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Abstract 
The dynamics of a Lotka-Volterra system of predator-prey type with time-dependent diffusive is 
studied. First, the existence and uniquely of positively global solution, uniform boundedness, and 
extinction are investigated. The analytical investigation uses a C0-quasi semi-group approach. The 
stabilities of the positively homogeneous steady states of the system are analyzed. Further, a simple 
analysis of Turing instability and Hopf bifurcation due to diffusion is also discussed that is confirmed 
by the bifurcation diagram.
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1. Introduction

The diffusive Lotka-Volterra system is a type of reaction-diffusion system that is still being devel-
oped today. At the beginning of its modeling, the Lotka-Volterra system did not involve the diffu-
sion process. Some applications of such systems in economics and banking system can be found in 
[1–4]. There have been many researches investigating the dynamics of the constant-coefficient dif-
fusive Lotka-Volterra system from various view-points and applications. Most of the investigations 
are concerned with the stability of the homogeneous steady states and bifurcations and also their 
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interpretation according to the applications, see [5–10]. The most of bifurcations discussed are Hopf 
bifurcation and Turing instability (the diffusion-driven bifurcation), see [11–17]. A slightly different 
analysis, Kirane [18] analyzes explicitly the dynamics of solutions of the diffusive Lotka-Volterra 
predator-prey system using a C0-semigroup approach.

A question rises, how is the dynamics of the Lotka-Volterra predator-prey system if the diffusion 
is dependent on time? In facts, there are many problems in the real problems that can be described 
by the model. For an example, Hess [19] has specifically initiated in establishing the sufficient condi-
tions for the existence of a positive periodic solution and a little discussion of the steady states of the 
system. There are still many aspects that can be investigated in further of the system, including the 
properties of solution and the stability-bifurcation of the steady states. The time-dependent diffusive 
Lotka-Volterra predator-prey system in one dimension is modeled as a system of partial differential 
equations:

 ut = k1(t)uxx + u(a1 − b1u − c1v),  (x, t) ∈ Ω × (0, ∞), 

 vt = k2(t)vxx + v(−a2 + b2u − c2v),  (x, t) ∈ Ω × (0, ∞), 
(1)

subject to the initial conditions

 u(x, 0) = u0(x),  v(x, 0) = v0(x),  x ∈ Ω, (2) 

where Ω is a domain in R, u, v are two populations occupying the domain Ω, ∂xx is the diffusion 
(one-dimensional Laplace operator), ai, bi, ci, i = 1, 2, are positive constants, and ki, i = 1, 2, are pos-
itive functions. The diffusion terms control the random movements of the individuals within one 
dimensional habitat. The well-posedness (existence, uniqueness, continuous dependence of solution) 
and the stability of system (1)–(2) are important characteristics that require further investigation.

Problem (1)–(2) can be considered as a non-autonomous abstract Cauchy problem:

 ẋ(t) = A(t)x(t),  t ≥ 0, 

 x(0) = x0,

where each A(t) is a densely closed operator in a domain of a Banach space. In this case, a strongly 
continuous quasi semigroup (C0-quasi semigroup) is the powerful tool to handle the non-autonomous 
abstract Cauchy problems. In this case, the family A(t) is conditioned to be the infinitesimal gen-
erator of a C0-quasi semigroup in a Banach space, see [20, 21]. Further, the C0-quasi semigroup 
can also be used to analyze the controllability, observability, stability and optimal control of a non- 
autonomous linear control system, see [22–25]. These facts confirm that the C0-quasi semigroup is an 
appropriate analytical tool to deal with problem (1)–(2).

This paper concerns on the global existence of solutions and the stability of steady states of sys-
tem (1)–(2). The rest of this paper is organized as follows. Section 2 is devoted to the global existence, 
positive, uniform bundedness and extinction of solution using the C0-quasi semigroup. The asymptot-
ical stability of steady states and its relationship to the solution are analyzed in Section 3. In Section 
4, the sufficiency for Turing instability, the critical condition of Hopf bifurcation, and the bifurcation 
diagram of the system under the certain parameters are investigated.

2. Positive solution, uniform boundedness and extiction

In what follows, let X be the space of boundedly uniformly continuous real functions on Ω ⊂ R 

endowed by the supremum norm ||f|| = supx∈Ω|f(x)|. It is well-known that the linear operator 
2

2( )ik t
x
∂
∂

 
generates the quasi semigroup of contraction Ri(t, s) on the Banach space X given by

 Ri(t, s)w = T (gi(t + s) − gi(t))w,  w ∈ X, (3)
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I is the identity operator on X and i = 1, 2. We see that u(t) = R1(0, t)u0 and v(t) = R2(0, t)v0 are the 
unique solutions of

 ut = k1(t)uxx,   t ≥ 0, 

 vt = k2(t)vxx,  t ≥ 0, 
(5)

subject to the initial conditions (2), respectively (Corollary 4 of [22]).
We also assume that the initial conditions u0 and v0 in (2) are the non-negative elements of X. 

