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Abstract
This research examines the stability of periodic motion for a physics application, which results in 
a second order differential equation for systems, such as the double and spherical pendulums. The 
stability of the equilibrium modes is analysed using the Libanov and Getayer methods, along with 
the principle of energy conservation. Moreover, this study describes the periodic motion and explains 
the phase-level solution paths and the stability conditions for the double and spherical pendulums by 
using the MATLAB program.
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1. Introduction

In real-world scenarios, numerous physical phenomena are controlled by second order differential 
equations and periodic motion, such as in the motion of a simple pendulum. The simple pendulum is a 
special case of the spherical pendulum. The pendulum has been a subject for the discovery of differen-
tial, and its invention is credited to Galileo. The study of pendulums was later continued by Christian 
Huygens. Huygens invented the clock with a pendulum, based on Galileo’s research. However, scien-
tist Ibn Yuns-Al Mary, who passed away in 1009 AD, had also invented the pendulum and used it to 
measure time with precision and calculate time periods during monitoring. The dynamism of the pen-
dulum has broadened its scope to encompass modem technology, leading to the discovery that certain 
chemical systems exhibit behaviours similar to a pendulum. This expansion is progressively growing 
to include organic psychological forecasting and economic medicine.
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where θ  is the angle that the pendulum makes with the plumb.
Equation (1) has additional conditions that are not expressed within the equation. In mechanics, 

these conditions pertain to the initial position (Xo) at time t o=  and the initial velocity (Vo) at time t o=  
for a moving body. Certain characteristics of the solution can be established by incorporating these 
initial conditions to the differential equation. This process is referred to as the initial value issue and 
serves as a model for physical problems, with time t being the independent variable [1].

The significance of the field of mechanics is widely acknowledged, not only in our current era but 
also throughout history. Mechanics, referred to as the ‘science of tricks’ by the Arabs, is a fundamen-
tal component of our civilization’s advancement. This branch of natural science centers around the 
study of body movement, with a focus on the transition from stillness to motion. Amongst these con-
tributions to mechanics are the renowned three laws of motion and Newton’s laws, which continue to 
be one of the most significant scientific achievements to this day.

Numerous types of movements exist, one of which is referred to as periodic movement. Examples 
of periodic movement include the swinging of a pendulum, the earth’s rotation on its axis, and the 
vibration of an object at the end of a spring [2].

Stability is an increasingly significant concept in modern engineering mathematics. The concept of 
stability originated from physics. Accordingly, numerous studies emerged concerning periodic motion 
and the various types of pendulum motion, along with the exploration of their stability.

Chinnery and Hall [3] studied the stability of the periodic motion of a solid body attached to the tip 
of a spring in its waning state using the Laypunov–Schmidt method.

Corinaldesi [4] discovered the movement of the spherical pendulum and demonstrated that the 
equation that describes this movement is in the following form:
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Winter [5] illustrated the periodic motion of a simple pendulum by using the MATHLAB program and 
obtained a numerical solution by using the fourth-order Range–Kutta method.

In 2005, Caiado and Sarycher demonstrated the instability of the equilibrium position of the double 
inverted pendula by applying the principle of linear approximation. Simmons and Krantz [2] pre-
sented an equation that describes the periodic movement of a pendulum connected by a spring, which 
takes the following form:

mX mg X K X X
¨

,1 1 1 2�
�

� �� �


mX mg X K X X
¨

.2 2 1 2�
�

� �� �


Thus, research in this field continued to advance.

2. Double Pendulum

Double pendulum is a system consisting of two pendulums, with one suspended from the other. The 
lengths of the two pendulums, denoted as 1 and 2, are connected by two masses: m1 for the first pen-
dulum and m2 for the second pendulum. The pendulum makes two perpendicular angles, namely, θ1 
and θ2 [6]. This concept is illustrated in Figure (1).

Where
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The kinetic energy resulting from the motion of mass m1 is expressed as follows:

T m1 1
2
1
21

2
� � �� . (2)

The kinetic energy resulting from the motion of mass m2 is expressed as follows:

T m x y2 2 2
2

2
21

2
� �� �  .� (3)

The potential energy of the system is determined according to Equations (5) and (6):
T T T� �1 2 ,

such that:
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The potential energy stored in mass m1 is expressed as follows:
E m gy1 1 1= . (5)

The potential energy stored in mass m2 is expressed as follows:
E m gy2 2 2= .� (6)

The potential energy of the system is determined by using Equations (5) and (6):
E E E� �1 2 ,

such that:
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Lagrangian equations are used to obtain the system of motion of the double pendulum:
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Figure 1. Double pendulum
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Using Euler–Lagrange equation for θ1 yields:
d
dt

L L�
�
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0.� (8)

