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Abstract
In this paper, we expand on the notion of the q-derivative (or q-difference) operator for meromorphic 
multivalent functions, define the higher-order q-derivative operator for meromorphic multivalent 
functions associated with quantum calculus, and introduce new subclasses of meromorphic multiva-
lent q-starlike functions in connection with Janowski functions. We investigate a number of useful 
properties of the Janowski functions and higher-order q-derivative operator for a new class of mero-
morphic multivalent q-starlike functions. Among the many potential uses of this class that we inves-
tigate are coefficient estimates, distortion theorems, partial sums, the radius of starlikeness, and a 
few other well-established results.
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1. Introduction and Definitions

The M(ϑ) is a set of all analytic functions hϑ that are meromorphic multivalent in the punctured 
open unit disc

 U* = {z : z ∈ C and 0 < |z| < 1} ,

and every hϑ ∈ M(ϑ) is of the form:
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We noticed that for ϑ = 1, we have

 M(1) := M.

Many authors introduced and studied several different subclasses of meromorphic univalent func-
tion class M, see for (example [1–5]).

A function hϑ ∈ M(ϑ) is known as meromorphic multivalent starlike whenever it satisfies the
inequality
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and let MS*(ϑ, α) represent the class of meromorphic multivalent starlike functions of order α, (0 ≤ α 
< 1) whenever it satisfies the inequality
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Note that

 MS* (ϑ, 0) = MS*(ϑ).

Numerous authors have done substantial research on these classes, for details (see [6–9]). Now we 
recall some basic notations and fundamental concepts of q-calculus operator theory and definitions, 
which will be helpful for the understanding of this article. We assume throughout this investigation 
that

 q ∈ (0, 1) , −1 ≤ Y2 < Y1 ≤ 1, and ϑ ∈ N = {1, 2, 3...} .

Definition 1. (see [10]). Consider the q-number defined as:
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and for any non-negative integer v
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Definition 2. (see [11] and [12]) . Let A is the set of all analytic functions and h ∈ A. The q-derivative 
(or q-difference) Dq operator is defined by

 ( ) ( )
( ) ( )
( )

( 0)
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( ) ( 0).
q

zh z h qz
D h z q z

h z z

≠ −


= −
 ′ =
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We observed from equation (1.2) that

 1
.( )lim (( ) )qq

D h z h z
→ −

′=

For h ∈ A and from equation (1.2), we have
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Here analogous to Definition 3, Mahmood et al. [13] extend the idea of q-difference operator for 
hϑ ∈ M(ϑ) given in (1.1) and defined a new class MS*

q,ϑ[Y1, Y2] of meromorphic multivalent functions.

Definition 3. (see [13]). For h ∈ M. The q-derivative (or q-difference) Dq operator for a sub-collection 
of C is defined by
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For h ∈ M and from (1.3), we have
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Definition 4. Furthermore, on account of (1.1) and (1.3) , We generalize the concept of a q-difference 
operator for hϑ ∈ M(ϑ) such that

 

( ) ( )

( ) ( )

1 1

0

2 2
1

2

0

1 ,

1 1 1

 1 ,

v
q vq q

v

q q q

v
vq q

v

D h z z v a z
q

D h z z
q q

v v a z

ϑ ϑ
ϑ ϑϑ

ϑ
ϑ ϑ ϑ

ϑ
ϑ

ϑ ϑ

ϑ ϑ

ϑ ϑ

∞
− − + −

+
=

− −
+

∞
+ −

+
=

−
= + +      

   − −
= +          
   

+ + + −      

∑

∑
  

(1.5)

 

( ) 2
1 2 1

0

1 1 1( ) ... 1 ... 2 1

 1 ... 1 ,

q q q q

v
vq q q

v

D h z z
q q q

v v v a z

ϑ ϑ
ϑ ϑ ϑ ϑ

ϑ

ϑ ϑ ϑ

ϑ ϑ

−
+ −

∞

+
=

     − − −
= + −                
     

+ + + − +          ∑



Khan M.F., et al. Results in Nonlinear Anal. 7 (2024), 174–186. 177

 
( ) 2

1 2 1

0

1 1 1( ) ... 1 ... 2

,

1

[ ]
 

!
!

q q q q

q v
v

v q

D h z z
q q q

v
a z

v

ϑ ϑ
ϑ ϑ ϑ ϑ

ϑ

ϑ ϑ ϑ

ϑ

−
+ −

∞

+
=

     − − −
= + −                
     

+

 
+


∑

 (1.6)

 
( ) 2

1 2 1

1
1

1

1 1 1( ) ... 1 ... 2 1

[ 1 ] !
1

 
!

q q q q

q v
v

v q

D h z z
q q q

v
a z

v

ϑ ϑ
ϑ ϑ ϑ ϑ

ϑ

ϑ ϑ ϑ

ϑ

−
+ −

∞
−

+ −
=

     − − −
= + −                
     

− +

− 
+


∑

 (1.7)

and (Dqhϑ) (z) is the ϑ-th time q-derivative of hϑ(z).