We use the quasi semigroup approach as a generalization of the approach used in [18] to analyze the 
coexisting solution (u, v) of problem (1)–(2).

Theorem 2.1. Lotka-Volterra predator-prey system with time-dependent diffusive (1)–(2) has a 
uniquely nonnegatively globally classical solution.

Proof. By the uniqueness coexisting solution (u, v) of Cauchy problems (5) and Definition 5 of [22], 
there exists a τ0 > 0 such that problem (1)–(2) has a unique coexisting local mild solution (u, v) ∈ C([0, 
τ0], X) × C([0, τ0], X), i.e.,
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2 0 2 00
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τ

τ

= + − ∈
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∫
∫

where f (t) = u(t)[a1 b1u(t) c1v(t)] and g(t) = v(t)[ a2 + b2u(t) c2v(t)] for all t ∈ [0, τ0]. We verify that f, g ∈ 
C1([0, τ0], X). Theorem 4 of [24] implies that the local mild solutions u, v are the classical solutions.

Next, we prove the nonnegativity of the solutions. Let µ1 = inf{||u(t)||}; 0 ≤ t ≤ τ0}, µ2 = inf{||v(t)||; 0 ≤  
t ≤ τ0}, µ3 = sup{||u(t)||; 0 ≤ t ≤ τ0}, and µ0 = max{a1 + b1µ1 + c1µ2, a2 + b2µ3 + c2µ2}. Substituting v = eµ0tφ 
and u = eµ0tϕ into system (1)–(2) yields

 ϕt − k1(t)ϕxx + (µ0 − a1 + b1u + c1v) ϕ ≡ 0,  x ∈ Ω,  0 < t ≤ τ0, 

 φt − k2(t)φxx + (µ0 + a2 − b2u + c2v)φ ≡ 0,  x ∈ Ω,  0 < t ≤ τ0

with

 ϕ(x, 0) = u0(x) ≥ 0  and  φ(x, 0) = v0(x) ≥ 0,  x ∈ Ω.

Since u, v ∈ C([0, τ], X), µ0 a1 + b1u + c1v ≥ b1µ1 + c1µ2 ≥ 0 and µ0 + a2 b2u + c2v ≥ 2a2 > 0 for all t ∈ [0, τ0], 
the maximum principle (Lemma 4.1, p. 19 of [26]) implies that ϕ and φ are nonnegative. This gives 
the nonnegativity of u and v.

The solutions of problem (1)-(2) can also be represented by

 1 1 ( ) 2
1 0 1 1 10

( ) (0, ) ( , )[ ( ) ( ) ( )] ,
ta t a t su t e R t u e R s t s b u s c u s v s ds−= − − +∫  (6)

 
2 2 ( ) 2

2 0 2 2 20
( ) (0, ) ( , )[ ( ) ( ) ( )] .

ta t a t sv t e R t v e R s t s b u s v s c v s ds− − −= + − −∫  
(7)

The contraction of R1(t, s), the nonnegativity of u, v, and (6) give

 ||u(t)|| ≤ ea1t||u0||  for all  t ≥ 0, (8) 



Sutrima S, et al., Results in Nonlinear Anal. 7 (2024), 27–42.   30

The results from (7) and (8) give
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Gronwall’s inequality implies that

 ||v(t)|| ≤ ||v0||eb2||u0||h(t)  for all  t ≥ 0, (9)

where
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These show that the solutions u, v are global, i.e., (τ0 = +∞). The solutions also show the continuous 
dependence on the initial data.

The solution of problem (1)-(2) established in Theorem 2.1 is not always bounded as shown in the 
following lemma.

Lemma 2.2. If u0, v0 ≠ 0 and a1, b2 are large enough, then the coexisting solution (u, v) of problem (1)-
(2) grows exponentially as t → ∞.

Proof. If u0, v0 ≠ 0 and a1, b2 are positive, the results in (8) and (9) describe that the solution (u, v) is 
exponential.

Lemma 2.2 also confirms that the coexisting solution (u, v) is unbounded. However, we can make 
constraints for the parameters such that the solutions are bounded.

