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1. Introduction

Fractional optimal control problems could be applied in different applications, such as in scientific life 
and engineering fields. Recently, they have received wide attentions [10]. Some time cannot find the 
analytic solution for FOCPs, so the researcher has to use numerical methods to calculate the solution 
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for these problems. Majorly, we have indirect and direct methods for numirical solution. The first step 
of indirect methods, is to obtain the optimality conditions of FOCPs. This leads to boundary-value 
problems (BVPs), then the BVPs can be solved numerically to obtain the extremals, and finally, the 
optimal solution can be obtained, for examples: the indirect shooting method, indirect collocation 
method, and indirect multiple-shooting method. While, the direct method is included the transcrip-
tion of FOCPs to a nonlinear programming problem (NLP), then the NLP will be solved by using well-
known optimization techniques [13, 14].

In general, the numerical methods for FOCPs can be classified into local and global categories. 
The finite difference and finite element methods are based on local arguments, whereas the spectral 
method is usually global [20, 21]. Mostly, used the advantage and properties of the global spectral 
methods in current work. The best advantage of spectral methods is that used the discretization 
to approximate optimal control problems and partial differential equations, almost all solutions of 
problems may be infinitely smooth, and converge to real solutions [20, 21]. Beyond, classical spec-
tral methods also meet some limits, such as loss of global accuracy when facing problems with  
non-smooth/singular solutions, More detail is found in Jie et al. [22].

There are many globally smooth functions such as trial/test functions like the Jacobi spectral 
method, Gegenbauer spectral method, Chebyshev spectral method, and ace. The good features of 
these functions give the spectral methods more properties to deal with the field of science. Mostly, 
when using the spectral methods to approximate solutions to the problems, the problems are reduced 
to a system of linear or nonlinear algebraic equations, thus, it’s easy to represent this system of equa-
tions by using the operational matrices.

Therefore, the strategy of substituting nodes of the collocation method with operational matrices 
will give results that have more accuracy, fast convergent with few numbers of collocation points, and 
easy to implement [23].

The shifted Gegenbauer polynomials are just another basis set that offers considerable advantages 
over basis sets, allowing us to attack problems and use them to get suitable numerical methods [14, 12]. 
The shifted Gegenbauer polynomials considerable of the best methods is the approximation by the 
orthogonal family of functions [19]. In the current work, a collocation strategy is applied to approx-
imate solution of linear/nonlinear FOCPs indirectly. A good trait of some properties of the global 
approximate of shifted Gegenbauer polynomials has been used to get new approximate formulas of 
the Caputo and Riemann-Liouville fractional derivative. These approximate formulas gave us a good 
chance to discretize FOCPs by the spectral collocation method.

The mane topics of the paper includs some features of the shifted Gegenbauer polynomials, fractional 
derivative, and integrals formulas have been written, also the problem statements were introduced. 
moreover, contains a newly evaluated fractional derivative for the shifted Gegenbauer polynomials, 
and convergence analysis. Also, it contains approximately examples to show the correctness of the 
numerical method. And gives a brief conclusion and some remarks.

2. Preliminaries and notations

In this section: some important features of the shifted Gegenbauer polynomials, fractional derivative 
formula, and the problem statements are inserted.

2.1. Riemann-Liouville and Caputo fractional derivative

Let 0 £ a<1  a real number and g a b R:[ ], ®  is continuous function then the left and right Riemann-
Liouvill fractional integrals of order a, respectively are defined as: 

a u a

u
I g u u t g t dt u a ba a

a
( )= 1

( )
( ) ( ) [ ],1

G ò - Î- , ,  (1)
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u b u

b
I g u t u g t dt u a ba a

a
( )= 1

( )
( ) ( ) [ ].1

G ò - Î- , ,  (2)

The left and right Riemann-Liouvill fractional derivatives of order a can be defined respectively as: 

a
R

u a

u
D g u d

du
u t g t dta a

a
( )= 1

1
( )

