 3.9. If the union Pτ of all proper open submsets of an M-topological space N is not equal to 
N, then N has one and only one maximal open subm-set.

Proof. Let Pτ be the union of all proper open submsets of N. If Pτ ≠ N and Pτ contains all proper open 
submsets of N, then there is no proper open submset of N which properly containing Pτ. Hence Pτ is 
the only maximal open submset of N.

Theorem 3.10. If V is a maximal open submset of N without whole elements (Ṽ = ∅), then V is the 
only maximal open submset of N. Consequently V is the union Pτ of all proper open submsets of N.

Proof. Assume that V is a maximal open submset of N and V has no whole elements. Then for every 
open submset U of N, V ∪ U is an open submset containing V and contained in N. Since V is maximal 
open, either V ∪U = N or V = V ∪ U.

If V ∪ U = N, then max{CV (y), CU (y)} = CN (y), ∀y ∈ N. Since V has no whole elements, CV (y) < CN (y) 
and hence CU (y) = CN (y), ∀y ∈ N ⇒ U = N. So U is not proper, hence it cannot be maximal open. Now 
the only possibility is V = V ∪ U. Then U ⊆ V and is a proper open submset of N. So every proper open 
submset U is contained in V and V itself is also a proper open submset. Hence Pτ = V and V is the 
only maximal open submset.

Corollary 3.11. If Pτ = N and V is maximal open submset, then V has some whole elements. i.e., Ṽ ≠ 
∅. If V and U are two distinct maximal open submsets of N, then Ṽ ∪ Ũ = N.

Proof. By theorem 3.10, if V has no whole elements, V is the only maximal open submset and Pτ = V. 
So V must have some whole elements.

If V and U are two distinct maximal open submsets, then V ∪ U is an open submset containing 
both V and U. Since V and U are maximal open submsets, the only possibility is V ∪U = N and hence 
max{CV (z), CU (z)} = CN (z),∀z ∈ N. This implies that, CV (z) = CN (z) or CU (z) = CN (z),∀z ∈ N and for 
every z ∈ N, either z ∈ Ṽ or z ∈ Ũ. Hence Ṽ ∪ Ũ = N.

Definition 3.12. An M-topological space N is said to be disconnected if there exist two nonempty 
 disjoint whole open submsets H and G such that H ∪ G = N.

Lemma 3.13. If K and L are proper submsets of N and K ∪ L = N, then each element of N is a whole 
element of either K or L.

Proof. Given that K ∪ L = N. Then, max{CK(z), CL(z)} = CN (z),∀z ∈ N. Hence either CK(z) = CN (z) or 
CL(z) = CN (z),∀z ∈ N. This implies that z is either a whole element of K or a whole element of L. 
Hence z is either an element of K̃ or an element of L̃  and we get N = K̃ ∪ L̃ .

Lemma 3.14. If K and L are proper submsets of N with K ∪ L = N and K ∩ L = ∅, then K and L are 
whole submsets of N and K = N ⊖ L.

Proof. We have, K ∪ L = N and K ∩ L = ∅. Then, for a particular z in N, max{CK(z), CL(z)} = CN (z) and 
min{CK(z), CL(z)} = 0 and the count in one among them is CN (z) and in the other one is zero. i.e., for 
a particular z, it appears as a whole element of one among them and z is not an element of the other 
one. Therefore K and L are whole submsets of N and complement to each other.

Theorem 3.15. If L is a minimal open submset and K is a maximal open submset of an M-topological 
space N, then either L ⊆ K or K is a whole submset of N and the space N is disconnected.
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Proof. If we consider the property of K as a maximal open submset of N, then one among the follow-
ing is true for any open submset L of N:

(a) L ∪ K = N or (b) L ⊆ K.
 On the otherway, If we take L as a minimal open submset of N, then one of the following is 

true for any open submset K of N:
(c) L ∩ K = ∅ or (d) L ⊆ K.
 Now, (a) & (d) ⇒ K = N, which is not possible. Again, (b) & (c) ⇒ L = ∅, also not possible.
 By considering (b) & (d) ⇒ L ⊆ K.
 The only combination remaining is (a) & (c), i.e., L ∪ K = N and L ∩ K = ∅. Then K = N ⊖L 

and K and L are open whole and hence K is a whole clopen submset of N and the space N is 
disconnected.

Corollary 3.16. If there exists a minimal open submset L which is not a submset of a maximal open 
submset K of an M-topological space N, then L and K are complements to each other and the space N 
is disconnected.

Proof. Proof is straight forward.

Theorem 3.17. If a minimal open submset K of an M-topological space N is maximal open also, then 
either this submset is the only proper nonempty open submset of N or K is a whole submset of N and 
the space N is disconnected. If K is whole submset, the only proper nonempty open submsets of N are 
K and Kc.

