Results in Nonlinear Analysis 7 (2024) No. 4, 21–25 https://doi.org/10.31838/rna/2024.07.04.003 Available online at www.nonlinear-analysis.com

On recurrence in dendrite flows

Hawete Hattab

Umm Al-Qura University Makkah KSA.

Consider a finitely generated group generated *G* that acts on a dendrite *X* by transformations. (*G, X*) is called a flow. In this note, it was proven that if the flow (*G, X*) is pointwise recurrent, then (*G, X*) is almost periodic. Furthermore, we give a transitive flow having only two recurrent points.

Key words and phrases: Group action, almost periodic, equicontinuous, recurrent, dendrite *Mathematics Subject Classification (2020):* 37B45; 37B05; 37B20.

1. Introduction

A continuous action of a topological group *G* on a compact topological space *X* is called a *flow* (*G, X*). Particular attention was paid to the study of groups acting on dendrites [14, 10, 18, 15, 16, 12, 9, 6, 1]. The interest of studying groups of transformations on these one dimensional spaces is motivated first by the appearance of dendrites as Julia subsets into complex analysis [4] and secondly by the study of hyperbolic geometry in dimension three [15]. Recently, in [7], the authors studied the rigidity in the sense of Zimmer for higher rank lattice actions on dendrites.

In the context of a finitely generated group acting on a compact metric space, several researchers studied the correspondences between the following dynamical properties:

- (1) the flow (G, X) is pointwise recurrent;
- (2) the flow (G, X) is almost periodic;
- (3) the orbit closure relation of the flow (*G, X*) is closed;
- (4) the flow (G, X) is equicontinuous.

Email address: hshattab@uqu.edu.sa (Hawete Hattab)

In the papers [3] and [8] it is proven that the four properties are equivalent in the context of a finitely generated group *G* acting on a compact space of dimension zero, a topological graph or a dendrite with a countable subset of endpoints.

In this article we prove that if the flow (G, X) is pointwise recurrent, then (G, X) is almost periodic in the context of a finitely generated group *G* which acts on a general dendrite (Theorem 4.5).

2. Dendrites

A compact connected metric space is *a continuum*. A topological space is *path connected* if two of its points can be connected by an arc. A locally connected continuum containing no simple closed curves (equivalent to the unit circle \mathbb{S}^1) is called *a dendrite*. Remember that two elements *x* and *y* in a dendrite *D* can be connected by a unique arc where the ends are *x* and *y*, which is denoted by [*x*, *y*]. We set $(x, y) = [x, y] \setminus \{x, y\}$, $[x, y] = [x, y] \setminus \{y\}$ and $(x, y) = [x, y] \setminus \{x\}$. According to [13, Corollary 10.6], any subcontinuum of a dendrite is a dendrite. Furthermore, each dendrite is hereditarily locally connected [13].

In a dendrite *D*, the cardinality of edges issuing from *x* is named *the order of an element x* [5]. In the setting of dendrites, this cardinal is equal to the number of connected components of $D \setminus \{x\}$ [19]. We designate it by $ord(x, D)$. If this cardinal is not finite, then it will be countable, and the connected components of $D \setminus \{x\}$ have diameters which converge to zero [5]. In this setting, we put ord(*x*, *D*) is equal to ω . In this paper ω denotes the first ordinal limit. The elements of order one are named *endpoints*. The family of all endpoints of *D* is represented by *E*(*D*). The elements of order greater than three are named *branching points* and the class of all branching points are represented by *R*(*D*). For all *n* in $\{1, 2, ..., \omega\}$, we note $R_n(D)$ the subset of all elements of *D* of order *n*. It is obvious that $R_2(D) = D$, and that $R(D)$ is at most countable [13].

3. Flows

In this article, by flow we indicate a pair (*G*, *X*), where *G* is a topological group acting, by transformations, on a compact metric space (X, d) . If $g \in G$ and $x \in X$ we will identify g and the related transformation and we will write *gx* to denote the action of *g* on *x*. The subset $Gx = \{gx : g \in G\}$ is named the *orbit of x*. The set of return times from $x \in X$ to $A \subset X$ is $T_A(x) = \{g \in G : gx \in A\}$. A point *x* of *X* is said to be *periodic under G* if its orbit *Gx* has finitely many elements.