G -( ) - ( )ò - ,  (3)

u
R

b u

b
D g u d

du
t u g t dta a

a
( )= 1

(1 )
( 1) ( ) ( )

G -
- -ò - .  (4)

The left and right Caputo fractional derivatives of order a can be defined respectively as: 

a
C

u a

u
D g u u t g t dta a

a
( )= 1

1
( )

G -( ) - ( )ò -
 ,  (5)

u
C

b u

b
D g u t u g t dta a

a
( )=

1
1

( )
-( )
-( ) - ( )ò -

G
 ,  (6)

Such that ġ(t) is the first derivative of the function g(t).
The next remark summarizes some properties of the Riemann-Liouville and Caputo fractional 

derivatives that may need it in the next sections.

Remark 2.1. There are many properties of the Riemann-Liouville and Caputo fractional derivative:

1- Linearity: If x and m are constant then: 

a
C

u a
C

u a
C

uD g u f u D g u D f ua a am z m z( ( ) ( ))= ( ) ( )+ + .

2- u
C

b a
C

uD Da az z= =0 , a
R

uD
u aa

a

z z
a

= .( )
(1 )
-
-

-

G
, and u

R
bD

b ua
a

z z
a

= .( )
(1 )
-
-

-

G
, such that x is constant.

3- Let m > 1, and 0< <1a , m R n ZÎ Î, ,  then:

a
R

u
m mD u a m

m
u aa a

a
( ) = ( 1)

( 1 )
( )- +

+ -
- -G

G
,  and u

R
b
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b ua a

a
( ) = ( 1)
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( )- +

+ -
- -G
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.
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kD g u D g u g b
k

b ua a a

a
( )= ( ) ( )

( 1)
( )=0

1
( )

-
- +

-- -å G
 and r r Z- Î1< <a .

5- a
C

u a
R

u k

r
k

kD g u D g u g a
k

u aa a a

a
( )= ( ) ( )

( 1)
( )=0

1
( )

-
- -

-- -å G
 and r r Z- Î1< <a .

For more information see [3].

2.2. Problem statement and optimality conditions 

No doubt that with the indirect method the optimal control problem is transformed into a system of 
differential equations with a set of optimality conditions. The first step is to find the Euler– Lagrange 
equations and Pontryagin’s maximum principle and find the solution of this differential equation in 
the second step, see[15].

Our goal is to solve the FOCP by the indirect method and find the control and the state functions 
u(t) and x(t). The performance index J(u) of FOCP can write it as follows: 

mimimze J u F t x t u t dt
a

tf( )= ( ( ), ( ))ò , ,  (7)
subject to the system’s dynamic constraints: 

Ax t B D x t G t x t u t and x a xa
c

t ( ) + ( ) ( ) ( )( )a a= ( )= 0< <1,, , , ,0  (8)
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where t a tfÎ[ ],  represents the time, A, B are real numbers nonequal to zero, F, G are two arbitrary  
real functions and tf is the final time. The necessary and optimality conditions in terms of a Hamiltonian 
for the problem (7) and (8) can be find it in [16, 17, 4]. Where Hamiltonian function is defined by: 

H t x u F t x u G t x u( ) ( ) ( ),, , , , , , ,g g= +
¶
¶

=H t x t u t t M t x t u t t and
g

g g( ( ), ( ), ( )) ( ( ), ( ), ( )), , ,

- ¶
¶

=H
x
t x t u t t N t x t u t t( ( ), ( ), ( )) ( ( ), ( ), ( )),, ,g g

such that g(t) is the Lagrange multiplier vector or the adjoin function. Then the above FOCP (7) and 
(8) can be written as the following system of fractional differential equations: 

Ax t B D x t M t x t u t ta
c

t( ) ( ) ( ( ), ( ), ( )),+ =a g,  (9)
A t B D t N t x t u t tt

R
tf

g g ga( ) ( ) ( ( ), ( ), ( ))- = , ,  (10)

where x a x tf( ) ( ) 0= =0 , g , M t x t t( ( ), ( )), g  and N t x t t( ( ), ( )), g  are known functions [16, 17].
If G and F be two convex functions in terms of u and x, then the system of equations (9) and (10) 

contains necessary and sufficient conditions for optimal solutions u* and x*.