Proof. Suppose the minimal open submset K of N is maximal open and L is a nonempty proper open 
submset of N. Then, L∪K is an open submset of N containing K. Since K is maximal open, the only 
open submsets containing K are K and N. this implies that either L ∪ K = K or L ∪ K = N.

If L ∪ K = K, then we have L ⊆ K and by the minimality of K, the only open submsets contained 
in K are ∅ and K. Therefore L = K or L = ∅. By assumption, L is nonempty and the only possibility is 
L = K. Hence, the only nonempty proper open submset is K.

Now, consider the case L ∪ K = N. Then, L ∩ K is an open submset contained in K and since K is 
minimal open, the only open submsets contained in K are ∅ and K. Therefore, either L ∩ K = ∅ or L ∩ 
K = K.

when L ∩ K = K ⇒ K ⊆ L. Since K is maximal open, we get L = K or L = N. But by assumption,  
L ≠ N and hence the only possibility for L is K.
Also, L ∩ K = ∅ ⇒ L = N ⊖ K, since L ∪ K = N.

Thus we have two possibilities for L, either L = K or L = N ⊖ K. This implies that, K and Kc are 
the only proper nonempty open submsets of N. Moreover, they are whole and clopen submsets of N 
and the space N is disconnected.

If K is both maximal open and minimal open, then the only possible M-topologies on N are {∅, K, 
N } and {∅, K, Kc, N }.

Corollary 3.18. If a minimal open submset K of an M-topological space N is maximal open and F is a 
closed submset of N, then either K = N ⊖ F or K is a whole submset of N and K = F.

Proof. Suppose a minimal open submset K of an M-topological space N is maximal open and F is a 
closed submset of N. Then N ⊖ F is an open submset of N. Now, by theorem 3.17, the only possible 
nontrivial open submsets of N are K and Kc = N ⊖ K. If Kc is open then K and Kc are whole submsets 
and complements to each other. This follows that K = N ⊖F or N ⊖ K = N ⊖ F. Hence either K = N ⊖ 
F or K = F with K as a whole submset of N.
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Theorem 3.19. Let N be an M-topological space. If P and Q are two distinct maximal open whole 
submsets of N with P ∩ Q is closed, then the space N is disconnected.

Proof. Since P and Q are distinct and maximal open submsets, we have P ∪ Q = N. Also, since P and 
Q are whole, P ∩ Q is a closed whole submset of N. For any two whole submsets E and F, we have, E 
⊖ F = E ∩ Fc. Take K = P ⊖ (P ∩ Q) = P ∩ (P ∩ Q)c, which is an open submset of N and L = Q. Then, K 
and L are disjoint open sets such that K ∪ L = N and hence the space N is disconnected.

Remark 3.20. In contrast to general topology, M-topology requires that the submset be a whole subm-
set, and if this limitation is removed, the conclusion of the above theorem 3.19 need not be true as 
shown in the below example:

Example 3.21. Let N = {8/r, 8/s} and τ = {N, ∅, {4/r, 8/s}, {8/r, 4/s}, {4/r, 4/s}}, then τ is clearly 
an M-topology on N. Also, P = {4/r, 8/s} and Q = {8/r, 4/s} are maximal open submsets and P ∩ Q = 
{4/r, 4/s} is a closed submset. Here, N is not disconnected since P and Q are not whole. Actually, 
it has a clopen proper submset {4/r, 4/s}, but it is not enough for saying that N is disconnected in 
M-topology. In general topology, it is enough for the disconnectedness of a space. But, here we cannot 
find two non-empty open submsets L and K of N such that N = L ∪ K and L ∩ K = ∅. Hence N is not  
disconnected.

Theorem 3.22. If V is a maximal open and a whole submset of an M-topological space N, then either 
V is dense in N or V is a clopen submset of N.

Proof. Suppose cl(V ) = E for some closed submset E of N. Then K = N ⊖ E is an open submset. Since 
V is a whole submset and V ⊆ E, we get V ∩ K = ∅.

Now, since V is maximal open and K is open ⇒ K ∪V = V or K ∪V = N. Suppose K ∪ V = V, then K 
∪ V = V and V ∩ K = ∅. So K = ∅, that is, N ⊖ E = ∅ and E = N. Hence cl(V ) = E = N and it follows 
that V is dense in N.

Now, consider K ∪ V = N, then K ∪ V = N and V ∩ K = ∅. This implies that K and V are whole 
submsets and V = N ⊖ K = N ⊖ (N ⊖ E) = E. Hence cl(V ) = E = V, a clopen submset of N and N is 
disconnected.