Theorem 2.3. If u0, v0 ∈ X, then

 ||u(t)|| ≤ ||u0||ea1t  for all  t ≥ 0, (10)

 ||v(t)|| ≤ e(b2ea1τ||u0||−a2)t||v0||  for all  t ∈ [0, τ ]. (11)

Further, if a1 = 0 and a2 > b2||u0||, then

 
lim ( ) 0.
t

v t
→∞

=

Proof. Substituting u = ϕea1t and v = φe−a2t into (1) gives

 ϕt = k1(t)ϕxx − (b1ea1tϕ2 + c1e−a2tϕφ), (12)

 φt = k2(t)φxx + b2ea1tϕφ − c2e−a2tφ2 (13)

with the initial data

 ϕ0(x) = u0(x),  φ0(x) = v0(x). (14)

By nonnegativity of ϕ and φ, (12) together with (14) give

 
1 22

1 0 1 1 10

1 0

( ) (0, ) ( , )[ ( ) ( ) ( )]

(0, )

t a s a st R t u R s t s b e s c e s s ds

R t u

φ φ φ ϕ−= − − +

≤
∫  (15)

for all (x, t) ∈ R × [0, ∞). This implies that

 ||u(t)|| = ea1t||ϕ(t)|| ≤ ||u0||ea1t for all  t ≥ 0.
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Next, by (15) and (13), we obtain

 φt − k2(t)φxx ≤ b2ea1t||u0||φ.

Transforming φ = eb2ea1τ||u0||tz on Ω × [0, τ] gives

 zt − k2(t)zxx ≤ 0, z(0) = φ(0) = v0.

This implies that

 z(t) = R2(0, t)v0,  t ≥ 0.

Therefore, ||φ(t)|| ≤ eb2ea1τ||u0||t||v0|| and

 ||v(t)|| = ||φ(t)||e−a2t ≤ e(b2ea1τ||u0||−a2)t||v0|| for all t ∈ [0, τ ]. (16)

Further, for a1 = 0 and a2 > b2||u0||, (16) implies that

 
lim ( ) 0.
t

v t
→∞

=

Theorem 2.4. If a1 = 0 and k1, k2 are positive functions such that g1, g2 ∈ X and supt≥0g1(t) ≥  
supt≥0g2(t), then the solution (u, v) of system (1)–(2) is globally bounded. Moreover,

 ||u(t)|| ≤ ||u0|| for all t ≥ 0, (17)

 2 1
0 0

1 2

( ) for all 0,≤ + ≥
b Mv t v u t
c M

 (18)

where Mi := supt≥0gi(t), i = 1, 2.

Proof. If a1 = 0, (10) gives (17). On the other hand, the equations in (6) and (7) can be written by
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 v(t) = e−a2tR2(0, t)v0 + b2V (t), (20)

respectively, where
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Conditions M1 ≥ M2 and (48) provide

 1
2 1
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MR t s w R t s w w X t s
M

 (22)

By the nonnegativity of u, (19) implies that
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1
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Equations (21), (22) and (23) give

 1 1
1 0

2 1 2

1( ) ( ) (0, ) for all 0.M MV t U t R t u t
M c M

≤ ≤ ≥  (24)

Therefore, (20) together with (31) imply (18).

Theorem 2.5. If system (1)-(2) satisfies the hypothesis in Theorem 2.4, then the solution (u, v) is glob-
ally bounded. Moreover,

 ≤ ≥0( )  0,u t u for all t  (25)
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Proof. The equations in (19) and (20) can also be represented as
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From (27), we have

 1 0
1
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b
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Results in (29) and (30) give

 1 1
1 0

2 1 2

1( ) ( ) (0, ) for all 0.M MV t U t R t u t
M b M

≤ ≤ ≥  (31)

We have proved the assertion.

Theorem 2.6. Let a2 = 0, M1 ≥ M2 and 0 ≤ a1 ≤ H(t) for all t ≥ τ, where H is a positively continuous 
function such that limt→∞ tH(t) = 0 for some τ > 0. The solution (u, v) of (1)–(2) is globally bounded. 
Moreover,

 ≤ ≥ >0( )  0,  0,u t c u for all t for some c  (32)

 ≤ + ≥2 1
0 0

1 2
( )  0.b Mv t v u for all t

c M
 (33)
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Proof. If there exists τ > 0 such that a1 ≤ H(t) for all t ≥ τ , where H is a positively continuous function 
such that limt→∞ tH(t) = 0, then (10) gives (32) where c = eτH(τ).

Next, if a2 = 0, (6) and (7) give

 1 1 2
1 0 1 1 10

( ) (0, ) ( , )[ ( ) ( ) ( )] ,
ta t a su t e R t u e R s t s b u s c u s v s ds− = − − +  ∫  (34)

 2
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t

v t R t v R s t s b u s v s c v s ds= + − −∫  (35)

respectively. Since u is nonnegative, (34) implies that

 1 2
1 1 1 1 00
( , )[ ( ) ( ) ( )] (0, ) .

t a se R s t s b u s c u s v s ds R t u− − + ≤∫  (36) 

Further, since b1, c1 > 0 and the function f(s) = e–a1s is decreasing on [0, t], (36) gives
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Therefore, inserting (22) into (35) we obtain

 
2 1

2 0 1 0
1 2

( ) (0, ) (0, ) .b Mv t R t v R t u
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This proves (33).