2.3. Shifted Gegenbauer polynomials

Let’s talk in general about shifted Gegenbauer orthogonal polynomials G tm,l ( ), which are defined in 
the interval [0,1] with respect to the weight function ( )2 1/2t t- -l . The sequence of generalized shifted 
Gegenbauer polynomials G tm m,l ( )

=0{ }¥ , l> -1
2

, see [18, 7]. The significant properties of the shifted 

Gegenbauer polynomials G tm,l ( ) can be summarized as follows:
1. The derivative formula of shifted Gegenbauer functions can be written as follows: 

d
dt

G t
r

G t r N
r

r m

r

m r r, , , .l l

l
l

( ) + -( )
-( ) ( ) Î- +=

2 1 !
1 !

2
 (11)

2. The symmetry of the shifted Gegenbauer polynomials is emphasized by the relation: 
G t G tm

m
m, ,. .l l( )=( 1) ( )- -  (12)

3. The closed-form equation for shifted Gegenbauer polynomials of degree m [8] can be written as: 

G t
m k

k m k k
tm

m k k
k,

1
2
1
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,l

l l
l l

( ) = ( 1)
2

2 ! !
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+( ) + +( )
+ +( ) ( ) -( )

-
=
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, ,, .

m

j
j

jG j
j

and G j
j
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- + +
l l

l
l

a
a

(0) =( 1) ( 2 )
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(1)= ( 2 )
! (2 )

G
G

G
G  (13)

4. The shifted Gegenbauer polynomials can be generated directly by using the following  three- term 
recurrence equation: 

G t0, ,l ( )=1  (14)
G t t1, ( )=2 1,l -  (15)

G t
j
j

t G t j
j

G t jj j j+ -( ) +( )
+
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+
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j
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j j

G tj j j, .l l ll l
( )

+( ) ( ) -
+( ) + -( ) ( )+ -= 1

2 1 2 2 2 11, 1,' '  (17)
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From the basis of family of shifted Gegenbauer polynomials of degree m: G ti i

m
,l ( )

=0{ } , can be approximate  
any function x t C( )Î éë ùû

¥ 0,1  see [18,7]. The expansion series of the function x(t) can be written as 
follows: 

x t x t c G t tm
j

m

j j( ) » ( ) ( ) Îå= [0,1],
=0

. ,,l  (18)

the coefficients cj of equation (18) are given by: 

c h t t G t x t dt j mj j j= ( ) =0,1,2,3...1 1 2
1
2

, 0 , . , ,l

l

l
-

-æ
è
ç

ö
ø
÷

ò - ( ) ( )  (19)

and the normalization factor can be calculated by the following relation: 

h j j
jj, ,l

l l l
p l

-
- +

+
1

( 1) 2

= 2 ! ( )( )
( 2 )
G

G
 (20)

The shifted Gegenbauer Gauss nodes (GG) can be defined as S t k mk k= |, =0,1,...,{ }. To calculate the set 
of GG points Sk and quadrature weights see [18]. 

c h w G t x t and w hj j
k

m

k j k k k
j

m

j= ( ). ( ) ( ) =1

=0

1

=0

1
, , , , ,. . ,l l l l l
- - -å å .. 2

G tj k, .l ( )( )  (21)

In general, expansion series to the function x(t) can be written as follows: 

x t h w G t G t x t
j

m

k

m

j k j k j k( ) ( ). ( ). ( ),
=0 =0

1» åå -
, , , ,. .l l l l  (22)

such that { }tk  are GG nodes. For more information see [2,11, 18, 1, 9, 7].

3. Numerical Approximation

This section establishes to get a new formula to approximate the left and right fractional integrals 
and derivatives by using shifted Gegenbauer functions and developing an algorithm to approximate 
the solution of the system of fractional differential equations (9) and (10). Also, the new two theorems 
have been inserted into convergence analysis to estimate the errors.