Remark 3.23. If we remove the restriction that V be a whole submset of N, outcome of the above theo-
rem 3.22 may change as seen in the following example:

Example 3.24. Let N = {10/c, 10/d, 10/e} be an M-topological space with the M-topology τ = {N, ∅, 
{3/c, 2/d}, {6/c, 4/d}}. Here V = {6/c, 4/d} is clearly a maximal open submset which is not whole.

Closed submsets in this topology are ∅, N, {7/c, 8/d, 10/e} and {4/c, 6/d, 10/e}. The smallest 
closed submset containing V is {7/c, 8/d, 10/e}.
Hence cl(V ) = {7/c, 8/e, 10/e} ≠ V or N.

Corollary 3.25. If an M-topological space N has a maximal open whole submset which is not a dense 
submset of N, then the space N is disconnected.

Proof. Proof is straight forward.

Theorem 3.26. If a submset H of an M-topological space N is maximal open, then cl(H) is either

(i) a full submset of N with Ccl(H)(y) ≥ ( )
2

NC y , ∀y ∈ N, or
(ii) cl(H) = H or N.

Proof. Suppose cl(H) = E, for some closed submset E of N. Then K = N ⊖ E is an open submset of N 
and it implies that H ⊆ H ∪ K ⊆ N. Since, H is maximal, H ∪ K = H or N.

When H ∪ K = H,then K ⊆ H, i.e. Ec ⊆ H and Hc ⊆ E = cl(H). Hence H ⊆ cl(H) and Hc ⊆ cl(H) implies 
that H ∪ Hc ⊆ cl(H) = E. Clearly, H ∪ Hc is a full submset and we get cl(H) as a full submset of N.
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For a particular y ∈ N, there are only two possibilities: either max{CH(y), CHc (y)} = CH(y) or max-
{CH(y), CHc (y)} = CHc (y).

Suppose max{CH(y), CHc (y)} = CH(y), then CHc (y) ≤ CH(y) and CN⊖H(y) ≤ CH(y) ⇒ CN (y) − CH(y) ≤ 
CH(y) ⇒ CN (y) ≤ 2CH(y) ⇒ ( )

2
NC y  ≤ CH(y).

Since H ∪ Hc ⊆ E, CH(y) ≤ CE(y) and hence ( )
2

NC y  ≤ CE(y).

Now, consider the case max{CH(y), CHc (y)} = CHc (y). Then, CH(y) ≤ CHc (y).
Also, CH(y) ≤ CN⊖H(y) ⇒ CH(y) ≤ CN (y) − CH(y) ⇒ 2CH(y) ≤

CN (y) ⇒ CH(y) ≤ ( )
2

NC y .

Also, CE(y) ≥ CHc (y) = CN (y) − CH(y) ≥ CN (y) − ( )
2

NC y  = ( )
2

NC y , which implies that CE(y) ≥ ( )
2

NC y . 
Hence Ccl(H)(y) ≥ ( )

2
NC y , ∀y ∈ N.

Finally, when H ∪ K = N, we get Hw ⊆ K = Ec and E ⊆ (Hw)c = H̃ ⊆ H ⊆ cl(H) = E. So H̃ = H and 
hence H is whole submset. By theorem 3.22, it follows that cl(H) = H or N.

Corollary 3.27. If a submset H of an M-topological space N is maximal open and not closed, then 
cl(H) contains all elements y of N with count greater than or equal to ( )

2
NC y .

Theorem 3.28. Let H be a maximal open submset of an M-topological spae N. If H is not whole, then 
int(Hc) contains only the part elements y of H with multiplicity less than or equal to ( )

2
NC y . If H is a 

whole submset, then either Hc is open or int(Hc) = ∅.

Proof. Suppose H is not a whole submset of N, then H ∪ Hc ≠ N. Let L = int(Hc). Then L is an open 
submset and H is a maximal open submset ⇒ L ⊆ H or H ∪ L = N.

If H ∪ L = N, then H ∪ int(Hc) = N. Also, H ∪ int(Hc) ⊆ H ∪ Hc ≠ N. Hence H ∪ int(Hc) ≠ N. So 
the only possibility is L ⊆ H, i.e., int(Hc) ⊆ H and this concludes that int(Hc) ⊆ H ∩ Hc. Since H ∩ Hc 
contains part elements y of H with count ≤ ( )

2
NC y , int(Hc) contains only the part elements y of H with 

multiplicity less than or equal to ( )
2

NC y . If we consider H as a whole submset, then there are two pos-

sibilities: L ⊆ H or H ∪ L = N. If L ⊆ H, then int(Hc) ⊆ H and hence int(Hc) ⊆ H ∩ Hc = ∅. On the other 
way, If H ∪ L = N, then Hc ⊆ L ⇒ Hc ⊆ int(Hc) ⇒ int(Hc) = Hc. Hence Hc is open.