Now, for each hϑ ∈ M (ϑ), the expression in (1.1) when differentiated s times with respect to z 
yields
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where
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for s ∈ N0 = N ∪ {0} .
Taking ϑ = 1 in (1.7) then we have the q-derivative (or q-difference) Dq for h ∈ M which is given 

by (1.4).
Recently, q-calculus has attracted more attention from researchers due to its applications in 

mathematics and physics. Ismail et al. article [14] first described the q-extension of the class of 
q-starlike functions. Numerous well-respected academics have since carried out ground breaking 
work in the field of Geometric Function Theory. In particular, the q-Mittag-Leffler functions were 
investigated by Srivastava and Bansal [15, 16] and in [17]. The authors of [18, 19] also explored the 
class of q-starlike functions and looked into a third Hankel determinant. Using q-calculus operator 
theory, Srivastava et al. have recently published a series of studies (for example, [20–24]). In addi-
tion, many mathematicians have investigated operator theory in the q-calculus within the frame-
work of Geometric Function Theory, for examples, [25–31].

Definition 5. A function hϑ ∈ M(ϑ) be in the class MS*q,ϑ [Y1, Y2] if and only if
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It can be observed easily that

 MS*q,1 (Y1, Y2) = MS*q(Y1, Y2) .

Mahmood et al. have introduced and investigated this class in [13].
It is clear that

 ,1 1 2 1 21
lim , ,qq

Y Y Y Y∗ ∗

→ −
=      MS MS

where MS* [Y1, Y2] , Ali et al. introduced and investigated this class in [32].
For q → 1−, Y1 = 1 and Y2 = −1, then

 ,11
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− =  MS MS

where MS* denote the class of meromorphic starlike function. 
In this section, we explore a sufficient condition for hϑ ∈ MS*q,ϑ[Y1, Y2] that will be utilized in the 

exploration of subsequent outcomes. We will also study the ratio between the series of partial sums
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and the function hϑ of the kind provided by (1.1) , when the coefficients are sufficiently small.

2. Main Result

2.1. Coefficient Estimates

Theorem 1. Let hϑ is a function of type (1.1), then f belongs to the class MS*q,ϑ[Y1, Y2], if

 ( ) ( ), 1 2 , 1 2
0

, , ,v
q v q

v
Y Y a Y Yϑ ϑ ϑ

∞

+
=

Λ ≤ ϒ∑  (2.1)

where

 ( ) ( ) ( ) ( ), 1 2 2 1, 2 1 1 1v
q v vY Y Y Yϑ ϑ ϑϕ ϕ+ +Λ = + + + − −  (2.2)

and

 Υq,ϑ (Y1, Y2) = |(Y2 + 1) λ1 + (Y1 + 1)| − 2 (λ1 + 1) , (2.3)

where λ1 is given by (1.9).

Proof. Suppose that (2.1) is satisfy, then it is enough to prove that

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

2 1

2 1

1 1
1 1 .

1 1
1 1

%

s s
q

s s
q

z D h z
Y Y

h z

q qz D h z
Y Y

h z

ϑ

ϑ

ϑ

ϑ

 
 − − − −
 
  − <

− − 
 + − − +
 
 



Khan M.F., et al. Results in Nonlinear Anal. 7 (2024), 174–186. 179

Now we have
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The inequality (2.4) is bounded by 
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where Λv
q,ϑ(Y1, Y2) and Υq,ϑ(Y1, Y2) are given by (2.2) and (2.3) respectively. The proof of Theorem 1 is 

thus concluded.

Corollary 1. Let hϑ is a function of type (1.1), then it will be in the class MS*q,ϑ[Y1, Y2], then
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Equality hold for the function
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where Υq,ϑ (Y1, Y2) and Λv
q,ϑ(Y1, Y2) are given by (2.2) and (2.3) respectively.

Theorem 1 has a well-known corollary that was first proposed in [13] for the case when ϑ = 1.

Corollary 2. [13]. Let h is a function function of h ∈ M be in the class MS*q[Y1, Y2], if
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where

 Λ (v, Y1, Y2, q) = 2 (|v|q + 1) + |(Y2 + 1)|v|q − (Y1 − 1)|q

and

 Υ(Y1, Y2, q) = |(Y2 + 1) − (Y1 + 1) q| + 2 (1 − q) .

