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Abstract
As mathematical models of biological pattern generation, this study investigates the dynamics of 
the fractional discrete Gierer-Meinhardt reaction-diffusion system. After deriving the discrete non- 
integer fractional variant of the Gierer-Meinhardt system and establishing that the system has a 
unique equilibrium, we analyze the system’s local asymptotic behavior in both the presence and 
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using relevant approaches and the Lyapunov method. Throughout the study, two comprehensive bio-
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1. Introduction

Nonlinear reaction-diffusion equations provide a variety of applications in pattern development in 
the fields of chemistry, physics, and biology [1–3]. Reaction-diffusion equations are also applicable to 
a wide range of additional issues of interest to the targeted research community [4, 5]. Its theoretical 
framework may be derived from [6–8].

Fractional reaction-diffusion models have captured a lot of debate during the past several 
years [9], this fractional reaction-diffusion models display self-organization occurrences on one hand 
and add an additional component to these systems known as fractional derivative indices., that pro-
vides an increased amount of freedom for many different self-organization phenomena on the other 
hand. At the same time, both the analytical and numerical processes for assessing such fractional 
reaction diffusion models are substantially more sophisticated.

Discrete fractional calculus has gained momentum as a distinct and engaging realm of mathe-
matical exploration in the past decade [10–13]. Its appeal has attracted mathematicians, scholars, 
and researchers, as it finds relevance in diverse fields like biology, ecology, and applied sciences 
[14–17]. What adds to the allure of this domain is its discrete fractional operators, which serve as 
versatile tools for dissecting real-world complexities. Notably, these operators have been employed to 
unravel challenges across various sectors, as indicated in references [18, 25]. Meanwhile, partial dif-
ference equations have gotten a lot of interest in recent years because of their relevance in applica-
tions incorporating population dynamics as well as regional migrations, chemical processes, and even 
computing and analyzing finite difference equations [26]. However, there has been little research on 
discrete reaction-diffusion models. In [27], the fractional discrete Glycolysis system was investigated 
using the second order difference operator. For other works, the reader may refer to [28, 31].

Among the most well-known models in biological pattern generation is the Gierer-Meinhardt 
model. The scientific observation and analysis of the kinetic processes led them to construct a Gierer-
Meinhardt model that includes a saturating factor. Such a saturating term restricts the activator’s 
intensity to a maximum amount, allowing the interaction capacity to be controlled. The activation 
region might change in relation to the overall structure’s size. The Gierer-Meinhardt model with 
a saturating term is believed to be especially appropriate for modeling biological systems, particu-
larly in terms of controlling features such as size maintenance and structure spacing regulation [32]. 
Numerous studies have been done on the Grierer-Meinhardt model; for instance, in [33], biological 
pattern creation in plants was discussed. The model was also investigated in [34, 35], which demon-
strated the global presence of solutions to a particular case. A unique nonnegative global solution to 
the Grierer-Meinhardt system was demonstrated in [36].

The basic objective of this study is to offer the fractional discrete reaction diffusion Gierer-
Meinhardt model, and also to thoroughly investigate the dynamical behaviors such as local and global 
stability of the equilibrium of the systems under consideration. Thus, here is the summary of this 
paper: In Section 2, the discrete fractional reaction diffusion Gierer-Meinhardt model is described. In 
Section 3, we explored the local in the absence and presence of the influence of spatial diffusion. In 
Section 4, we adress global stability of the proposed system. In Section 5, numerical approximations 
for the investigated system with certain specific parameter values and beginning circumstances are 
also performed to validate our theories.

2. The fractional discrete Gierer–Meinhardt model

Due to the fact that it has been well reported over the last years that combining fractional discrete 
calculus with the dynamics of systems may provide incredible results. We investigate the discrete 
reaction-diffusion fractional Gierer-Meinhardt system. We provide first the following important 
definition.
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Definition 1. [23] The Caputo ℏ-difference operator is outlined by α
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with the set (ℏN)
a+cℏ defined by

 (ℏN)
a+cℏ = {a + (1 − c)ℏ, a + (2 − c)ℏ, . . .}.

The forward difference operator ∆ℏ is then defined as
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The Gierer–Meinhardt reaction-diffusion system, as is well-known, was proposed in [37, 38] as 
follows: 
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where Ω ⊂ Rn represents a bounded domain with smooth boundary ∂Ω, a1, a2 > 0, µ, ν, σ > 0, while the 
indices p, q, r, and s are positive such that p > 1, with homogeneous Neumann boundary conditions
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Because real-world data is discrete, the discrete system is better suited to simulating the state of bio-
logical process. Therefore, we rely on the model (4) and the method of discretization employed in [28]. 
Provided that x ∈ [0, L], we can get xi+1 = xi + k for i = 0, 1, 2, . . . , m, and by applying the central dif-

ference formula for 
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x , we can approximate it as
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Now, we can apply the following definition of the second-order difference operator of ui and vi pro-
vided in [39]:

 Δ2χ(ℓ) = χ(ℓ + 2) − 2χ(ℓ + 1) + χ(ℓ), ℓ ∈ N	 (6)
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to obtain
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Thus, we can present the discrete reaction-diffusion fractional Gierer-Meinhardt system as shown 
below:
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with the periodic boundary conditions
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and the initial condition

 ui (t0) = ϕ1(xi) ≥ 0,  vi(t0) = ϕ2(xi) ≥ 0.