Theorem 3.29. If K and L are distinct maximal open submsets of an M-topological space N, then Kw 
⊈ Lw and Lw ⊈ Kw.

Proof. Suppose Kw ⊆ Lw. Then, (K̃ )c ⊆ (L̃ )c ⇒ L̃  ⊆ K̃ . Since K and L are maximal, K ⊆ L ∪ K ⊆ N and 
L ⊆ L ∪ K ⊆ N. If y ∈ Kw ⊆ Lw ⊆ N, then y ∉ K̃  and y ∉ L̃ . So CK(y) < CN (y) and CL(y) < CN (y) implies 
that K ∪ L ≠ N. Therefore the only possibilities are K = L ∪ K and L = L ∪ K. Hence K = L.

Theorem 3.30. If L and K are distinct maximal open submsets of an M-topological spae N and y ∈ 
Kw, then y ∉ Lw. Consequently Kw ⊆ L̃  and Kw ∩ Lw = ∅.

Proof. Given that K and L are distinct and maximal, then K ∪ L = N and hence N = K̃  ∪ L̃ . Also, if y 
∈ N is not an element of K̃ , then it belongs to L̃ .
Suppose y ∈ Kw. Since Kw, K̃ , (K̃ )c, Lw, L̃  and (L̃ )c are whole submsets and y ∈ (K̃ )c ⇒ y ∉ K̃  ⇒ y ∈ L̃  ⇒ 
y ∉ (L̃ )c ⇒ y ∉ Lw. Hence Kw ⊆ L̃ .
In a similar manner, if y ∈ Lw then y ∉ Kw and consequently Kw ∩ Lw = ∅.
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Corollary 3.31. If K is a maximal open submset of an M-topological space N such that Kw = E, then K 
is the only maximal open submset for which Kw = E.

Theorem 3.32. Let K be a maximal open submset of an M-topological space N. If |(K̃ )*| = n, then N 
have at most n + 1 maximal open submsets.

Proof. Suppose L is a maximal open submset of N different from K, then K ∪ L = N. If y ∉ K̃ , then 
CK(y) < CN (y). So CL(y) = CN (y) ⇒ y ∈ L̃ ⇒ y ∉ Lw and hence Lw ⊆ K̃ . By corollary 3.31, correspond-
ing to a whole submset there is at most one maximal open submset whose whole complement is the 
same whole submset. If L is a maximal whole submset different from K, then Lw ⊆ K̃ . Therefore, 
corresponding to every whole submset of K~ there may be at most one maximal open submset. Now 
by theorem 3.30, whole complements of two distinct maximal open submsets are disjoint, and the 
problem reduces to finding the maximum number of disjoint nonempty whole submsets of K̃ . The 
maximum is occurred when we take each submset as a submset of K̃  with one element of K̃* with 
full multiplicity as in N. This implies that there exists n such submsets and let A1, A2, ..., An be such 
submsets of K̃ . Corresponding to each Ai, there may be at most one maximal open submset Wi for 
which Wi

w = Ai. Hence the maximum number of maximal open submsets we can form other than K is 
n and the maximum number of possible whole submsets of N is n + 1 = |(K̃ )*| + 1.

Theorem 3.33. Let K be a submset of an M-topological space N and H be a maximal open submset of 
N. If K ⊈ H and K ∩ H ≠ ∅, then the open submset corresponding to H in the open subspace M-topology 
of K is a maximal open submset of K.

Proof. Suppose K ⊈ H, K ∩ H ≠ ∅ and H is a maximal open submset. Then, K ∩ H is a proper non-
empty open submset of K and for every open submset L of N, either L ⊆ H or H ∪ L = N. Let H′ and 
L′ be the open submsets corresponding to H and L respectively, in the open subspace M-topology. So 
H′ = K ∩ H and L′ = K ∩ L.

Now, L ⊆ H ⇒ K ∩ L ⊆ K ∩ H ⇒ L′ ⊆ H′ and
H ∪ L = N ⇒ K ∩ (H ∪ L) = K ∩ N ⇒ (K ∩ H) ∪ (K ∩ L) = K ⇒H′ ∪ L′ = K.
Every open submset L′ of K with respect to open subspace M-topology is of the form K ∩ L, for 

some L open in N. Then, for every open submset L′ of K, either L′ ⊆ H′ or H′ ∪ L′ = K. This means 
that there is no proper open submset L′ of K properly containing H′. Hence H′ is a maximal open 
submset in K with respect to open subspace M-topology.