A subspace *Y* in *X* is an *invariant subest* when *Gy* is a subset of *Y* for all *y* in *Y*. The complement, the interior and the closure of an invariant subspace are invariant subspaces.

A subspace $W \subset X$ is named a *minimal set* of the flow (G, X) if it is non-empty, closed, invariant and no proper subspace of *W* verifies the above three notions, equivalently $Gx = W$ for all $x \in W$. Note that the closure of each orbit includes a minimal subset. A flow (*G*, *X*) is named *minimal* if the space *X* itself is a minimal subset. *x* is an *almost periodic* point if and only if the closure, *Gx*, of *Gx* is a minimal subset. A flow (G, X) is *pointwise almost periodic* if each element $x \in X$ is almost periodic. We denote by *AP*(*G*) the subset of all almost periodic points.

 (G, X) is a *transitive* flow if $Gx = X$ for some $x \in X$.

The orbit closure relation is $R(G) = \{(x, y) : y \in Gx\}$.

The flow (G, X) is equicontinuous (with respect to a metric *d*) if for all $\varepsilon > 0$, there is a $0 < \delta < \varepsilon$ satisfying $d(gx, gy) < \varepsilon$ for all $x, y \in X$ where $d(x, y) < \delta$ and each $g \in G$.

The notion of recurrence for group action is defined in [3]. Consider *G* a finitely generated group $\Gamma = \{f_1,\ldots,f_p\}.$ Let B_r be the class of points of G having a length less than or equal to $r.$ Put $K(g) = B_{|g|-1}.$ $g,$ for $g \in G$, such that $|g|$ denotes the length of g. A class $C \subset G$ is called a *cone* if there is a subsequence $g_n \in G$ such that $|g_n| \to +\infty$ and *C* is equal to $\lim_{n \to \infty} K(g_n)^1$. According to [3, Proposition 1.5], note that for each cone *C* one can find a sequence c_n such that B_n . C_n is a subset of *C* and for every $g \in G$, gc_n belongs to *C* for some integer *n*.

Definition 3.1. [3] Let (G, X) denote a flow such that *X* is a compact metric space and a finitely generated group acting by transformations on *X*. Put *C* a subset of *G* not containing the identity element *e*. A point *x* is called *recurrent*, when it is *C*-recurrent for any cone *C*. A point $x \in X$ is *C-recurrent*, whenever for any open neighbor *U* of *x*, the intersection $Cx \cap U$ is not empty.

R(*G*) denote the subset of all recurrent points. (*G, X*) is called *pointwise recurrent* flow when $R(G) = X$.

If $G = \mathbb{Z}$ (discrete flow) is a transitive flow, then $\overline{R(G)} = X$. In the following example, we show that this result is not true for a general flow.

Example 3.2. Let $X = [0,1]$ and *G* be the group generated by 2 homeomorphisms $f = h^{-1} \circ T_1 \circ h$ and $g = h^{-1} \circ T_{\sqrt{2}} \circ h$ where *h* is a the homeomorphism of (0,1) to the real line R and T_1 and $T_{\sqrt{2}}$ are 2 translations.

Theorem 3.3. *The flow* (G, [0,1]) *is transitive and the only recurrent points are the endpoints 0 and 1*.

Proof. If $x \in (0,1)$, then $\overline{Gx} = [0,1]$. So $(G, [0,1])$ is transitive.

We show that only the fixed endpoints 0 and 1 are recurrent. The group *G* is algebraically isomorphic to $\mathbb{Z} \times \mathbb{Z}$, so to construct a cone in *G* we can do it in $\mathbb{Z} \times \mathbb{Z}$ first. Let $g_n = (0,n)$ for all $n = 1,2,3,...$, and let $C = \lim_{n \to \infty} K(g_n)$. It's quite easy to check that $C = \{(m, n) : m = 1, 2, 3, \dots, |n| \leq m\}$.