Remark 2.7. Theorem 2.6 can be modified in the sense of Theorem 2.5. Moreover, we note that all the 
theorems above are still valid for a1 = a2 = 0.

The following theorem gives the conditions of extinction. The result shows that the extinction of 
predators is strongly influenced by the initial condition. Naturally, the extinction of predators occurs 
due to the limited supply of prey.

Theorem 2.8. If a1 = c2 = 0 and 0 ≤ u0(x) < a2/b2 for all x ∈ Ω, then the solution (u, v) of (1)–(2) satisfies

 ||u(t)|| ≤ ||u0||  for all  t ≥ 0, (37)

 ||v(t)|| ≤ ||v0||  for all  t ≥ 0. (38)

Moreover, if there exists 0 < γ < a2/b2 such that u0(x) < γ for all x ∈ Ω, then

 ||v(t)|| ≤ e−(a2−γb2)t||v0|| for all t ≥ 0. (39)

Proof. If a1 = 0, (6) gives

 2
1 0 1 1 10

( ) (0, ) ( , )[ ( ) ( ) ( )] .
t

u t R t u R s t s b u s c u s v s ds= − − +∫  (40)

Since u0 < a2/b2, (40) implies that

 u(t) ≤ R1(0, t)u0 < R1(0, t)(a2/b2) = a2/b2  for all  t ≥ 0 

that also proves (37). We define a linear operator B(t) := –a2 + b2u(t) on X. Therefore, for c2 = 0 the 
second equation of (1) can be written by

 vt(t) = [k2(t)∆ + B(t)]v(t). (41)

The dissipativity of B(t) for all t ≥ 0 implies that there exists a contraction quasi semigroup R(t, s) on X 
generated by k2(t)∆+ B(t), Theorem 3 of [23].
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Moreover, the problem (41)-(2) has a solution

 v(t) = R(0, t)v0  for all  t ≥ 0.
This proves (38).

If u0 ≤ γ < a2/b2, again from (40), we have u(t) ≤ γ. Further, −a2 + b2u(t) < −a2 + γb2 < 0 for all t ≥ 0. 
Therefore, (41) can be rewritten by

 vt(t) = [k2t)∆ + B(t) + ωI]v(t) − ωv(t), (42)

where ω := a2 – γb2 > 0. Since B(t) + ωI is a dissipative operator on X, operator k2(t)∆+ B(t) + ωI gener-
ates a contraction quasi semigroup G(t, s). Therefore, the quasi semigroup R(t, s) generated by k2(t)∆ 
+ B(t) can be represented by

 R(t, s) = e−ωsG(t, s)  for all  t, s ≥ 0.

Thus, the solution of (42)-(2) is given by

 v(t) = R(0, t)v0 = e−ωtG(0, t)v0  for all  t ≥ 0. (43) 

The result in (37) follows from (43).

Similar to Theorem 2.8, we have the following theorem.

Theorem 2.9. If a2 = b1 = 0 and v0(x) > a1/c1 for all x ∈ Ω, then the solution (u, v) of (1)-(2) satisfies

 ||u(t)|| ≤ ||u0||  for all  t ≥ 0.

Moreover, if there exists κ > a1/c1 such that v0(x) > κ for all x ∈ Ω, then
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κ

− −
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1 1
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u t e u for all t

v t e v for all t
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Proof. The proof is similar with the proof of Theorem 2.8 with the fact

 v(t) ≥ R2(0, t)v0 ≥ R2(0, t)(a1/c1) = a1/c1 for all t ≥ 0,

the operator B(t) is defined by B(t) := a1 – c1v(t) and the first equation of (1) is written by

 ut(t) = [k1(t)∆ + B(t)]u(t).

If ω := κc1 − a1 > 0, we have the solution

 u(t) = R(0, t)u0 = e−ωtG(0, t)u0 for all t ≥ 0. (45) 

Substitution (45) into (35) gives

 2 0 2 2 00
( ) (0, ) ( , ) (0, ) ( ) .

t sv t R t v b R s t s e G s u v s dsω−≤ + −∫  

Finally, Gronwall’s equation provides

 

2
0
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b u

v t v e ω≤
 

that proves (44).