Theorem 3.34. Let K be a submset of an M-topological space N and H be a maximal open submset of 
N. If K ⊈ H̃ and K ⊈ Hc, then the open submset corresponding to H in the closed subspace M-topology 
of K is a maximal open submset of K. 

Proof. Since K ⊈ H̃ and H̃ is a whole submset ⇒ ∃y ∈ K such that y ∉ H̃ ⇒ ∃y ∈ K ∩ Hc ⇒ K ∩ Hc ≠ 
∅ ⇒ K ⊖ (K ∩ Hc) is a proper submset of K. Also, by K ⊈ Hc, we get K ⊖ (K ∩ Hc) is not empty and 
obtain the condition that K ⊖(K ∩ Hc) is a nonempty proper open submset of K.

Let H″ and L″ be the open submsets corresponding to H and L respectively, in the closed sub-
space M-topology. Then, H″ = K ⊖ (K ∩ Hc) and L″ = K ⊖ (K ∩ Lc). That is, for every open submset L 
of N, either L ⊂ H or H ∪ L = N.

Now, L ⊆ H ⇒ Hc ⊆ Lc ⇒ (K ∩ Hc) ⊆ (K ∩ Lc) ⇒ K ⊖(K ∩ Lc) ⊆ K ⊖ (K ∩ Hc) ⇒ L″ ⊆ H″ and H ∪ 
L = N ⇒ Hc ∩ Lc = ∅ ⇒ (K ∩ Hc) ∩ (K ∩ Lc) = ∅. By taking the complements, we get (K ⊖ (K ∩ Hc)) ∪ 
(K ⊖ (K ∩ Lc)) = K ⇒ H″ ∪ L″ = K. Since every open submset L″ of K with respect to closed subspace 
M-topology is of the form K ⊖ (K ∩ Lc) for some L open in N, it follows that for every open subm-
set L″ of K, either L″ ⊆ H″ or H″ ∪ L″ = K. That is, there is no proper open submset L″ of K prop-
erly containing H″. Hence H″ is a maximal open submset in K with respect to the closed subspace  
M-topology.
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Theorem 3.35. Let K be a submset of an M-topological space N and H be a minimal open submset of 
N. If K ∩ H ≠ ∅, then the open submset corresponding to H in the open subspace M-topology of K is a 
minimal open submset in K.

Proof. Let L′ be an submset of K that is open in the open subspace M-topology τo. Then there exists an 
open submset L of N such that L′ = K ∩ L. Since H is minimal, H ⊆ L or H ∩ L = ∅.

If H ⊆ L, then K ∩ H ⊆ K ∩ L, i.e., K ∩ H ⊆ L′. and if H ∩ L = ∅, then (K ∩ H) ∩ (K ∩ L) = ∅, i.e., (K 
∩ H) ∩ L′ = ∅. Thus, for every open submset L′ of K, either K ∩ H ⊆ L′ or (K ∩ H) ∩ L′ = ∅. So there 
is no nonempty open submset L′ properly contained in K ∩ H and hence K ∩ H is a minimal open 
submset of K.

Theorem 3.36. Let K be a submset of an M-topological space N and H be a minimal open submset 
of N. If K ⊈ Hc, then the open submset corresponding to H in the closed subspace M-topology of K is a 
minimal open submset in K.

Proof. Let L″ be a nonempty submset of K which is open in the closed subspace M-topology τc. Then 
there exists a nonempty open submset L of N such that L″ = K ⊖ (K ∩ Lc). Since H is minimal, H ⊆ L 
or H ∩ L = ∅. If H ⊆ L, then Lc ⊆ Hc ⇒ (K ∩ Lc) ⊆ (K ∩ Hc) ⇒ K ⊖ (K ∩ Hc) ⊆ K ⊖ (K ∩ Lc). i.e., K ⊖ (K 
∩ Hc) ⊆ L″.

If H ∩ L = ∅, then Hc ∪ Lc = N ⇒ (K ∩ Hc) ∪ (K ∩ Lc) = K. By taking complements in K, (K ⊖ (K ∩ 
Hc)) ∩ (K ⊖ (K ∩ Lc)) = ∅. i.e., (K ⊖ (K ∩ Hc)) ∩ L″ = ∅.

That is, for every open submset L″ of K, either (K ⊖ (K ∩ Hc)) ⊆ L″ or (K ⊖ (K ∩ Hc)) ∩ L″ = ∅. So 
there is no nonempty open submset L″ properly contained in K ⊖ (K ∩ Hc) and hence K ⊖ (K ∩ Hc) is 
a minimal open submset of K.

