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1.  Introduction

Finances play a significant part in every field in today’s global and technology society. Financial 
derivatives have become influential tools for firms and large investors in recent decades. various 
contracts have been present in various markets for some time, but their utilization grew signifi-
cantly in the 1970s and they are now a fundamental component of markets. Financial derivatives 
exist in several forms such as Over the Counter transaction, options, swaps, forwards, and futures. 
Contracts that seem intriguing and fascinating tend to be more complex, leading to a higher chance 
of loss. When beginning to invest in options, investors should understand the key factors that influ-
ence an option’s value, including the current market rate, financial value, expiration date, volatil-
ity, interest rates, and cash dividends. Options, like other investments, have similarities in certain 
instances. Understanding the factors that determine their pricing is essential for their effective use. 
Various models, such as the Binomial model and trinomial model, are used for risk-free analysis. 
Implementing speculative pricing models like the one mentioned serves the purposes of maintaining a 
risk-neutral portfolio and identifying and trading price discrepancies. The BSM is the most frequently 
cited and renowned model among these. Fischer and Myron [1] designed the acclaimed and efficient 
model in 1973. They chose to analyse a simple case: a EO on a dividend-free stock. They limited their 
investigation to conditions that made the mathematical problem easier to solve, as referenced in [2, 
3]. An American option can be executed by the buyer at any time before the maturity date, but a EO 
can only be executed by the buyer on the date of maturity. Fractal assembly has introduced fractional 
Brownian motion (BM) instead of the tradition BM in the classical model, including fractional calcu-
lus (FC) and FPDEs into finance. Due to fractional BM not being a semi-martingale, the Itô theory of 
stochastic integrals cannot be applied directly. Replacing the Itô integral with a pathwise Riemann–
Stieltjes integral results in a model of option values that permits arbitrage, as Rogers [4] shows. 
Arbitrage opportunities exist in the TFBSM inside a complete, frictionless setting. Researchers have 
changed the BSM more and more to a fractional order because fractional-order derivatives and inte-
grals are better at showing how substances remember and transmit information (Bjork and Hult [5]; 
Meerschaert and Sikorskii [6]. Utilising fractional order process modelling is a method to manage 
excessive volatility in the stock market. Aghili [7] use the combination of exponential operators and 
special functions is a potent tool for solving space fractional Black-Scholes equations. The TFBSM is 
a particular case of the bifractional BSM introduced by Liang et al. [8]. In his paper, Cartea [9] shows 
how a PIDE with a non-local operator in time-to-maturity can be used to show how European-style 
derivatives are valued. Leonenko et al. [10] studied the explanation of fractional Pearson diffusions 
governed by a time-fractional diffusion equation. The explanations were then used to enhance the 
BSM. Because of the memory properties of fractional derivatives, finding a precise solution to these 
issues is very challenging, leading many academics to seek methods to approximate them. Closed-
form and numerical solutions were used by Orland and Taglialatela [11] to estimate the implied 
volatility for the options. The findings were illustrated with the presentation of the computational 
results. In their study, Ouafoudi and Gao [12] employed both the Homotopy Perturbation Method 
(HPM) and a modified version of HPM, along with the Sumudu transform, to obtain solutions for the 
BSM. The answers were represented as convergent power series, and each component was calculated 
regularly. Farhadi and Erjaee [13] suggested the time-fractional derivative be applied to solve the 
BSM. Sawngtong et al. [14] investigated an analytical approach to solving the BSM involving two 
assets. The LTHPM method was used within the context of the Liouville-Caputo fractional deriva-
tive. In their work, Yavuz and Ozdemir [15] presented the use of CFADM and CFMHPM to tackle 
the fractional BSM. Jena and Chakraverty [16] introduced a new technique known as the RPST to 
calculate the analytical solution for the TFBSM problem. The described method was used to tackle the 
problem of pricing EO, considering the beginning situation. Prathumwan and Trachoo [17] employed 
the LHPM as a computational approach to obtain an approximate solution for the PDE that governs 
the EO, involving two assets. Golbabai et al. [18] describe the numerical solution of the TFBSM 
with BC’s for a problem of EO involved with the method of RBFs. The LADM was first introduced by 
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Sumiati [19] as a computational approach for solving the BSM. The BSM was solved by Golbabai and 
Nikan [20] through the approximation solution of the TFBSM of order 0 < e ≤ 1 governing EO based 
on the moving least-squares (MLS) method. The fractional differential equation (FDE) appears more 
and more frequently in research areas and engineering applications. Research topics and engineering 
applications are becoming increasingly prevalent. Many researchers have put forth diverse numerical 
methodologies for solving differential equations. Nikan et al. [21] used the local meshless method for 
the numerical simulation of the TFBSE. Nikan et al. [22] used a noval meshless numerical procedure, 
the radial basis function-generated finite difference (RBF-FD), to approximate the TFCM involving 
two fractional temporal derivatives. Mohammed et al. [23] used the double integral transform with 
VIM to solve nonlinear PDEs. Mohammed et al. [24] solved non-linear PDEs using SETDM. In this 
study, we employ the features of the Sumudu and Elzaki transforms to examine the following aspects. 
The BSM for calculating an option’s value is described by the following equation: 
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Where 0 < e ≤ 1, w(z,t) denotes the price of a European call option, which is dependent on the asset 
price  and the time t. K represents the exercise price, T represents the maturity of the option, r(t) rep-
resents the risk-free interest rate, and s(z,t) represents the volatility function of the underlying asset. 
Let wc(z,t) and The values of the European call and put options are denoted by the notation wP(z,t). 
The corresponding payoff functions can be expressed as follows:
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Eq. (2) defines the max function as yielding the highest value in its input. wc(z,t) denotes the 
European call option value, whereas wP(z,t) represents the European put option value. The maturity 
date price of the option is represented by E, whereas the mathematical function max(z,0) generates 
a higher value between z and 0. When an option asset is purchased, the owner does not instantly get 
the right to sell or buy it. The call function, represented by wc(z,t), signifies the right to purchase the 
asset, whereas the function wP(z,t) signifies the right to sell the asset.