Remark 2.10. Theorem 2.8 deals with system
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= ∆ + − + ∈Ω× ∞
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 (46)
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subject to the initial conditions

 u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω. (47)

We see that (a2/b2, 0) is a semi nontrivial steady state of system (46)-(47). Theorem 2.8 interprets that 
if the initial value of prey u0 is less than the steady state a2/b2, then the population of predators will 
be extinct for a long time (v = 0). Similarly, Theorem 2.9 can be also interpreted for the related system.

3. Stability of system

To analyze the stability, we consider system (1)–(2) subject to the no-flux boundary on the regular 
boundary ∂Ω with the spatial state Ω := [0, ℓ].

Therefore, the Lotka-Volterra system (1)-(2) can be written by

 ut = k1(t)uxx + f (u, v),  (x, t) ∈ (0, ℓ) × (0, ∞),

 vt = k2(t)vxx + g(u, v),  (x, t) ∈ (0, ℓ) × (0, ∞), (48)
 ux(0, t) = ux(ℓ, t) = 0,  vx(0, t) = vx(f, ℓ) = 0,  t > 0,

 u(x, 0) = u0(x),  v(x, 0) = v0(x),  x ∈ Ω,

where f (u, v) = u(a1 – b1u – c1v) and g(u, v) = v(–a2 + b2u c2v). The no-flux boundary condition indi-
cates that the system is self-contained within the one dimensional habitat with no population flux 
across the boundary. Let (us, vs) be the steady state to system (48) without diffusions (i.e. with k1 = 
k2 = 0), that is us, vs satisfy f (us, vs) = g(us, vs) = 0. Straightforward computation gives four homoge-
neous steady states Si(us, vs), i.e.,

 1 2 1 2 2 1 1 2 2 1
1 2 3 4

1 2 1 2 2 1 1 2 2 1
(0,0), ,0 , 0, , , .a a a c a c a b a bS S S S

b c b c b c b c b c
     + −
     + +     

 (49)

Therefore, for system (48) without the diffusion, the standard analysis implies:

 S1 is unstable,

 S2 is asymptotically stable if a1/a2 < b1/b2, (50)
 S3 is asymptotically stable if a1/a2 < c1/c2,

 S4 is asymptotically stable if a1/a2 > b1/b2 and c1 > c2.

We know that each Si is also the homogeneous steady state for system (48). Henceforth, whether 
the diffusion in a spatially distributed system can destabilize the stable steady states. To analyze 
this situation, we consider a small perturbation of the steady states,

 u(x, t) = us + a(x, t), v(x, t) = vs + b(x, t) (51)

where a, b are small. Linearizing the functions f , g in (48) at (us, vs) using a Taylor series gives

 at = k1(t)axx + (a1 − 2b1us − c1vs)a − c1usb, (52)

 bt = k2(t)bxx + b2vsa + (−a2 + b2us − 2c2vs)b. (53)

 ax(0, t) = ax(f, t) = 0, a(x, 0) = u0(x) − us, x ∈ Ω, t > 0, (54)

 bx(0, t) = bx(f, t) = 0, b(x, 0) = v0(x) − vs, x ∈ Ω, t > 0. (55)

Since the perturbation functions have to satisfy the linear diffusion equation together with the 
related initial values, then the perturbations are decomposed into a set of sines and cosines functions 
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of various spatial frequencies. Further, since system (48) has Neumann boundary conditions, we 
have to use cosines functions. Therefore, using Fourier series, the perturbations can be written as

 ( , ) ( ) cos , ( , ) ( ) cosq q
q q

a x t t qx b x t t qxα β
∈ ∈

= =∑ ∑
 

 (56)

Substituting (56) into the linearized system (52)-(54) and canceling out a common factor of cos qx, for 
each q leads to the system

 
( ) ( )

,
( ) ( )

q q
q

q q

t t
J

t t
α α

β β

 
  
 

 
=   

 





 (57)

where

 11 12 12

21 22 2

( ) 0
, , ,

0 ( )q
k t

J J q D J D
k t

α α
α α
   

= − = =   
   

 (58)

and
 α11 = a1 − 2b1us − c1vs, α12 = −c1us

 α21 = b2vs, α22 = −a2 + b2us − 2c2vs.

The stability of system (57) (so does (52)) can be studied from the eigen-values λq of the matrix Jq. 
Matrix Jq in (58) reduces to a quadratic characteristic equation

 λ2 − tr(Jq)λ + det(Jq) = 0, (59)
where
 tr(Jq) = tr(J) − tr(D)q2, (60)

 det(Jq) = det(D)q4 − [α11k2(t) + α22k (t)]q2 + det(J).