Theorem 3.37. If G is a full submset which is also a minimal open submset of an M-topological space 
N, then N has one and only one minimal open submset. Consequently every nonempty open submset is 
a full submset of N.

Proof. Suppose L ≠ ∅ is an open submset of N. Since G is a full submset, it intersects with L and 
G ∩ L ≠ ∅. Also, as G is minimal and G ∩ L ≠ ∅, the only possibility is G ∩ L = G. Then, G ⊆ L and 
consequently L is a full submset of N. Hence every nonempty open submset of N is a full submset  
of N.

Lemma 3.38. Let K be a submset of a multiset N.

(a) If Kc ⊆ K, then CK(y) ≥ ( )
2

NC y , ∀y ∈ N, and consequently K is a full submset.

(b) If K ⊆ Kc, then CK(y) ≤ ( )
2

NC y , ∀y ∈ N, and consequently Kc is a full submset.

(c) If Kc ∩ K = ∅ or Kc ∪ K = N, then K and Kc are whole submsets of N.

Proof. 
(a) Suppose Kc ⊆ K. Then CKc (y) ≤ CK(y), ∀y ∈ N. Hence CN (y) − CK(y) ≤ CK(y) ⇒ CK(y) ≥ ( )

2
NC y ,  

∀y ∈ N. Since count of every element y in K is greater than ( )
2

NC y , every element of K has 
nonzero count and K is a full submset of N.

(b) In a similar way, we can prove b)
(c) If K ∩ Kc = ∅, then ∀y ∈ N, min{CK(y), CN (y) − CK(y)} = 0 ⇒ CK(y) = 0 or CN (y)−CK(y) = 0. 

For every y ∈ N, either CK(y) = 0 or CK(y) = CN (y). So K is a whole submset and conse-
quently Kc is also a whole submset. The condition K ∩ Kc = ∅ is equivalent to say that Kc ∪  
K = N.
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Theorem 3.39. If a submset H of an M-topological space N is minimal open, then one among the fol-
lowing is satisfied by H:

(a) int(Hc) ⊆ int(( )cH ).
(ii) CH(y) ≤ ( )

2
NC y , ∀y ∈ H, Hc is a full submset and H ⊆ int(Hc).

Proof. Let G = int(Hc). Since H is minimal open, H ∩ G = ∅ or H ⊆ G. If H ∩ G = ∅, then ∀y ∈ G, 
CH(y) = 0 ⇒ y ∈ Hc with full multiplicity. Hence G ⊆ (( )cH ). Consequently, int(Hc) ⊆ int(( )cH ). If H ⊆ G, 
then H ⊆ int(Hc) ⊆ Hc. Therefore CH(y) ≤ ( )

2
NC y , ∀y ∈ N.

Now, H ⊆ int(Hc) ⊆ Hc ⇒ H ⊆ (int(H))c ⊆ Hc ⇒ H ⊂ int(Hc) ∩ (int(Hc))c and int(Hc) ∪ (int(Hc))c ⊆ Hc. 
Hence H ⊆ int(Hc) ∩ cl(H) and Hc is a full submset of N.

Corollary 3.40. If a submset H of an M-topological space N is minimal open and int(cH ) = ∅, then H 
is the only minimal open submset of N.

Proof. Suppose int(( )cH ) = ∅. Let L be an open submset of N. Then either H ∩ L = ∅ or H ⊆ L.
If H ∩ L = ∅, then L ⊆ ( )cH  and int(( )cH ) = ∅ implies that L = ∅.
Thus for every nonempty open submset L, H ⊆ L and hence H is the only minimal open submset of N.

Theorem 3.41. If a submset H of an M-topological space N is minimal open, then one among the fol-
lowing is satisfied by H:

(i) Part element of cl(H) is not an element of H and hence every element y ∈ H appears as a whole 
element of cl(H).

(ii) CH(y) ≤ ( )
2

NC y , Hc is a full submset and H ⊆ int(Hc)

Proof. Suppose H is a minimal open submset and L = (cl(H))c. Then L is open and either H ⊆ L or 
H ∩ L = ∅. If H ∩ L = ∅, then H ∩ (cl(H))c = ∅. Assume that y is a part element of cl(H) which implies 
that y ∈ ((cl(H))c. Since H ∩ (cl(H))c = ∅, y ∉ H. Hence part element of cl(H) is not an element of H. So 
every y ∈ H appears as a whole element of cl(H) and we get (Hc)w ⊆ ( )cl H .