Moreover, in that every cone of $\mathbb{Z} \times \mathbb{Z}$ contains a certain type of translation of an orthant (in this case, a quadrant). This cone is a rotated quadrant.

Now, to bring this cone to *G*, we can define $C' = \{g^m \circ f^n : (m, n) \in C\}$.

It is easier to do the analysis with the T_1 and $T_{\sqrt{2}}$ maps on the real line. If we take *x* in $\mathbb R$ and (m,n) in *C*, then

$$
T_{\sqrt{2}}^{m} \circ T_{1}^{n}(x) \geq m\sqrt{2} + n + x = m\sqrt{2} - (m-1) + x \geq (\sqrt{2} - 1)m + 1 + x > 1 + x.
$$

Thus we cannot approximate *x* arbitrarily using the homeomorphisms $T_{\sqrt{2}}^{m} \circ T_{1}^{n}$, where $(m, n) \in C$. Therefore, the points in the interval $(0,1)$ are not C'-recurrent in the flow $(G, [0, 1])$.

4. Main Theorem

In this paragraph we show the following theorem.

Theorem 4.1. *Let G be a group acting by transformations on a dendrite D where G is a finitely generated group. Then the following statements are equivalent:*

- (1) *the flow* (*G*, *D*) *is pointwise recurrent;*
- (2) *the flow* (*G*, *D*) *is almost periodic;*
- (3) *the orbit closure relation of the flow* (*G*, *D*) *is closed;*
- (4) *the flow* (*G*, *D*) *is equicontinuous.*

Let us recall the definition of some important sets given in [17].

For each $x \in X$, the limit ω defined under *G* is:

$$
\omega(x, G) = \{ y \in X : \exists g_n \in G \text{ with } |g_n| \to +\infty; g_n x \to y \}.
$$

The weak limit ω defined under the action of the group *G* is:

 $w\omega(x,G) = \{y \in X : \exists g_n \in G \text{ with } |g_n| \to +\infty \text{ and } \exists x_n \in X \text{ with } x_n \to x; g_n x_n \to y\}.$

Lemma 4.2. [17] *Let G denote a group acting by transformations on a compact metric space X. Then,* $w(x, G)$ and $\omega(x, G)$ are non-empty, closed, invariant subsets of X under G and we always have $\omega(x, G) \subset \omega \omega(x, G)$.

Lemma 4.3. *Let* (*G*, *X*) *denote a flow where X is a compact metric space and G is a finitely generated group.* $w\omega(x, G) \subset Gx$ *if and only if each open invariant set containing a point* $y \in w\omega(x, G)$ *contains x.*

Proof. If $w\omega(x,G) \subset \overline{Gx}$ and U is an open invariant containing $y \in w\omega(x,G)$ then $\overline{Gx} \cap U \neq \emptyset$ hence $Gx \cap U \neq \emptyset$ which implies that $x \in U$.

Conversely if $y \notin \overline{Gx}$ then $y \in X \setminus \overline{Gx}$ which is invariant and open then $x \in X \setminus \overline{Gx}$ which is impossible.

Lemma 4.4. [17] *If* $w\omega(x, G) \subset \overline{Gx}$ *for all* $x \in X$ *then* $AP(G) = X$.

Theorem 4.5. Let (G, X) be a dendritic flow, where G is a finitely generated group. Then $R(G) = X$ if *and only if* $AP(G) = X$ *.*

Proof. By [3, Proposition 1.7], we obtain the "if" part of the theorem.

Conversely, let $x \in X$ and suppose that $R(G) = X$, we distinguish two cases here:

Case 1. The dimension of \overline{Gx} is equal to zero. By [3, Theorem 1.8] we obtain $x \in AP(G)$.

Case 2. $\overline{G_x}$ *is one-dimensional*. In this case int($\overline{G_x}$) $\neq \emptyset$. Let $y \in w\omega(x, G)$ then there exists a sequence (*X_n*) which converges to *x* and a sequence (g_n) in *G* with $|g_n|$ tends to infinity such as the sequence $(g_n x_n)$ converges to *y*. Let *U* be an invariant open set of *X* containing *y* then there is *N* such that for $n \geq N$, $g_n x_n \in U$. From *U* is invariant, $x_n \in U$ for $n \geq N$. Therefore, $x \in \overline{U}$. If $x \notin U$, then $\overline{Gx} \subset \overline{U} \setminus U$. The fact that $int(\overline{U} \setminus U) = \emptyset$ implies that $int(\overline{Gx}) = \emptyset$, which is impossible. Therefore, $w\omega(x, G) \subset \overline{Gx}$. By Lemma 4.4, $x \in AP(G)$.