We note that the sufficient condition for the steady state (us, vs) is asymptotically stable if all the 
eigenvalues λ of equation (59) have negative real parts. The basic theory gives that the real parts of 
the eigenvalues of equation (59) are all negative if and only if

 tr(Jq) < 0 and det(Jq) > 0. (61) 

Evaluation (60) at the steady state S1 gives:

 tr(Jq)|S1 = a1 − a2 − tr(D)q2,

 det(Jq)|S = det(D)q4 − [a1k2(t) − a2k1(t)]q2 − a1a2.

The last is a quadratic form in q2, so the requirement det(Jq)|S > 0 forces the its discriminant is nega-
tive. However, the discriminant d = (a1k2(t) + a2k1(t))2 is always positive for all t ≥ 0. Thus, the steady 
state S1 also remains unstable for system (48).

Theorem 3.1. Points S2, S3 and S4 in (49) under conditions (50) are the asymptotically stable steady 

states of system (48). Also, an additional condition to S4 is 
1 1

2 2

( )
( )

k t c
k t c

<  for all t ≥ 0.

Proof. We simply prove that tr(Jq)|Si
 < 0 and det(Jq)|Si

 > 0 for all i = 2, 3, 4. First, evaluation (60) at 
the steady state S2 gives

 
( )

2

2

22 1 1 2
1

1
2

21 1
2 1 1 2 1 2

1

tr( )| tr( ) ,

( )det( )| ( ) .

q S

q S

a b a bJ a D q
b

a k t qJ a b a b b k t q
b

−
= − − −

 +
= − +  
 
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Condition a1b2 < a2b1 guarantees that tr(Jq)|S2 < 0 and det(Jq)|S2 > 0.
Evaluation (60) at the steady state S3 provides

 
( )

3

3

22 1 1 2
2

2
2

2 2 2
2 1 1 2 2 1

2

tr( )| 3 tr( ) ,

3 ( )det( )| ( ) .

q S

q S

a c a cJ a D q
c

a k t qJ a c a c c k t q
c

−
= − − −

 +
= − +   

 

Condition a1c2 < a2c1 implies that tr(Jq)S3
 < 0 and det(Jq)S3

 > 0.
Finally, evaluation (60) at the steady state S4 gives

 

4

4

21 2 1 2 2 1 1 2

1 2 2 1

4 2
2 1 1 2 2 1 1 2 1 2 2 1

1 2 2 1

1 2 2 1 1 2 2 1

( ) ( )tr( )| tr( ) ,

1det( )| det( ) ( ( ) ( )) ( ( ) ( ))

( )( ) .

[
]

q S

q S

a c b b a b c cJ D q
b c b c

J D q a b c k t c k t q a c b k t b k t
b c b c

a b a b a c a c

+ + −
= − −

+

= + − + +
+

+ − +

Condition c1 > c2 ensures that tr(Jq)|S4
 < 0. Since a1b2 > a2b1, the requirement det(Jq)|S4

 > 0 leads 
1 1

2 2

( )
( )

k t c
k t c

<  for all t ≥ 0.

Remark 3.2. Theorem 3.1 confirms that the sufficiency for the stability of steady state S4 is the ratio 
of the diffusivity of system is uniformly bounded by c1/c2.

Theorem 3.3. If (us, vs) is the asymptotically stable steady state of system (48) and (u, v) is the solu-
tion of the system, then limt→∞(u(x, t), v(x, t)) = (us, vs).

Proof. From (51), we sufficiently prove that limt→∞(a(x, t), b(x, t)) = (0, 0). Since we focus on the non-
negative solution (u, v), (51) implies that a and b are nonnegative. In virtue (6) and (7), the solutions 
of problems (52)-(53) and (54)-(55) can be presented by

 11 11 ( )
1 0 1 10

( ) (0, )( ) ( , ) ( ) ,
tt t

s sa t e R t u u c u e R t b dα α τ τ τ τ τ−= − − −∫  (62)

 22 22 ( )
2 0 2 20

( ) (0, )( ) ( , ) ( ) ,
tt t

s sb t e R t v v b u e R t a dα α τ τ τ τ τ−= − + −∫  (63)

respectively. The contraction of R1(t, s) and the nonnegativity of a, b, (62) gives

 ||a(t)|| ≤ eα11t||u0 − us||  for all  t ≥ 0. (64) 

Moreover, by the contraction of R2(t, s), (63) together with (64) give

 ( )22 11 22 0
0 2

11 22
( ) st t t

s s
u u

b t e v v b u e eα α α

α α
−

≤ − + −
−

 (65)

for all t ≥ 0. Since α11 and α22 are negative under the stability conditions (50) for each the steady states 
Si, i = 2, 3, 4, equations (64) and (65) prove that limt→∞ a(x, t) = 0 and limt→∞ b(x, t) = 0, respectively.