The primary purpose of this study is to solve TFBSM utilizing the Double Sumudu and Elzaki 
transform decomposition technique (DSETDM).

2.  Preliminaries

This section lays out the primary ideas of the FC theory that was used in this research.

Definition 2.1 [25] A real function w(z), z > 0 is said to be in the space Cµ, µ 2   R, if there exists a real 
number p,(p > µ), such that w(z) = zpw1(z), where w1(z) 2 C[0,1), and it is said to be in the space Cm

µ iff 
w(m) 2   Cµ,m 2  N. 

Definition 2.2 [4] The following is the definition of the Riemann-Liouville fractional integral operator 
of order a Õ 0 for a function w that is a member of the set Cµ, where µÕ1:
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 is known as the gamma function when z > 0.

Moreover, the fractional integral of Riemann-Liouville has the following characteristics:
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for w 2 Cµ, µ Õ –1,²,¿ Õ 0 and ° Õ 1:
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Definition 2.3 [26] The definition of the fractional derivative w(z) in the Caputo sense is:
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Definition 2.4 [25] The Mittag-Leffler function E2(z) with 2  > 0, in the entire complex plane is defined 
as:
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3.  The DSETDM and Its Modification

This section introduces the DSET approach and its essential characteristics.

3.1.  Basic Concepts

Definition 3.1 [27] The Sumudu Transform ST of the function w(z) for all z ≥ 0 is defined as:
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Definition 3.2 [28] The Elzaki Transform ET of the function w(t) for all t ≥ 0 is defined as:
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These functions are of exponential order and consider functions in the set G as stated by:
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Definition 3.3 [24] The DSET of SZEt[w(z,t)] = w– (´,») is defined as:
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The clear demonstration of the linearity of the DSET is evident in the subsequent relationship, as 
depicted below:
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Definition 3.4 [24] The inverse of DSET, i.e. IDSET SZEt
–1[w– (´,»)] = w(z,t) is defined by:
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3.2.  Basic Derivative Properties of the DSET:
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The features of the DSET and the existence condition are described in [29].

3.3.   Solution by DSETM

To apply the DSET with the ADM method to solve the TFBSM, it is imperative to convert the 
unbounded domain into a finite interval using truncation. In this analysis, we truncate the variable 
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z’s range in Eq. 1 to a finite interval denoted as (Bd, Bu). The model under consideration is formulated 
in the following manner:
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applying the DSET on Eq. 3, we obtain the following:
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using the I.Cs (4) and the single ST in Eq. 5, we obtain the following:
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taking the inverse DSET S Ez t
-1( ( , ))w h x  of Eq.6, we have the following:
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Now, use the iterative approach by assuming the following:
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So, the approximate solution w(z,t) is given by:

w w( , ) lim ( , ).z t z t
n n=
®¥

� (10)



Abd AL-Hussein WR, et al., Results in Nonlinear Anal. 7, (2024), 64–78� 70

4.  Numerical Examples

Three examples are provided in this part to demonstrate the precision of our proposed numerical 
system using the ADM technique combined with the DSET. The current pricing strategy for barrier 
options using a TFBSM model was used, considered one of the most intriguing models in the financial 
sector. Numerical simulations were performed using Matlab R2015a software on a 12th Gen Intel(R) 
Core(TM) i7-1255U 1.70 GHz CPU processor with 8 Gbyte RAM.