2.2. Distortion Inequalities

Theorem 2. If hϑ ∈ MS*q,ϑ[Y1, Y2] , then
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Equality hold for the function
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with Λv
q,ϑ(Y1, Y2) and Υq,ϑ (Y1, Y2) are given in (2.2) and (2.3) respectively.

Proof. Let hϑ ∈ MS*q,ϑ[Y1, Y2] . Then in the view of Theorem 1, we have
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Similarly, we have
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Thus its complete the proof of Theorem 2.

Theorem 2 has a well-known corollary that was first proposed in [13] for the case when ϑ = 1.

Corollary 3. [13]. If h ∈ MSq* [Y1, Y2] , then
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Theorem 3. If hϑ ∈ MS*q,ϑ[Y1, Y2] , then
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q,ϑ(Y1, Y2) and Υq,ϑ(Y1, Y2) are given by (2.2) and (2.3) respectively.

Proof. The proof of Theorem 3 can easily obtain by using the same steps of Theorem 2.

Theorem 3 has a well-known corollary that was first proposed in [13] for the case when ϑ = 1.

Corollary 4. [13]. If h ∈ MS*q[Y1, Y2] , then
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2.3. Partial Sums for the function class MS*q,ϑ[Y1, Y2]

Here, we examine the relation-ship between the series of partial sums and a function of the type 
(1.1). We will investigate sharp lower bounds for
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 ( )
, 1

( )
(

11
)k k

h zRe z
h z

ϑ

ϑ ϑχ + +

 
≥ − ∀ ∈  

 
  (2.6)

and

 ( ), 1

1)
,

1
( )

(
k k

k

h z
Re z

h z
ϑ ϑ

ϑ ϑ

χ
χ
+ +

+ ++

 
≥ ∀ ∈ 

+ 
  (2.7)

where

 ( )
( )

, 1 2

, 1 2

,
,

k
q

k
q

Y Y
Y Y

ϑ
ϑ

ϑ

χ +

Λ
=
ϒ

 (2.8)

and Λk
q,ϑ(Y1, Y2) and Υq,ϑ(Y1, Y2) are defined in (2.2) and (2.3) respectively.
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If, we set
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Finally, The proof of (2.6), only requires us to demonstrate that the L.H.S of (2.9) is bounded above 
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Now we have finished the demonstration of inequality in (2.6).
Next to prove the inequality (2.7), we fixed
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where
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The inequality (2.11) is equivalent to
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We have now finished the proof of (2.7) by establishing that the L.H.S in (2.12) is bounded above 

by 
0

v v
v

aϑ ϑχ
∞

+ +
=
∑ . This concludes the proof of Theorem 4. 

Theorem 5. If hϑ of the form (1.1) hold the condition (2.1), then
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where χk+ϑ is given by (2.8) .

Proof. In this case, we do not detail how we came to prove Theorem 5. It is analogues cab be found in 
Theorem 4.

2.4. Radius of Starlikeness

In the Theorem 6 we obtain the radius of starlikeness for the class MS*q,ϑ [Y1, Y2], when hϑ given by 
(1.1) is meromorphically starlike of order α(0 ≤ α < 1) in |z| < r.

Theorem 6. Let the function hϑ defined by (1.1) will belong in the class MS*q,ϑ [Y1, Y2]. Then, if
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is positive, then hϑ is ϑ-valently meromorphically starlike of order α in |z| ≤ r.

Proof. To prove the Theorem 6, we have to show that
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We have
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Hence (2.13) holds true if
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We may express the inequality (2.14) as:
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With the help of (2.1), the inequality (2.15) is true if
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Solving (2.16) for |z|, we have
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 (2.17)

In the view of (2.17), Theorem 6 is now completed.

3. Conclusion

In this article, we used the concepts of q-calculus notations and introduced a higher-order q-derivative 
operator for multivalent meromorphic. We used this newly defined operator and Janowski functions 
to establish a new class of meromorphic multivalent q-starlike functions. Furthermore, we investi-
gated some useful properties, such as coefficient estimates, distortion theorems, partial sums, and the 
radius of starlikeness for the functions belonging to the newly defined class of meromorphic multiva-
lent  q- starlike functions. We also highlighted a number of well established consequences of our main 
findings.

Further mathematical work may be done using the operator of this article and the subordinations 
approach, which enables for the definition of several further subclasses for meromorphic functions. 
For these classes, a number of new properties can be investigated, such as Feketo-Szego inequality, 
Hankel determinant, Upper bound, subordination results, etc.
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