3. Analytical results

3.1. Local stability

3.1.1. Local stability of the free diffusions system
In this part, we establish appropriate conditions for the local stability of the free diffusion model 
described below.
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with the initial conditions

 u0 ≥ 0,  v0 ≥ 0.

Before we work on the investigation of the desired stability, we need the next theorem.

Theorem 1. ([40]). Let (u*, v*) be an equilibrium point of (10). If all the eigenvalues of J*(u*,v*) are in Sc
ħ, 

 then (u*, v*) is asymptotically stable, where
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In order to discuss the stability we wish, we must identify the equilibrium point. It is worth noting 
that the equilibrium points of system (10) have the following property:
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Herein, system (10) has a unique positive equilibrium (u*, v*) that verifies 
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we can obtain the Jacobin matrix of equilibrium point stated as follows:
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Theorem 2. System (10) is locally asymptotically stable if the following conditions hold:
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Proof. We start first by proving that system (10) has a unique positive equilibrium. For this purpose, 
we note that since (u*, v*) is an equilibrium of system (10), then it will satisfy (12). This implies that 
u* satisfying
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If (14) is true, it is simply to demonstrate that I1(u) is a strictly decreasing function for µu > σ. 
Furthermore, the property
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In the same regard, if we move on to the stability of (u*, v*), we find the characteristic equation of 
the Jacobian matrix (13) as follows:

 λ2 − tr(J(u*,v*))λ + det(J(u*,v*)) = 0. (16) 

To investigate the stability of the eigenvalues problem, we should calculate
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Because the sign of ∆ is crucial to investigate the stability of the system (10), we will discuss each 
case separately, depending on the sign of ∆.

• If ∆ > 0 and det(J(u*,v*)) > 0. As a result, the sign of tr(J(u*,v*)) defines the negativity of λ1 and λ2, 
which are real numbers, and they can be expressed as follows:
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Arg(λ1) = Arg(λ2) = π. As a result and according to Theorem 1, we find that (u*, v*) is stable. 
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• If ∆ < 0 and det(J(u*,v*)) > 0, then the eigenvalues of the problem are defined as follows:
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 We can then evaluate the desired solutions depending on the sign of tr(J(u*,v*)).
– If tr(J(u*,v*)) < 0 or tr(J(u*,v*)) > 0, then the same case addressed previously will be followed, 

and hence system (10) is asymptotically stable.
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– If tr(J(u*,v*)) = 0, then we have
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 and so system (10) is asymptotically stable.
• If ∆ = 0 and det(J(u*,v*)) > 0, then tr(J(u*,v*))) cannot be equal to zero. The signs of λ1 and λ2 are 

identical to the sign of tr(J(u*,v*)). As a consequence, (u*, v*) is asymptotically stable for any c ∈ 
(0, 1]). Besides, tr(J(u*,v*)) < 0 and unstable if tr(J(u*,v*)) > 0.

3.1.2. Local stability of the diffusion system
In this section, we will prove that in the presence of diffusion that asserts (u*, v*) can be stable pro-
vided that some particular parameter conditions are hold. To do so, we will use the identical method 
as in [41], and we will start by computing the eigenvalues of the following equation:
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Consequently, we can obtain

 
0

0

1
2

2
2

( )( ) ( ) ( ) ,
( )

( )( ) ( ) ( ) .
( )

p
C

t i q

r
C

t i s

a u tu t u t u t
k v t
a u tv t v t v t
k v t

θ σ µ

θ ν

+
∆ = + + − + +

+

+
∆ = + − + +

+







 





 



c

c

c
c c

c

c
c c

c

 (22)

Linearizing the reaction-diffusion system (22) with respect to the steady-state (u*, v*) leads us to the 
matrix Ji(u*,v*), which can be given as
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Theorem 3. System (8) is asymptotically stable at (u*, v*) under the following states:
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• If we suppose that
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The sign of the discriminant ∆i is crucial for the investigation of the solution of the characteristic 
equation (24). Therefore, based on the sign of ∆θi
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• If ∆θi > 0. This means

 

2
1 1 1*1 1 1 1 1 1

4
1 2 * ( 1) 2 ) ( 1)( ( 1) 6 ).(
4

q rq q rqp p
s s s sa a p u u p s rq s s

k
ν µ ν ν ν µ

− − − − −
+ + + +

  
− − > + − + + + −         

 Now, due to a1 ≠ a2, we should then distinguish between the following two cases:
– If a1 < a2, then ∆ > 0, and hence the two solutions of the equation ∆*θi

 = 0 are both negative. 
Thus, we have ∆θi

 > 0, and the roots of the problem will be as described in (28). Note that 
the solutions in question are all real numbers with λ1(θi) < 0. In addition, if

 

11 1 1
2 * 0,

q rqp
s s

i
a p u
k

θ µ ν
− −

+ +− + ≥
 



Bendib I, et al., Results in Nonlinear Anal. 7 (2024), 1–15.   9

 then λ2(θi) < 0. This consequently leads to

 |Arg(λ1(θi))| = |Arg(λ2(θi))| = π, (27) 

 which ensures that (u*, v*) is asymptotic stability for which
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3.2. Global stability

In this part, we expand the Lyapunov function approach to address the global asymptotic stability of 
the fractional discrete Gierer-Meinhardt model (8). We provide first important some theorems con-
cerning with the discrete fractional systems.