3.1. Evaluate the new formulas of the fractional derivative 

Let us start to find the left and right Riemann-Liouville fractional integrals of order a for the shifted 
Gegenbauer polynomials. For any 0< <1a , the fractional integral 0 ,

R
t jI G ta

l ( )  can be find it as follows: 

0 , ,
0 , ,R

t j j
t

jI G t G t t G d ja
l l

a a
la

t t t( )= ( )= 1
( )

( ) ( ) =0,1,2,.1


G ò - - ...,m.  (23)

The first and second terms of shifted Gegenbauer polynomials can be find the fractional integral of it 
easily as: 

G t t


0, ,l
a a

a a
( )=

( )G
 (24)

G t t t


1,
1= 4

2
l
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a

a a a
( )

+( ) - ( )
+

G G
.  (25)

To find G tj


+1, ( )l
a

 where j m=1,2,3,4,...,  can be using the equations (17) with (23) and itegral by part, 
finally by using second property of the symmetry of the shifted Gegenbauer polynomials obtained: 
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  

+ -
+
+

- -1, 1,( )= 2( )
( 2 )

( ) ( )l
a l a

l
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l
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ü
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where 
q l

l l a
l a
j
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j j j

, = 2( 2 )( 1)
2( 2 )( 1) (2 )

,+ +
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l
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It’s clear that Equations (24),(25), and (26) represent the three-recurrence formula generating the 
left Riemann-Liouvill fractional integrals of order a. Also can use these three- recurrenc formula to 
generating the left Riemann-Liouvill fractional derivative of order a as follows: 

0 , , .R
t j jD G t d

dt
G ta

l l
a

a
( )

-( ) ( )= 1
1G

  (30)

From properties of the Riemann-Liouville and Caputo fractional derivative the left Caputo fractional 
derivative of the shifted Gegenbauer polynomials can be written as follows: 

0 , ,
, ,C

t j j
jD G t

n
d
dt
G t

G
ta

l l
a l

a
a

a a
( )= 1

( )
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0 , ,
C

t j j
jD G t

n
d
dt
G t j

j
ta

l l
a a

a
l

l
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
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.  (32)

Further more, the formula represents the Caputo fractional derivative and it can be obtained easily 
by three-recurrence formula (24)–(26) for the 0< <1a  as follows: 
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by using the derivative property of shifted Gegenbauer polynomials 
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Now, we obtain a closed-form of the right side fractional integral of shifted Gegenbauer functions 
where 0< <1a , 
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Gegenbauer polynomials (12), one will get: 
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Based on the equation (34), the right Riemann-Liouville fractional derivative of the shifted Gegenbauer 
polynomials can be found it as follows: 
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Thus, the right Riemann-Liouville fractional derivatives of the shifted Gegenbauer functions can be 
generated by applying three recurrence formulas (24) and (25).

3.2. Discretization of the FOCP

Our goal is to approximate the unknown functions x(t), u(t), g(t) in problem (9)–(10) via spectral 
collocation method based on the shifted Gegenbauer Gauss nodes. The first step is to transform the 
interval [ ]a tf,  to the [0,1]. Where x(t) is a real-valued function defined on the interval [ ]a tf, , and 
{ , }t k mk =0,1,...,  is the set of collocation shifted Gegenbauer Gauss nodes on the reference interval [0,1], 
then: 

t
a t

t a
tf

f

=
4 3

[0,1].
t - -

-
Î,

And let us define the shifted Gegenbauer Gauss nodes with wight function ( )2 1/2t t- -l  on the interval 
the [0,1] as: { , , }t k mk =0,  where tk’s are the zeros of G tm



+1, ( )l .
For a positive integer m, suppose that the state function x(t) can be approximated it by xm(t) as: 
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then the state function x(t) can be written as Equation (22): 
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where G tj,l ( )  can be found from the Formula (11).
Also, the approximation of the Lagrange multiplier function g(t) can be written as follows: 
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With the help of the Equations (30) and (35), the fractional derivative for any 0< <1a , of state and 
Lagrange multiplier functions, at t Î[0,1]  can be approximated as follows: 
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From above formulas for vectors c and d, it’s clear that the state and adjoin functions x(tk), g(tk), are 
unknowns values for all k m=0,1,..., . 