Example 4.1  Consider the TFBSM equation as follows [25-30]
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it is seen that the system of equations under consideration is characterized by two dimensionless 
parameters, namely k = 2

2
r

s , which reflects the balance between interest rates and stock return  
variability, and the dimensionless time until expiry, 12

2s T.

Using the DSET on each side of Eq. 11 where Sz is a single ST, the following result is obtained:
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Taking the inverse DSET S Ez t
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now, use the iterative approach by assuming the following:
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Finally, by using two parties of Eq.17, we obtain the repeated algorithm as the following:
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also, Eq. 18 can be expressed as:

w( , ) max , max , ,z t e E kt e E ktz z= -( ) -( ) + ( ) - -( )( )1 0 0 1



 � (19)

The symbol E
²
 denotes the Mittag-Leffler function. The solution of Eq. 11 can be expressed as a series 

using the Mittag-Leffler function, as shown in Eq.19. This series solution converges to the exact solu-
tion presented in Eq. 20 when the parameter ² is set to 1 .

w( , ) max , max ,z t e e e ez kt z kt= -( ) + ( ) -( )- -1 0 0 1 � (20)

The comparison between the exact solution (ES) for various values of fractional order ² for fixed t 
and k and the approximate solution (AS) derived using the approach FDTM described in [17] and 
DSETDM is shown in Figures 1(a)-1(b). 

�
Figure 1: (a) in the case t = 1, k = 2 , (b) in the case t = 0.5, k = 2
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Table 1 displays a comparison between the AS found by the FDTM method as shown in [25], and the 
current results achieved using the DSETDM method. for various fractional order values.

Table 1: The comparison of the AS of the suggested method and the solution generated by the FDTM 
described in [25], t = 1, when z = ² = 1.

z Exact Our Method Method in [25] Absolute Error 
0.1 1.89955 1.89955 1.89955 2.78143e – 14
0.2 2.04796 2.04796 2.04796 1.01696e – 12
0.3 2.16947 2.16947 2.16947 8.65445e – 11 
0.4 2.26895 2.26895 2.26895 2.01685e – 09  
0.5 2.35040 2.35040 2.35040 2.31143e – 08  
0.6 2.41709 2.41709 2.41709 1.69107e – 07  
0.7 2.47168 2.47168 2.47169 9.07724e – 07  
0.8 2.51639 2.51638 2.51641 3.88444e – 06  
0.9 2.55298 2.55297 2.55307 1.39815e – 05  
1.0 2.58295 2.58290 2.58318 4.39055e – 05  

Example 4.2  Consider the TFBSM equation [25,31] 
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With the I.C. 

w( , ) ,.z max z e0 25 00 06= -( )- � (22)

Using the DSET on each side of Eq. 21 where Sz is a single ST, gives:
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from Eq. 23 and I.C. 22 we have:

w h x x w x w ¶ w
¶

( , ) ( ( , )) . . ( sin ) .- = - + -2 2 2
2

20 0 06 0 08 2 0 06S z S E x z
zz z t

 zz
z
¶w
¶

é

ë
ê

ù

û
ú

w h x x h x w ¶ w
¶

( , ) max , . . ( sin ).= -( ) + - +-2 0 06 2 2
2

25 0 0 06 0 08 2e S E x zz t


zz
z
z2 0 06-

é

ë
ê

ù

û
ú. ¶w

¶
� (24)

Taking the inverse DSET S Ez t
-1( ( , ))w h x  on Eq.24, gives:
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Now, use the iterative approach by assuming the following:

w w
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n

n=
=
å
0

� (26)

substituting Eq. 26 in Eq. 25 we obtain the following: 
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Finally, by using two parties of Eq.27, we obtain the repeated algorithm as the following:
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Hence, the exact solution of Eq. 21 in a closed form when ² = 1, is given by Eq. 29

w( , ) max , .. . .z t z e e z et t= -( ) + -( )-25 0 10 06 0 06 0 06 � (29)

The absolute error, for example 4.2 in the case ² = 1, t = 10, given in Figure 2., while Table 2 displays 
the comparison between the AS acquired by the method described in reference [25], with present 
results DSETDM for ² =1, t = 10.



