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On recurrence in dendrite flows
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Consider a finitely generated group generated G that acts on a dendrite X by transformations. (G, X)
is called a flow. In this note, it was proven that if the flow (G, X) is pointwise recurrent, then (G, X) is
almost periodic. Furthermore, we give a transitive flow having only two recurrent points.
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1. Introduction

A continuous action of a topological group G on a compact topological space X is called a flow (G, X).
Particular attention was paid to the study of groups acting on dendrites [14, 10, 18, 15, 16, 12, 9, 6, 1].
The interest of studying groups of transformations on these one dimensional spaces is motivated first
by the appearance of dendrites as Julia subsets into complex analysis [4] and secondly by the study of
hyperbolic geometry in dimension three [15]. Recently, in [7], the authors studied the rigidity in the
sense of Zimmer for higher rank lattice actions on dendrites.

In the context of a finitely generated group acting on a compact metric space, several researchers
studied the correspondences between the following dynamical properties:

(1) the flow (G, X) is pointwise recurrent;

(2) the flow (G, X) is almost periodic;

(3) the orbit closure relation of the flow (G, X) is closed;
(4) the flow (G, X) is equicontinuous.
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In the papers [3] and [8] it is proven that the four properties are equivalent in the context of a finitely
generated group G acting on a compact space of dimension zero, a topological graph or a dendrite with
a countable subset of endpoints.

In this article we prove that if the flow (G, X) is pointwise recurrent, then (G, X) is almost periodic
in the context of a finitely generated group G which acts on a general dendrite (Theorem 4.5).

2. Dendrites

A compact connected metric space is a continuum. A topological space is path connected if two of
its points can be connected by an arc. A locally connected continuum containing no simple closed
curves (equivalent to the unit circle S') is called a dendrite. Remember that two elements x and y in
a dendrite D can be connected by a unique arc where the ends are x and y, which is denoted by [x, y].
We set (x,y) =[x, y]\ {x, 5}, [x,y) =[x,y]\{y} and (x,y]=[x,y]\ {x}. According to [13, Corollary 10.6],
any subcontinuum of a dendrite is a dendrite. Furthermore, each dendrite is hereditarily locally
connected [13].

In a dendrite D, the cardinality of edges issuing from x is named the order of an element x [5]. In
the setting of dendrites, this cardinal is equal to the number of connected components of D\ {x} [19].
We designate it by ord(x, D). If this cardinal is not finite, then it will be countable, and the connected
components of D\ {x} have diameters which converge to zero [5]. In this setting, we put ord(x, D) is
equal to . In this paper ® denotes the first ordinal limit. The elements of order one are named end-
points. The family of all endpoints of D is represented by E(D). The elements of order greater than
three are named branching points and the class of all branching points are represented by R(D). For

allnin {1,2,...,w}, we note R (D) the subset of all elements of D of order n. It is obvious that R,(D) =D,
and that R(D) is at most countable [13].

3. Flows

In this article, by flow we indicate a pair (G, X), where G is a topological group acting, by transforma-
tions, on a compact metric space (X, d). If g € G and x € X we will identify g and the related transfor-
mation and we will write gx to denote the action of g on x. The subset Gx = {gx : ge G} is named the
orbit of x. The set of return times from xe X toAc X is T,(x) ={ge G: gxe A}. A point x of X is said
to be periodic under G if its orbit Gx has finitely many elements.

A subspace Y in X is an invariant subest when Gy is a subset of Y for all y in Y. The complement,
the interior and the closure of an invariant subspace are invariant subspaces.

A subspace W C X is named a minimal set of the flow (G, X) if it 1s non-empty, closed, invariant
and no proper subspace of W verifies the above three notions, equivalently Gx = W for all x € W. Note
that the closure of each orbit includes a minimal subset. A flow (G, X) is named minimal if the space X
itself is a minimal subset. x is an almost periodic point if and only if the closure, Gy, of Gxis a minimal
subset. A flow (G, X) is pointwise almost periodic if each element x € X is almost periodic. We denote
by AP(G) the subset of all almost periodic points.

(G, X) is a transitive flow if Gx = X for some xeX

The orbit closure relation is R(G) ={(x,y): ye€ Gx}.

The flow (G, X) is equicontinuous (with respect to a metric d) if for all € > 0, thereisa 0<§<e¢
satisfying d(gx,gy) <e for all x, y € X where d(x,y)<d and each g € G.

The notion of recurrence for group action is defined in [3]. Consider G a finitely generated group
I'={f,,....1,}- Let B be the class of points of G having a length less than or equal tor. Put K(g)=B,, ,.g,

for g € G, such that | g| denotes the length of g. A class C C G is called a cone if there is a subsequence
g, € G such that |8, |- +e and Cis equal to lim K (g,)". According to [3, Proposition 1.5], note that
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for each cone C one can find a sequence ¢, such that B . C| is a subset of C and for every ge G, gc,
belongs to C for some integer n.