If H ⊆ L, then H ⊆ (cl(H))c ⇒ cl(H) ⊆ Hc and hence H ⊆ cl(H) ⊆ Hc. By taking complements, H ⊆ 
(cl(H))c ⊆ Hc. So H ⊆ cl(H) ∩ (cl(H))c and cl(H) ∪ (cl(H))c ⊆ Hc and it follows that Hc is a full submset 
with count greater than or equal to half of the full multiplicity. Hence elements of H has multiplicity 
less than or equal to half of the full multiplicity.

Also, since (cl(H))c = int(Hc), H ⊆ int(Hc) ∩ cl(H).

Corollary 3.42. Let H be a full submset of an M-topological space N which is also minimal open. If 
there is an element y ∈ H such that CH(y) > ( )

2
NC y , then H is dense in N.

Proof. Given that H is minimal open submset and it has an element y with count greater than ( )
2

NC y . 
By theorem 3.41, every elements in H appears as a whole element in cl(H). Since H is a full submset, 
cl(H) contains all elements of N with full multiplicity. Hence cl(H) = N and H is dense in N.

Theorem 3.43. If H and G are minimal open submsets and H ∪ G is a full submset of an M-topological 
space N, then H and G are the only minimal open submsets of N and for every open submset L of N, 
either H ⊆ L or G ⊆ L.

Proof. Let L be an open submset in N. Since H and G are minimal open submsets, ∅ ⊆ H ∩ L ⊆ H and 
∅ ⊆ G ∩ L ⊆ G. Therefore, the only possibilities are:

(i) either H ∩ L = ∅ or H ⊆ L.
(ii) either G ∩ L = ∅ or G ⊆ L.
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Suppose H ∩ L = ∅. Since H ∪ G is a full submset, L ∩ (H ∪ G) ≠ ∅ ⇒ (L ∩ H) ∪ (L ∩ G) ≠ ∅ ⇒ ∅ ∪ (L ∩ 
G) ≠ ∅ ⇒ L ∩ G ≠ ∅.

Then, G is minimal open and L ∩ G ≠ ∅ ⇒ G ⊆ L.
In a similar way, if we assume G ∩ L = ∅, we get H ⊆ L and for every nonempty open submset L, 

either H ⊆ L or G ⊆ L. Hence H and G are the only minimal open submsets of N.

Theorem 3.44. Let U be the collection of all minimal open submsets in an M-topological space N. 
Then the elements of U are mutually disjoint. If ∪U∈UU is a full submset, then for every nonempty open 
submset G of N, there exists a minimal open submset U ∈ U such that U ⊆ G.

Proof. Let U1 and U2 be two minimal open submsets of M. Then U1 ∩ U2 is an open submset contained 
in both U1 and U2 and either U1 ∩ U2 = ∅ or U1 = U2 which implies that elements of U are mutually 
disjoint.

Let G be an non-empty open submset of N. Since ∪U∈UU is a full submset, there is a minimal open 
submset U in U which intersects with G, i.e., U ∩ G ≠ ∅. As U is minimal open, the only possibility is 
U ∩ G = U. Hence U ⊆ G.

Theorem 3.45. Let U be the collection of all minimal open submsets in an M-topological space N. If 
∪U∈UU is a full submset of N and S is a nonempty closed partial whole submset of N, then int(S) ≠ ∅. 
In other words, there exists a minimal open submset U in U such that U ⊆ S.

Proof. Let S be a closed partial whole submset of N. Then S has a whole element y. Since ∪U∈UU is 
a full submset, there exists a minimal open submset U in U which also contains y. Now, since the 
minimal open submsets are mutually disjoint, U is the only minimal open submset which contains y. 
As U is minimal and Sc is open, either U ∩ Sc = ∅ or U ⊆ Sc. But U ⊆ Sc is not possible, since y ∉ Sc. 
Therefore the only possibility is U ∩ Sc = ∅ which follows that z ∈ U ⇒ z ∉ Sc ⇒ z ∈ S. Hence U ⊆ S 
and int(S) ≠ ∅.

Theorem 3.46. Let H ≠ ∅ be open and a whole submset of an M-topological space N. Then the follow-
ing three conditions are equivalent:

(a) H is a minimal open submset of N.
(b) H ⊆ cl(T ) for any nonempty submset T of H.
(c) cl(H) = cl(T ) for any nonempty submset T of H.

Proof. (a) ⇒ (b).
Assume (a). Let T be any nonempty submset of H. Suppose cl(T ) = F. Then T ⊆ F and F is a closed 
submset of N. So N ⊖ F is an open submset. By the minimality of H, H ∩ (N ⊖ F ) is ∅ or H. Now we 
claim that H ∩ (N ⊖ F ) = H is not possible. since T is nonempty submset of H and T ⊂ F, F contains 
an element y of H with non-zero count less than or equal to the count of it in H. Then, CN⊖F (y) < CN 
(y) = CH(y) and hence CH∩(N ⊖F )(y) ≠ CH(y). So H ∩ (N ⊖ F ) = H is not possible and the only possi-
bility is H ∩ (N ⊖ F ) = ∅. In multiset theory, C ⊖ D = C ∩ DC if one among them is a whole submset. 
Therefore, H ∩ (N ⊖ F ) = H ∩ Fc = H ⊖ F = ∅.