Abd AL-Hussein WR, et al., Results in Nonlinear Anal. 7, (2024), 64–78� 74

 
Figure 2: Absolute error, for example 4.2 in the case ² = 1, t = 10.

Table 2: The comparison of the AS of the suggested method and the solution generated by the FDTM 
described in [25], when t = 10 and ² = 1

z Exact Our Method Method in [25] Absolute Error 
0.1 -0.09043 -0.09043 -0.08160 1.05217e – 11
0.2 -0.17264 -0.17264 -0.16320 2.00869e – 11  
0.3 -0.25486 -0.25486 -0.24480 2.96521e – 11  
0.4 -0.33707 -0.33707 -0.32640 3.92172e – 11
0.5 -0.41928 -0.41928 -0.40800 4.87824e – 11
0.6 -0.50149 -0.50149 -0.48960 5.87824e – 11  
0.7 -0.58370 -0.58370 -0.57120 6.79127e – 11
0.8 -0.66592 -0.66592 -0.65280 7.74779e – 11
0.9 -0.74813 -0.74813 -0.73440 8.70430e – 11
1.0 -0.82211 -0.82211 -0.81600 9.56517e – 11

Example 4.3 Consider the TFBSM equation [25,31]
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with the I.C. 
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Using the DSET on each side of Eq. 30 where Sz is a single ST, gives:
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from Eq. 32 and I.C. 31 we have:
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taking the inverse DSET S Ez t
- ( )( )1 w h x,  on Eq.33, gives:
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Now, use the iterative approach by assuming the following:
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substituting Eq. 35 in Eq. 34 we obtain the following:
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Finally, by using two parties of Eq.36, we obtain the repeated algorithm as the following: 
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+( ) -( ) - -( ) ( )t r max Az B r r zmax A
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Hence, the exact solution of Eq. 30 in a closed form is given by Eq. 29 when ² = 1, so Eq. 37 becomes 

w tz t max Az B e max A z e ert rt t, , ,( ) = -( ) - ( ) -( )-0 0 .

Figures 3(a)-3(b) presents the Absolute error, for example 4.3 in the case (a), ² = 1, t = 10, B = 10,  
¿  = 0.2, r = 0.25, (b), ² = 0.95, t = 10, B = 10, ¿ = 0.2, r = 0.25, while Table 3 displays the comparison 
between the AS acquired by the method described in reference [25], with present method DSETM for 
² = 1, t = 10.

�
Figure 3: Absolute error, for example 4.3. (a) in the case ² = 1, t = 10, (b) the case ² = 0.95, t = 10.

Table 3: The comparison of the approximate solution obtained by the solution FDTM in [25] when  
t = ² = 1 and different values of z, r = 0.25, ¿ = 0.2 and B = 10.

z Exact Our Method Method in [25] Absolute Error 
0.1 -0.02755 -0.02786 -0.01519 3.15410e – 04
0.2 -0.05260 -0.05320 -0.03039 6.02147e – 04 
0.3 -0.07765 -0.07854 -0.04558 8.88883e – 04 
0.4 -0.10019 -0.09808 -0.06077 1.17562e – 03  
0.5 -0.12775 -0.12921 -0.07597 1.46235e – 03 
0.6 -0.15279 -0.15454 -0.09116 1.74909e – 03  
0.7 -0.17484 -0.17988 -0.10635 2.03583e – 03  
0.8 -0.20289 -0.20522 -0.12155 2.32256e – 03  
0.9 -0.22794 -0.23055 -0.13674 2.60930e – 03 
1.0 -0.25044 -0.25335 -0.15193 2.86736e – 03  
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5.  Conclusion

This paper aimed to demonstrate the operations and methodology of DSET in predicting the behaviour 
of PDEs used in economics. In this instance, a well-known TFBSM model with economic significance 
was used. Three specific instances of TFBSM were examined. The put and call options varied in each 
instance, thus the ADM approach paired with the DSET was used to provide analytical solutions for 
three chosen situations of TFBSM. The results indicated that DSET is a very dependable technique 
for solving FPDEs. This document provides a visual depiction and analysis of each case. R2015a is 
used to generate all the figures. One notable observation from the graphs is that as time approaches 
infinity, the disparities between the solutions at various values increase or decrease based on the 
distinct parameter settings used in each scenario. The option price fluctuates significantly over time. 
There is significant variety, even in the smallest proportion of time. These examples show that find-
ing numerical solutions to TFBSM is straightforward when utilizing DSET. Hence, DSET is the most 
direct approach for solving FPDEs such as TFBSM. In the future, firm’s share prices may be analyzed 
using this approach and TFBSM to understand their real-life implications.
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