Lemma 1. [28] The following inequality holds:
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Theorem 4. [29] Let (u*, v*) be the system’s equilibrium point of model (8). The equilibrium point is 
asymptotically stable if there exists a positive definite and declining scalar function, where Ch∆c

aV (t) ≤ 0.

Theorem 5. The system (8) is globally asymptotically stable if

 

* * * *min * , * (1 ) 0,
* * * *

p r r p

q s s q
pu ru u quu v s
v v v v

µ ν
  − − − + − ≥ 
  

Proof. To exemplify this result, we use the Lyapunov function (31) and analyze the following 
functions:

 3 4
0 0

( ) ( )( ) * , ( ) * ,
* *

N N
i i

i i

u t v tV t u L V t v L
u v= =

+ +   
= =   

   
∑ ∑ c c  (31)



Bendib I, et al., Results in Nonlinear Anal. 7 (2024), 1–15.   10

Also, we consider

 V (t) = V3(t) + V4(t).

Now, we must first assume that v* ≠ 0, u* ≠ 0. Then we have
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Consequently, ℏ
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t0
V2(t) can be evaluated as follows:
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Due to the following assumption

 ΔV(t) = ΔV1(t) + ΔV2(t) (32)

is true, we can obtain
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such that r ≥ 0. So, we can have ħ
C∆ħ

cV (t) ≤ 0, and hence system (8) is asymptotically stable.
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4. Numerical simulations

In this part, we show the exemplary simulations of the theoretical properties of the stability of the 
discrete Gierer-Meinhardt reaction-diffusion system with non-integer orders. This will allows us to 
observe how the system behaves when its parameters and order are modified. It should be mentioned 
here that all numerical solutions performed next are in relation to system (8), which can be appeared 
as follows:
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Example 1. In this example, we assume the parameter values of the system in question as (a1, a2, σ, 
µ, ν, p, q, r, s) = (0.02, 0.03, 1, 0.1, 0.18, 1, 1, 1, 1 ), t ∈ [0, 30], x ∈ [0, 20], the boundary conditions (u0, 
v0) = (1, 2 ), and the initial conditions as follows:

 1

2

( ) 5cos( ),
( ) 2 5sin( ),

xe
e

φ π
φ π

 = + +


= + +
x

x x x

x x x
 (34)

In light of these assumptions, we can notice that the model has a equilibrium point (u*, v*) = 
(35.1555, 13.9753), which is asymptotically stable. Figures 1A and 1B show that the numerical solu-
tion we obtained for system (8) is consistent with the hypotheses presented in the preceding sections.

Example 2. Herein, we consider the following parameter values: (a1, a2, σ, µ, ν, p, q, r, s) = (0.02, 0.03, 
0.04, 1.2, 0.16, 0.5, 1, 1, 1, 1) and t ∈ [0, 60], x ∈ [0, 40]. Also, we take the boundary conditions as (u0, 
v0) = (4, 3), whereas the initial conditions as

 1

2

( ) cos( ),
( ) 2 sin( ).

e
e

φ π

φ π

 = − −


= − −

x

x

x x x

x x x
 (35)

Figure 1: Numerical solution of (8) for (a1, a2, σ, µ, ν, p, q, r, s) = (0.02, 0.03, 1, 0.1, 0.18, 1, 1, 1, 1), N = 80 and c = 0.85.

(A) (B)
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Based on the previous assumptions, we can see that all of the solutions to model (8) eventually reach 
(u*, v*) = (32.8172, 8.1015). This means that it is asymptotically stable. Anyhow, we can notice that 
the performed numerical results shown in Figures 2A and 2B agree with our past theoretical findings.

5. Conclusion

In this paper, we provide a novel model of the reaction-diffusion Gierer-Meinhardt system based on 
the Caputo h-difference operator. To establish proper circumstances for the model’s local and global 
asymptotic stability, the basic theory of discrete fractional models, the linearization technique, and 
the Lyapunov method are employed. Simulations of the fractional discrete Gierer-Meinhardt sys-
tems are offered to show the usefulness and applicability of the proposed theoretical conclusions.

The investigation of the stability of this system opens up the prospect of many different kinds of 
future research and study, involving analysis and modeling in a variety of fields, as well as unique 
aspects related to system chaos, stabilization, and synchronization of fractional discrete reaction dif-
fusion systems.
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