If H ⊖ F = ∅, then H ⊆ F = cl(T ).
(b) ⇒ (c).
Assume (b). i.e., H ⊆ cl(T ) for any nonempty subset T of H. So cl(H) ⊆ cl(cl(T )) = cl(T ). Since T ⊆ 

H ⇒ cl(T ) ⊆ cl(H) and this clearly follows that cl(H) = cl(T ).
(c) ⇒ (a).
Assume (c), i.e., cl(H) = cl(T ) for any nonempty subset T of H. Suppose L is an open submset such 

that ∅ ⊆ L ⊆ H. Now we need to prove that L = ∅ or H. Since L ⊆ H ⊆ N ⇒ H ⊖ L ⊆ N ⊖ L. If H ⊖ L = 
∅, then H ⊆ L and hence L = H. If H ⊖ L ≠ ∅, then H ⊖ L is a nonempty submset of H. Therefore by 
assumption, cl(H ⊖ L) = cl(H). But N ⊖ L is a closed set containing H ⊖ L. So cl(H) = cl(H ⊖ L) ⊂ N 
⊖ L. Hence H ⊆ cl(H) ⊆ N ⊖ L. Suppose there is an element y ∈ L ⊆ H. Then, 0 ≠ CL(y) ≤ CH(y) = CN 
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(y). Now, consider CN⊖L(y) = Max{CN (y) − CL(y), 0} = CN (y) − CL(y) < CN (y). Therefore H ⊆ N ⊖ L is 
impossible, since CH(y) = CN (y). Hence existence of such an element y ∈ L is not possible and L = ∅ 
implies that H is a minimal open submset.

Remark 3.47. In general topology, the above theorem 3.46 is true for any open submset. But in 
M-topology we need the restriction that V is whole. It need not be true, if V is not a whole submset of N 
as shown in the following example:

Example 3.48. Let N = {10/c, 10/d, 10/e} be an mset with M-topology, τ = {M, ∅, {6/c, 4/d, 6/e}, 
{3/c, 2/d, 6/e}}. Here, H = {3/c, 2/d, 6/e} is clearly a minimal open submset which is not a whole 
submset. Then, T = {2/c, 2/d} ⊆ H.
Closed submsets in this topology are ∅, N, {4/c, 6/d, 4/e}, {7/c, 8/d, 4/e}}. The smallest closed subm-
set containing T is {4/c, 6/d, 4/e}. The closure of T is cl(T ) = {4/c, 6/d, 4/e}. Hence H ⊈ cl(T )) and 
cl(H) = N ≠ cl(T ).

Theorem 3.49. Let V be a minimal open whole submset of an M-topological space N. Then any non-
empty submset T of V is a pre-open submset of N.

Proof. By theorem 3.46, V ⊆ cl(T ) and hence int(V ) ⊂ int(cl(T )). Since V is an open submset, we have 
T ⊆ V = int(V ) ⊆ int(cl(T )). Hence T is pre-open.

4. Conclusion

In this study, we introduced and thoroughly examined the novel concepts of minimal open subsets 
and maximal open subsets within the framework of M-topology. Our analysis delved into their intri-
cate interplay with fundamental M-topological concepts such as the whole core, whole complement, 
closure, interior, and connectedness. Furthermore, we explored their behavior within the context 
of both subspace M-topologies of a given subset. One significant contribution of this research is the 
establishment of a result that establishes a connection between the maximum achievable number of 
maximal open subsets and the cardinality of the core of a maximal open subset. This result not only 
adds depth to our understanding of M-topology but also offers valuable insights into the structural 
properties of maximal open subsets in this context. As a future direction, all the investigations that 
have been done in this work can be carried out by introducing the concept of minimal closed submset 
and maximal closed submset. It is also possible to extend these discussions to explore the behavior of 
minimal and maximal closed submsets in subspace M-topologies of a given subset, discussing vari-
ous properties arising from different combinations.

M-topology’s reach extends beyond mathematical exploration, holding significant promise for 
applications in various scientific disciplines. Its potential includes detecting and locating of muta-
tions in DNA and RNA structures, uncovering similarities and discrepancies within gene sequences, 
and potentially opening doors to further breakthroughs in diverse scientific fields.
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