Definition 3.1. [3] Let (G, X) denote a flow such that X is a compact metric space and a finitely gen-
erated group acting by transformations on X. Put C a subset of G not containing the identity element
e. A point x 1s called recurrent, when it is C-recurrent for any cone C. A point x € X 1s C-recurrent,
whenever for any open neighbor U of x, the intersection Cx N U is not empty.

R(G) denote the subset of all recurrent points. (G, X) is called pointwise recurrent flow when
R(G)=X. L

If G = 7Z (discrete flow) is a transitive flow, then R(G)= X. In the following example, we show that
this result is not true for a general flow.

Example 3.2. Let X = [0,1] and G be the group generated by 2 homeomorphisms f=h"'oT oh

and g=h"o Tﬁz) oh where h is a the homeomorphism of (0,1) to the real line R and 7', and Tﬁ are

2 translations.
Theorem 3.3. The flow (G, [0,1]) is transitive and the only recurrent points are the endpoints 0 and 1.

Proof. If x € (0,1), then Gx = [0,1]. So (G, [0,1]) is transitive.

We show that only the fixed endpoints 0 and 1 are recurrent. The group G is algebraically isomor-
phic to Z X Z, so to construct a cone in G we can do it in Z X Z first. Let g = (0,n) for all n = 1,2,3,...,
and let C=1lim K(g,). It’s quite easy to check that C ={(m,n):m=1,2,3,...,In|<m}.

Moreover, in that every cone of Z X Z contains a certain type of translation of an orthant (in this
case, a quadrant). This cone is a rotated quadrant.

Now, to bring this cone to G, we can define C'={g"of" :(m,n)e C}.

It is easier to do the analysis with the T, and T '; maps on the real line. If we take x in R and (m,n)
in C, then

TJ"%OTI"(x)Zm\/g+n+x:m\/§—(m—1)+x2(\/§—l)m+1+x >1+x.

Thus we cannot approximate x arbitrarily using the homeomorphisms TzoT", where (m,n) € C.
Therefore, the points in the interval (0,1) are not C'-recurrent in the flow (G, [0, 1]).

4. Main Theorem

In this paragraph we show the following theorem.

Theorem 4.1. Let G be a group acting by transformations on a dendrite D where G is a finitely gener-
ated group. Then the following statements are equivalent:

(1) theflow (G, D) is pointwise recurrent,

(2) the flow (G, D) is almost periodic;

(3) the orbit closure relation of the flow (G, D) is closed,;
(4) the flow (G, D) is equicontinuous.

Let us recall the definition of some important sets given in [17].
For each x € X, the limit ® defined under G is:

o(x,G)={ye X:J g, € Gwith| g, |- +e; g x = y}.
The weak limit ® defined under the action of the group G is:

wo(x,G)={ye X:3 g, € Gwith| g, | >+~ and Ix, € Xwithx, - x;8,x, = y}.
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Lemma 4.2. [17] Let G denote a group acting by transformations on a compact metric space X. Then,
wo(x, G) and o(x, G) are non-empty, closed, invariant subsets of X under G and we always have

o(x,G) cwo(x,G).

Lemma 4.3. Let (G, X) denote a flow where X is a compact metric space and G is a finitely generated
group. wa(x,G) c Gx if and only if each open invariant set containing a point y< wa(x,G) contains x.

Proof. If wo(x,G) c Gx and U is an open invariant containing ye wa(x,G) then Gx U # 0 hence
Gx N U # 0 which implies that x € U.

Conversely if ye Gx then ye X\ Gx which is invariant and open then xe X \ Gx which is
1mpossible.

Lemma 4.4. [17] If wo(x,G) < Gx for all x € X then AP(G) = X.

Theorem 4.5. Let (G, X) be a dendritic flow, where G is a finitely generated group. Then R(G) = X if
and only if AP(G) = X.

Proof. By [3, Proposition 1.7], we obtain the “if ” part of the theorem.
Conversely, let x € X and suppose that R(G) = X, we distinguish two cases here:

Case 1. The dimension of Gx is equal to zero. By [3, Theorem 1.8] we obtain x € AP(G).

Case 2. Gx is one-dimensional. In this case int(Gx ) # 0. Let ye wa(x,G) then there exists a sequence
(X ) which converges to x and a sequence (g,) in G with |g | tends to infinity such as the sequence
(g x ) converges to y. Let U be an invariant open set of X containing y then there is N such that for
n2N, g,x,e€U. From U is invariant, x, € U for n > N. Therefore, xe U. If x¢ U, then Gx c U\ U.

The fact that int(U \U) =0 implies that int(@) =0, which is impossible. Therefore, wa(x,G) c Gx.
By Lemma 4.4, x € AP(G).
We can now prove the Theorem 4.1.

Proof. By [3][Proposition 1.7], (2) implies (1) and by Theorem 4.5, (1) implies (2). By [3][Proposition 1.1],
(3) implies (2) and by [11][Theorem 5.5], (2) implies (3). By [2][Lemma 3. p. 37], (4) implies (2). It follows
from [1, Exercise 6. p. 46] that (3) and (4) are equivalent. Thus Theorem 4.1 is proved.
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