Given that:
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substituting Equations (9) and (10) into Equation (8) yields:
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Euler–Lagrange Equation is used to determine θ2: 
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substituting Equations (13) and (14) into Equation (12) yields:
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After dividing both sides by 2 and making simplifications, the following expression is obtained:
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The equation of motion θ
¨
1 is determined by simultaneously solving Equations (11) and (15). To 

achieve this task, Equation (15) is multiplied by cos � �1 2�� �, resulting in Equations (11) and (15) 
being expressed in the following form:
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The equation of motion force θ
¨
1 is obtained in the following form by simplifying the two equations:
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To obtain the equation of motion, Equations (11) m2 1 2cos � ��� �� � and (15) are multiplied by � �� �� �m m1 2
. Accordingly, the two equations become:
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The equation of motion θ
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2 is obtained in the following form by simplifying the two equations:
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Equations (16) and (17) represent the double pendulum motion system.
3-Studying the stability of the motion of the double pendulum using Libanov’s theory

3. Theoretical Aspect

In the case of the double pendulum, a method called the direct Lipanov method or the second Lipanov 
method was developed by Laypunov to study the stability of the solutions to nonlinear differential 
equations without directly solving the problem. Libanov’s first stability theorem states that [7]:

Consider the following differential system:
dx
dt

f t x x x i ni
i n� �� � � �, , , , ; , , ,1 2 1 2�

.
Let V x x x1 2, , ,�� �n  be a function, referred to as the Libanov function, and xi ≡ 0 a fixed equilibrium 

point that satisfies the following conditions near the origin:
The first condition is:

V x x x V1 2 0 0, , , . n and� � � �

Only when x = 0, function V has a strictly defined minimum limit at the origin.
The second condition is:

dv
dt

v
x
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n
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1 2 00. , , , , ; .

Then, equilibrium point xi ≡ 0 is stable:
This theory represents a generalization of the physical principle that states that:In energy-con-

serving physical systems, a particle is considered to be in a stable position when its potential energy 
is reaches its minimum value. The research results were obtained on the basis of this theory.

In the case of the double pendulum, our initial goal is to convert the system of motion from a sec-
ond-order system to a differential system by using the following hypotheses:



Neamah KA, Results in Nonlinear Anal. 6 (2023), 83–96. 88
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The equivalent system is expressed in the following form:
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The total energy V y y y y1 2 3 4, ,� � is determined by utilising Equations (4) and (7) for the kinetic and 

potential energy, respectively. The definite Libanov function is also considered to be positive:
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Thus, the above-mentioned conditions indicate the requirements for ensuring the stability of the 
movement of the double pendulum.

4. Practical Aspect

Figures (2) and (6) were generated using the MATLAB program, which help in illustrating the peri-
odicity motion, phase levels, and the stability state of a double pendulum:

5. Spherical Pendulum

The movement of the spherical pendulum follows a periodic trajectory, which was discovered by 
the Dutch physicist Christian Huygens. The spherical pendulum is a an example of a classic bound 
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motion, where a sphere of mass (m) is attached to the an inelastic string of length () and can freely 
move in any direction around a fixed point.

The spherical pendulum moves in three dimensions ( , , )x y z , represented by the Cartesian coordi-
nates, and ( , , )r � � , the spherical coordinates, which provide two degrees of freedom for the spherical 
pendulum, namely, θ  and φ  [8]. The expressions for the kinetic energy equations and latent are 
derived by using spherical coordinates while keeping r = =  constant. The following expressions are 
also considered:

x
y
z

�
�
�

�
�
� �







sin cos
sin sin
cos

� �
� �
�

Accordingly, the potential energy is:
E mgz= ,

Figure 2: Solution path θ1( )t  for the double pendulum motion at

( , ,� � �'� � �1 2 10 0 1 0 2o� � � � � � � � � and

�2 0 0' )� � �  and ( )0 5≤ ≤t

Figure 3: Solution path θ2( )t  for the double pendulum motion at ( , ,� �'� � �1 2 10 0 1 0 2o� � � � � � � � � and� 
�2 0 0' )� � �  and ( )0 5≤ ≤t
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Figure 4: Solution paths for the motion of the double pendulum at
( )� � �1 1t  

Figure 5: Double pendulum motion at
( , ,� , , )m m g1 2 1 22 1 5 6 32= = = = =   and ( )� � �2 10t

Figure 6: Phase place of double pendulum motion at (−2 ≤ t ≤ 2)
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such that:
E mg� � cos�

and the kinetic energy is expressed as follows:

T m x y z� � �� �1
2

2 2 2
  

.
After simplication, the following expression is obtained:

T m� �� �1
2

2 2 2 2� � �� � �sin ��. (19)

The Lagrangian equations are used to obtain the system of motion of the spherical pendulum:
L T E� � ,

such that:

L m mg� �� � �1
2

2 2 2 2� �� �� � � �sin cos .