Alternative proof. We use directly the assumptions in (56). First, solving the homogeneous equa-
tion of (52) subject to the initial and boundary value (53) using the variable separation method and 
the Duhamel principle, we obtain the solution of problem (52)–(53)

 
1 00

( , ) ( ) ( ) ( , ) cos ,
t

n s n n
n

a x t w t c u w t b x d xτ τ τ λ
∞

=

 = − − 
 ∑ ∫
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where

 
2

1 11( )
00

2, ( ) , ( ) cos .n g t t
n n n n s n

n w t e u u xdxλ απλ ω ω λ− += = = −∫


 

Form (56), the positivity of c1, us and b gives αλn (t) wn(t) for all t ≤ 0. Further, since α11 is negative 
under the stability conditions (50) for each the steady states Si, i = 2, 3, 4, we have limt→∞ wn(t) = 0 for 
all n. Therefore, limt→∞ αλn (t) = 0 for all n which provides

 lim ( , ) 0.
t

a x t
→∞

=  (66)

Analogue to system (54)–(55), we have the solution

 
2 00

( , ) ( ) ( ) ( , ) cos ,
t

n s n n
n

b x t z t b u z t a x d xτ τ τ λ
∞

=

 = + − 
 ∑ ∫

 

where

 
2

2 22( )
00

2( ) , ( ) cos .n g t t
n n n s nz t d e d v v xdxλ α λ− += = −∫





From (56), (57) and (66), we can write αλn
 (t) = ene−γnt for some γn > 0 and en. Therefore, by the orthogo-

nality of cos λnx , the solution b(x, t) can be written by

 
2 00

( , ) ( ) ( ) cos ,n
t

n s n n n
n

b x t z t b u z t e e d xγ ττ τ λ
∞

−

=

 = + − 
 ∑ ∫

Let 2 0
( ) ( ) ( ) n

t
n n s n nf t z t b u e z t e dγ ττ τ−= + −∫ , by a slightly computations of the integral, we obtain

 

2
2 22( )2

2
2 22

( ) ( ) .
( )

n ng t t ts n
n n

n n

b u ef t z t e e
k t

λ α γ

λ α γ
− + − = + −  − + +

Since α22 < 0, we have fn(t) 0 as t . This proves lim ( , ) 0
t

b x t
→∞

= .

Remark 3.4. We see that Theorem 3.3 holds only when (us, vs) is stable. In fact, S1 is unstable steady 
state and from (64) and (65), we have (a(t), b(t)) → (∞, ∞) as t → ∞.

4. Bifurcation analysis

In this section we will briefly review the bifurcation analysis of system (48). The results in (61) imply 
that the steady state of system (48) is unstable if

 tr(Jq) ≥ 0 or det(Jq) ≤ 0 for some q.

In this context, we shall investigate the existence of Turing instability and Hopf bifurcation at the 
non trivial steady state. From (60) if the steady state is asymptotically stable, then the addition of 
diffusion cannot change the condition tr(Jq) < 0. Therefore, the diffusion-driven instability (Turing 
instability) only depends on the change of sign of the determinant det(Jq). Thus, Turing instability 
occurs under two conditions: (i) The steady state is stable in the absence of diffusion; (ii) The pres-
ence of diffusion destabilize the stable steady state (det(Jq) < 0 for some q). On the other hand, Hopf 
bifurcation occurs under the condition tr(Jq) = 0 and det(Jq) > 0 for some q.
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The critical condition of Turing instability is det(Jq) = 0 for some q. The determinant det(Jq) is a 
quadratic polynomial in q2 which attains a minimum if

 
2 11 2 22 1
min

( ) ( ) , 0
2det( )

k t k tq t
D

α α+
= ≥

 

with the minimum

 

( )
2
min

2
11 2 22 1( ) ( )

det( )| det( ), 0.
4det( )q q

k t k t
J J t

D
α α+

= − + ≥

Therefore, the critical condition for Turing instability is

 2 det( ) .
det( )T

Jq
D

=  (67)

Substituting q2
T into det(Jq) < 0 gives

 (α11k2(t) + α22k1(t))2 ≥ 4 det(J) det(D),  t ≥ 0.

This result can be simplified as

 (α11 + α22k(t))2 ≥ 4k(t) det(J),  t ≥ 0,

where k(t) := k1(t)/k2(t). This gives Turing curve defined by

 (α11 + α22k(t))2 = 2k(t) det(J),  t ≥ 0. (68)

The critical threshold of the ratio of diffusions kcr(t) is found by solving this equation for k(t), which 
the Turing instability starts.

The above analysis gives the conditions for Turing instability.

Lemma 4.1. System (48) around the steady states Si, i = 2, 3, 4 occurs Turing instability if

(a) tr(J) < 0,
(b) det(J) > 0,
(c) (a11 + a22k(t))2 4k(t) det(J), t ≥ 0.

