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Abstract

The theory of potentials has wide applications in singular integral operators and harmonic analysis. 
In this context, the Riesz potential inclusion theorems play an important role. Generalized Riesz 
potentials associated with the Laplace-Bessel differential operator are studied. The article investi-
gates the properties of functions given in the form of these potentials. Local integral Wp characteristics 
are used in the terms, and inequalities are established based on evaluations made in these terms. The 
weight functions used in the inequalities are treated as monotonic functions. 
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1. Introduction

The study of integral operators in terms of characteristics of type Wp, takes its origin from the works 
[1, 2], where the operators of classic Fourier harmonic analysis are considered.

In these studies, the starting point is to establish estimates connecting these characteristics of the 
image with the same characteristics of the prototype of the operator from a certain class.
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These estimates make it possible to prove completely new theorems about the properties of har-
monic analysis operators from a certain class in spaces introduced in terms of these characteristics 
(see. [3]).

In this work, similar studies are carried out for operators of harmonic Fourier-Bessel analysis.
The paper was devoted to establishing weighted inequalities for traces of function represented by 

the generalized Riesz potentials based on the estimates obtained in terms of Wp
x
s ks

t s
,
( )

,m  characteristics of 
locally summable functions.

Due to the generality of the approach, the results obtained in this paper also contain the case of 
classic Fourier harmonic analysis.

2. Some Designations and Preliminaries

Let Rn be a Euclidean space of dimension n and m, k ≥ 0, the integers, n m k Rm k k= + ³ =+
+1, ,  

{( ,..., ) : , ,..., }, ,x x R x i k R Rm k
m k

m i m
m

1 0 00 1+
+

+ +
+Î > = º . 

T u x
n k

y
g ,

( ( )) = c u x y x y x ym m m k m k
i

m k

kn

p p

a0 0 1 1
1

ò ò Õ¢ ¢- + + + +
=

+

... ( ,( , ),...,( , ) ) sinn , , ,,
g a am i

i i m k k
md x R x y R+ -

+
+Î Î¢ ¢1  be a 

generalized shift operator (GSO) generated by the Laplace-Bessel operator (see [4]): 

D = + +
æ

è
çç

ö

ø
÷÷+

= = +

+

å åB
i

m

i j m

m k

j

j

j j
mm k k

x
x x x x,

( ) ,
1

2

2
1

2

2
¶
¶

¶
¶

g ¶
¶

g ++ +> >1 0 0,..., ,gm k

( , ) cos , ,..., ,x y x x y y i k Cm i m i m i m i m i i m ii+ + + + + += - + =a na2 22 1  be a normalizing factor. In what follows, we 

assume g g g g g g
n k m m k m k k n k

i

k

m iR y n k
, , ,( ,..., , ,..., ) , , ,= Î = =+ + +

+

=
+å0 0 1

1
yy y d y y dy y Rm m k n k m k k

m m k n k
+ + +

++ +¼ = Î1
1g g gm, ( ) ,, ,

,  if .
The designation gn,k, n indicates the dimension of this vector, while k the amount of its positive coor-
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,
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When n = m + k ≥ 2 and s 2 {1, ..., n – 1}, we split the space Rn k,
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3. Main Part
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The obtained estimates allow to prove theorems completely new in content on generalized Riesz 

potentials in the spaces in introduced terms of W characteristics in weight Lp,g spaces (see [7,9]).
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Theorem 2 is proved.
In the case t = 1, Theorem 2 for the Riesz potentials associated with Laplace-Bessel differential 

operator in the appropriate setting was considered in [8,10].

5. Conclusions
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The second statement of the lemma is proved in the same way. 
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