We can now prove the Theorem 4.1.

Proof. By [3][Proposition 1.7], (2) implies (1) and by Theorem 4.5, (1) implies (2). By [3][Proposition 1.1], (3) implies (2) and by $[11]$ [Theorem 5.5], (2) implies (3) . By $[2]$ [Lemma 3. p. 37], (4) implies (2) . It follows from [1, Exercise 6. p. 46] that (3) and (4) are equivalent. Thus Theorem 4.1 is proved.

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4331149DSR01)

Acknowledgment

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work under grant no. 22UQU4331149DSR01.

References

- [1] E.H.E. Abdalaoui and I. Naghmouchi, Group action with finite orbits on local dendrites, *Dynamical Systems*, **36(4)**: 714–730 (2021).
- [2] J. Auslander, *Minimal Flows and Their Extensions*. North Holland, Amsterdam (1988)
- [3] J. Auslander, E. Glasner B. Weiss, On recurrence in zero dimensional flows, *Forum Mathematicum*. **19(1)**: 107–114 (2007).
- [4] A. F. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991.
- [5] J.J. Charatonik and W.J. Charatonik, Dendrites. *Aprotactions Math*. **22**, (1998), 227–253.
- [6] B. Duchesne and N. Monod, Group actions on dendrites and curves. *Annales de l'Institut Fourier*, Tome 68, no 5 (2018), p. 2277–2309
- [7] Enhui Shi and Hui Xu, Rigidity for higher rank lattice actions on dendrites, arXiv:2206.04022 [math.DS]
- [8] H. Hattab, Pointwise recurrent one-dimensional flows, *Dynamical Systems: an international journal,* **26(1)**: 77–83 (2011).
- [9] A. Haj Salem and H. Hattab, Dendrite Flows, *Qual. Theory Dyn. Syst*. (2017). 1–12; doi:10.1007/s12346-017-0237-0.
- [10] J. H. Mai, E. H. Shi, The nonexistence of expansive commutative group actions on Peano continua having free dendrites, *Topology Appl*. **155** (2007), 33–38.
- [11] Marzougui, H., Naghmouchi, I. Minimal sets and orbit spaces for group actions on local dendrites. *Math. Z*. 293, 1057–1070 (2019). https://doi.org/10.1007/s00209-018-2226-7.
- [12] H. Marzougui and I. Naghmouchi, Minimal sets for group actions on dendrites, *Proc. Amer. Math. Soc*., Volume 144, Number 10, October 2016, Pages 4413–4425 http://dx.doi.org/10.1090/proc/13103.
- [13] S.B. Nadler, *Continuum theory*. New York, NY: Marcel Dekker, Inc; 1992.
- [14] E.H. Shi, Free groups of dendrite homeomorphism group, *Topology and its Applications* **159** (2012) 2662–2668.
- [15] E.H. Shi, S. Wang, and L. Zhou, Minimal group actions on dendrites, *Proc. Amer. Math. Soc*. **138** (2010), 217–223.
- [16] E.H. Shi and B.Y. Sun, Fixed point properties of nilpotent group actions on 1-arcwise connected continua, *Proc. Amer. Math. Soc*. **137** (2009), 771–775.
- [17] G. Su, B. Qin, Equicontinuous dendrite flows, *Journal of difference equations and applicatios* (2019).
- [18] S. Wang, E.H. Shi, and L. Zhou, Topological transitivity and chaos of group action on dendrites, *Int. J. Bifurcation and Chaos*, Vol. 19 No. 12 (2009), 4165–4174.
- [19] Whyburn GT. Analytic topology. Vol. 28, Providence, RI: *American Mathematical Society*; 1942; reprinted with corrections 1971.