Henceforth, substituting q2
T in (67) into tr(Jq) in (60) gives

 

det( )tr( ) tr( ) ( ( ) 1) .
( )q

JJ J k t
k t

= − +
 (69)

Therefore, by keeping any two parameters (for example a1 and k(t)) and taking fixed for the others, 
then solving the equations of (68) and tr(Jq) = 0 in (69), we have the critical conditions of Hopff bifur-
cation a1H and Turing bifurcation kT (t).

Now, we give the numerical simulation results of the spatiotemporal model (48) for parameter 
values within the Turing and Turing-Hopf domain.

Example 4.2. Set the parameter values a1 = 1, a2 = 0.25, b1 = 0.3, b2 = 0.1, c1 = 0.4, and c2 = 0.1 in sys-
tem (48). There is Turing instability around the homogeneous steady state.

We obtain the coexisting homogeneous steady state S4(2.8571, 0.3571). Since the first two con-
ditions of Lemma 4.1 are satisfied, S4 is asymptotically stable for the temporal counterpart. For 
the chosen parameter values, we find two critical thresholds kcr1

 (t) = 3.3360 (approx) and kcr2
 (t) = 

172.6640 (approx) for all t ≥ 0. However, Theorem 3.1 implies that the feasible critical point is kcr1
. 
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Therefore, if 0 < k(t) ≤ kcr1
 for all t 0, the third condition of Lemma 4.1 is satisfied. It means that the 

diffusivity of prey and predator destabilize the homogeneous steady state S4. In other words, for 0 
< k(t) ≤ kcr1

 for all t ≥ 0, the heterogeneous perturbations lead to Turing bifurcation. Further, from 
Theorem 3.1, the diffusions to destabilize the stable steady state S4 in interval 0 < k(t) < 3.3360 for 
all t ≥ 0 and a1 = 1, see Fig. 1.

The existence and non-existence of Turing bifurcation depend solely on the values of chosen 
parameters under the model consideration. In the following example, we will construct the Turing 
bifurcation diagram choosing a1 and k(t) as the bifurcation parameters, i.e. as the controlling param-
eters to obtain different spatiotemporal patterns.

Example 4.3. Turing bifurcation diagram in (a1, k(t))-plane of system (48) for the parameter values 
a2, b1, b2, c1, c2 as in Example 4.2 consists of four regions bounded by the Turing bifurcation and Hopf 
bifurcation curves. See Fig. 1.

A little computation gives the critical conditions of Hopf bifurcation a1H
 = 2.0017 (approx) and 

Turing bifurcation kT (t) = 1 (approx). The bifurcation diagram consists of two bifurcation curves, 
namely Turing bifurcation curve (blue curve) and temporal Hopf bifurcation curve (red line), see Fig. 
1. The coexisting steady state S4 for the temporal and spatiotemporal perturbations of system (48) 
is stable when (a1, k(t)) ∈ D1 and losing the stability through the Hopf-bifurcation at a1H

. The Hopf 
region is given by D2 which the temporal perturbation is unstable. The Turing instability region is 
the region lying below the Turing bifurcation curve (i.e. D3 ∪ D4). Region D4, the Turing region lying 
in the region a1 > a1H

 is the Turing-Hopf region where temporal and spatiotemporal perturbations 

Turing bifurcation curve

D2D1

D4D3

TH

0
0 1 2

k(
t)

a1

3 4

1

2

3

4

Hopf bifurcation curve

Figure 1. Bifurcation diagram of system (48) in (a1, k(t))-plane for a2 = 0.25, b1 = 0.3, b2 = 0.1, c1 = 0.4, and c2 = 0.1. The 
stable region is denoted by D1, which is bounded by the blue and red curves; D2-Hopf region; D3-Turing region; D4-Turing-

Hopf region; TH is the critical Turing–Hopf bifurcation point.
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are both unstable. The Turing–Hopf bifurcation occurs at the intersection point TH. From Theorem 
3.1, the interval of stability of the diffusion for k(t) is (1, 4). Therefore, the diffusion-driven instability 
occurs when 0 < k(t) < 1 for all t ≥ 0.

Remark 4.4. (a) In Example 4.3, we actually have another critical condition of Hopf bifurcation, 
namely a1H

 = 0.75 (approx). However, for a1 < 0.75, tr(Jq)|a1
 has a negative real part, so the steady state 

S4 remains stable.
(b) We note that the critical functions of Turing bifurcation kcr and kT are constant (independent of 

time) due to other parameters as well. Also, the diffusion-driven instability occurs, if the ratio of diffu-
sivity k(t) is uniform bounded.
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