Applying the Euler–Lagrange equation yields:
d
dt

L L

d
dt

L L

�
�

�
�
�

�

�
�

�
�
�

�

� �

� �

0

0

,

,'

such that:

� � � � �

� �� �

¨

¨

sin sin cos

cot �����������������������

�
�

�

� �

g
�

�

� �

2

2 ��

�

�
�

�
�

(20)

The differential system (20) represents the spherical pendulum motion system.
Studying the stability of the motion of the spherical pendulum using the Getayer method

Figure 7: Spherical pendulum
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6. Theoretical Aspect

In the case of a spherical pendulum, mathematician Chetayer proposed the construction of the Libanov 
function with the help of form integrals:

V F F F F B F F B Fm m m� ��� �� � � ��� �� � ��� �� � �� �1 1 1 1 1
2

1
2 20 0 0( ) ( ) ( )  m m ���� ��Fm

2 0( ) ,

where � � �1 2, , ,� m  and � �1, ,� m are the optional constants. 
Accordingly, if β j ,� jλ  (where j m� �1, , ) is chosen such that V is a positive determinant function, then 

all the conditions of Libanov’s theory of stability would be satisfied. Chetayer’s method for construct-
ing the Libanov function using integrals is a highly effective method. In the case of a spherical pendu-
lum, its motion in influenced by inherent gravity forces, and it has an axis φ  periodic. Furthermore, 
kinetic energy [9-16] depends on the speed φ  and is independent on the axis φ . Meanwhile, the forces 
acting on the pendulum along these exes are equal to zero, indicating that:

�
�

�
E
�

0.

Accordingly, the differential system (20) has two integrals, which can be expressed using Equations 
(18) and (19):

T E g h

T n

� � �� � � �

�
�

� �

�

�
��

�
�
�

� �
�

� � � �

�
� �

2 2 2

2 2

2sin cos

sin'

, (21)

where h and n are constants. 
Assuming that:

� � � ��� � � � �x x x1 2 3; ; ,� � 

the two integrals can be expressed by substituting the assumptions into Equations (21):

F x x x x x x g x h

F x x

1 2 3 2
2 2

1 3
2

1

2 1 2

2, ,

, ,

� � � � � �� � �� �� � � � �� � �sin cos�


xx x x3
2

1 3� � � � �� � �� � �

�
�
�

��sin � �
. (22)

Both integrals in Equation (22) are functions of indefinite sign. Accordingly, Chetayer's method is 
applied to construct the Libanov function by �1 1�  and � �� 2 . Thus, the function is:

V F F F F� ��� �� � ��� ��1 1 2 20 0( ) ( ) ,�

such that:

V x x x g x g
� � � �� � �� � � � �� � � � � ��

��
�

��
2
2 2

1 3
2

1
2 22 2sin cos sin cos� �

 

�� � �� � �� � � ��� ��� � ��sin sin2
1 3

2x x .

Specifically, 

V x x x x� � � � ��� �� � � � � � �

� �

� � � � � � �

�

( ) ( )

(

cos cos sin sin2 22
1
2

2
2

3
2 2

1

22 2 23
2

1 3� � �) ( ) .x x xsin sin� � � �

For V to be apositive definite quadratic function, the terms that contain the variables x x1 2,� , and x3 of 
the first order must be eliminated by setting ( )� �� �2  in V, resulting in the following form:
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V x x x� � � � � � ��2 2
1
2

2
2 2

3
2sin sin ,

such that:
dv
dt

= 0.

According to Gitay’s theory and based on integrals (22), the motion of the spherical pendulum is 
stable. Moreover, the spherical pendulum movement system is an energy conservation system based 

on the result dv
dt

= 0.

7. Practical Aspect

Figures (8)–(12) were generated by using the MATLAB program, which help in demonstrating the 
periodic motion, phase levels, and stability of the spherical pendulum.

Figure 8: The solution path θ(t) for the movement of the spherical pendulum at (θ(o) = 1, Ø(o) = 0, 
θ′(o) = 2Ø′(o) = 1) and (0 ≤ t ≤ 6)

Figure 9: The solution path θ(t) for the movement of the spherical pendulum at (θ(o) = 1, Ø(o) = 0, 
θ′(o) = 2Ø′(o) = 1) and (0 ≤ t ≤ 20)
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8. Conclusions

Libanov’s theories of stability can be applied to the motion of the double pendulum (Double Pendulum). 
And finding conditions that make its movement stable.
• The pendulum spherical system is considered one of the energy conservation systems according 

to the principle of conservation energy, and according to the Getayev method of constructing the 
Libanov function with the help of integrals the motion of the spherical pendulum is considered 
stable.

Figure 10: The path of solution for the movement of the spherical pendulum at (−1.5 ≤ t ≤ 2)

Figure 11: The movement of the spherical pendulum at (ℓ = 3, g = 32) and (−3 ≤ t ≤ 6)

Figure 12: The phase level of the spherical pendulum motion at (−2.5 ≤ t ≤ 2.5)



Neamah KA, Results in Nonlinear Anal. 6 (2023), 83–96. 96

9. Recommendations

• It is possible to apply this study to many electrical and mechanical devices in which the pendulum 
is considered basis for its work, such as the seismograph, which is used to monitor earthquakes.
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