G t G t G t G tm( ) = [ ( ), ( ),..., ( )]10 ,

   G t G t G t G tm( ) = [ ( ), ( ),..., ( )]10 ,

G t D G t D G t D G tleft
C

t
C

t
C

t m
� …( ) = [ ( ) ( ), ( )]1,0 0, 0 0 ,, , ,a
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a a
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a a
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G t d
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l
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Now, to apply the spectral collocation strategy let the vector of time t represents the same nodes of the 
shifted Gegenbauer Gauss nodes. The best advantage of this strategy is that we don’t need to derive 
operational matrices of differentiation and this method can be implemented in any mathematical 
software.

Let us define the shifted Gegenbauer Gauss nodes with the wight function ( )2 1/2t t- -l  on the interval  
[0,1] as: t={ =0,t i i m, , }

 where t i ’s are the zeros of G tm


+1, ( )l . By collocating strategy at nodes 
t i i m, ,=0, , the system of fractional problem (10)-(10) in matrix form will be: 

A B. .� �G t c G t c M tT
left

T( ) ( ) ( ),+ =  (43)
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where 

b d
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such that Gj k


,l t( )  can be generated by three- recurrenc formula (24),(25), and (26) to the left Riemann-
Liouvill fractional derivative of order a. and 
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The functions A(t) and B(t) can be written in a matrix form as: 
A t A A and B t B Bm m( ) = ( ) ( )( ) ( ) = ( ) ( )( )diag diagt t t t0 0, , , , . 

In the final, main problem (9)-(9) will reduce to the system of algebraic equations (43)-(44), then can 
be solved by any simple method for solving the system of algebraic equations.

3.3. Error upper bound of the approximate fractional derivatives 

To achieve this objective, we need the following theorem.

Theorem 3.1. If H is a Hilbert space, and X is the closed subspace defined on H, and let x j j

m{ } =1   
be a basis for X of dimension m, if x belongs to H and x0 is the unique best approximation to x out of X, 
then 

 x x D x x x x
D x x x

m

m

- 0
, , ,...,

, ,...,2
2 1 2

1 2

= ( )
( )

where 
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D x x x x
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( )1 2
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á ñ á ñ á ñ
á ñ á ñ á xx
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, , ... ,
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1

The proof of the above theorem can be found in [13].
Now, to evaluate an upper error bound for the approximating fractional derivatives, let 

{ ,G t k mk l ( ), 0,1,...,= }  as the basis of functions and G tk,l ( )  is shifted Gegenbauer functions. A good 
feature of these basis functions is that the left and right fractional derivatives can be obtained in a 
closed form, which the upper error bound for fractional derivatives of jk t( )  is equal to zero. On the 
other hand, using Theorem 3.1, it is easy to evaluate the error upper bound of x(t) such that x(t) can 
be approximated by xm(t) as: 

x t x t G t cm
j

m

j j( ) ( )= ( )
=0

» å , ,l

 x t x t
D x t G t G t G t
D G tm

m( ) ( ) =(
( ( ), ( ), ( ),..., ( ))

( (2
1,- 0, ,

0,

l l l

l )), ( ),..., ( ))
)

2,

1
2

G t G tml l,

,

where c j
nxÎ  are unknown vectors.

On the other hand, to find the truncation error of approximating a smooth function by using the 
shifted Gegenbauer expansion series can use the next two theorems:

Theorem 3.2. The left fractional Caputo derivative of order a for shifted Gegenbauer functions can be 
written in terms of the shifted Gegenbauer polynomials themselves. 

Proof: To prove the theorem, the closed-form for shifted Gegenbauer polynomials (2) can be used, 
then employing the property of linearity of the left fractional Caputo derivative is to obtained as 
follows: 
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where aj’s are the coefficients of Gegenbauer polynomials, then 
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Theorem 3.3. (Truncation Error). Let x t C( ) [0,1]Î ¥  be approximated by the shifted Gegenbauer 
expansion series (18), then for each t Î[0,1] , a number x ( ) [0,1]t Î  exists such that the truncation error 
R t m( , , , )x l  is given by 
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The proof of the above theorem is the same as the proof of Theorem (??) can be found it in El-Hawary 
[1] for the Gegenbauer polynomials. Anyway, the next theorem helps us to get the truncation error of 
the Caputo fractional derivative for shifted Gegenbauer functions.

Theorem 3.4. Let x t C( ) [0,1]Î ¥  be approximated by the shifted Gegenbauer expansion series (18), then 
for each t Î[0,1] , a number x ( ) [0,1]t Î  exists such that the truncation error of the Caputo fractional  
drivetive of shifted Gegenbauer polynomials E t m( , , , , )x l a  is given by 
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where aj is the coefficient of shifted Gegenbauer polynomials,
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Proof:
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t
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from the linearty property of Caputo fractional derivative, one obtains: 
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By the help of Theorem (25), one gets: 
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by using Theorem (24) will be get: 
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then this error is bounded since 
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4. Numerical results

This section develops an algorithm of the collocation strategy method for the approximateing the 
solution of FOCPs. Two illustrative examples have been solved to show the efficiency and accuracy of 
the numerical method. The obtained results were compared with the analytical solution of the FOCP. 
The proposed method was implemented with MATLAB 2018a on a PC.

Algorithm of collocation strategy method to approximate FOCP (9)-(10):
Step one: Compute the Hamiltonian H and drive the necessary optimality conditions.
Step two: Transform interval [ ]a tf,  to the interval [0,1] and approximate x(t) and g(t) by shifted 
Gegenbauer polynomials.
Step three: Find shifted Gegenbauer Guss nodes on the interval [0,1].
Step four: Apply shifted Gegenbauer Guss nodes with the system of matrix equations (43)-(44), to get 
approximate solution of coupled system of matrix equations. Generally, the system of matrix will be: 

c A G t BG t M tT
letf=[ ] 1. ( ) . ( ) ( ),� �+ -  (46)

d AG t BG t N tT
right=
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Step five: Find unknown vectors cT, dT using Matlab, then obtain x(t), g(t) as follows: 
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Step six: Find the optimal control function u(t) from Hamiltonian condition.
Step seven: Define the error function at nodes ti by Error t x t x ti i m i( )=| ( ) ( )|,-  where x(t) is the exact 
solution, then report the maximum absolute error at the end as Error t Error tti i( ) ( )=max .

Because of the shifted Gegenbauer Guss nodes, it does not include the upper and lower bounds for 
the interval [0,1], or to get more flexibility and satisfy the boundary conditions let: 

x t x t x x x t c G t where x x x xm
j

m

j j( ) ( ):= ( ) ( ), (0)= (1)=
=1

» + - +å0 0 , 0 ,
 l 

,

g g g g g g g g gl( ) ( ):= ( ) ( ), (0)= (1)=
=1

t t t d G t wherem
j

m

j j» + - +å0 0 , 0 ,
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.

Example 1: Consider FOCPs as follows [5]:  

min J u u x x d( ) 1
2

( ) ( ) 2 ( )
1 2= - -éë ùûò0 ,t t a t t t
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with dynamic system of fractional differential equation 
x D x uC( ) ( ) ( ) 2t t t tt

a+ = +0 ,

with conditions x x(0)=0, (??)= 2
(3 )G +a

.

The exact solution of control and stat functions are given by u*
1

( )= 2
(2 )

t t
a
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+G
 and x*

2

( )= 2
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t t
a
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+G
. 

Let’s the Hamiltonian functions define as: 
H x u u x u( ) [ ( ) ( 2). ( )] ( ).[ ( ) ].2 2t g t t a t g t t t, , , = - + + +

Then the necessary and optimality conditions in terms of a Hamiltonian for the FOCP will be changed 
to a system of fractional differential equations as follows: 

x D x xC( ) ( ) ( )
2

( 2) ( ) 0,2
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t
a t

t
tt
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x x(0)=0, (1)= 2
(3 )

(0)=0, (1)=0,
G +

¹
a

g g t, 0.

To approximate the state and control functions of above fractional system, apply the presented method 
in terms of the collocation strategy. Figures 1 shows that the obtained control and state functions with 
their error functions for l = 1.5, m = 15, and a = 0.7. The Figure 2 shows that the obtained control 
function u15(t) for different values of a  = 0.6,0.7,0.8,0.9 .

 

Figure 1: The obtained state and control functions with error functions from the presented method, 
for m = 15 and a = 0.7.(Example 1).
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Figure 2: The obtained control function from the presented method for different  
values of a and m = 15.(Example 1).

Example 2: Consider FOCPs as follows [5]:  

min J u x x u x d( )= [( ( ) ) ( ( ) (1 ) ) ( ( ) ( )) ]
1
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the analytical solutions of the problem are: 
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To approximate the solution of FOCP with boundary value conditions, apply the algorithm of colloca-
tion strategy method. The Hamiltonian equation can be defined as: 

H x u F x u G x u( )= ( ) ( ),t l t l t, , , , , , ,+

H x x=( ( ) ) ( ( ) ( 1) )1
3.3 2

2
2 2t t t t- + - + + ( ( ) ( )) ( )[3.3 ( ) (4.3)
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ê
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û
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Then, the necessary and optimality conditions in terms of a Hamiltonian for the FOCP will be changed 
to a system of fractional differential equations as follows: 
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x D x xC
1 1

1
1

3.3( ) ( ) 3.3 ( ) (4.3)
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t t t t
a
tt

a a+ = +
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- -
0 ,G

G

x D xC
2 2

2 1( ) ( ) 2( 1) (3)
(3 )

4
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t t t
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a
tt
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l t g t t t t t t gt t
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1 1 1

3.3
1

12 2 3.3( ) + ( ) = - ( ) -éë ùû + ( ) - ( )éë ùû +
-C D x u x 11( ),t

g t l t t tt
a

2 1 2 2
2( ) ( ) 2[ ( ) ( 1) ],- = - - +C D x

x x x1 1 2(0) 0, (1) 1, (0) 1,= = =

x2 1 2(1) 4, (1) 0, (1) 0,= = =g g

with the optimal control law ¶
¶
H
u =0, and then u t x t( )= ( )1 . By applying the algorithm of collocation 

method, Figures 3 represents the obtained control and state functions x1(t), x2(t), u(t) with error  
functions by the presented method for l = 1.5, m = 10, and a = 0.6. Figure 4 represents norm-2 of the 
error E um

2 ( )  for the different values of m = 1,2,...,150 , a = 0.6 and 

E u
m

u um
i

m

i m i
2

=1

2
1/2

( ):= 1 å ( ) - ( )( )æ
è
ç

ö
ø
÷t t .

Figure 3: Obtained state, control, and error functions from the presented  
method for m = 10 and a = 0.6.(Example 2). 
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Figure 4: The figure of norm-2 of the error for the different values  
of n = 1,2,...,150, and a = 0.6 (Example 2).

5. Conclusion

A new approximate formula of the Caputo fractional derivatives of the shifted Gegenbauer func-
tions was derived and the GG collocation method was used to approximate solutions of a category 
of FOCPs. The properties of shifted Gegenbauer polynomials and three recurrence formulas were 
used to generate the left and right Riemann-Liouville fractional integrals. Global approximations to 
functions defined on the interval [0,1] were constructed. The special attention was to study the con-
vergence analysis and estimating an error upper bound of the presented formulas. The discretization 
of the FOCP were inserted and Illustrative numerical examples were integrated to show the validity 
and applicability of this new technique with obtained good approximate solutions and the number of 
operations was less than O(N 3).
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