Geometric characterization of pointwise slant curves

S. K. Srivastava ${ }^{1}$, K. Sood ${ }^{1}$, K. Srivastava ${ }^{1}$ and Mohammad Nazrul Islam Khan ${ }^{2 \star}$
${ }^{1}$ Srinivasa Ramanujan Department of Mathematics Central University of Himachal Pradesh Dharamshala-176215, Himachal Pradesh, India; ${ }^{2}$ Department of Computer Engineering, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia

Abstract

In the present paper we study the characteristics of pointwise slant curves in a normal almost contact semi-Riemannian three-manifold N^{3}. These curves are characterized by the pseudo-Riemannian scalar product between the normal vector at the curve and the reeb vector field of manifold $N 3$. In this class of manifolds, curvature and torsion of such curves are determined. The Lancret of slant curves in manifold N^{3} is obtained. Additionally, pointwise slant curves with proper mean curvature are characterized.

Key words and phrases. Semi-Riemannian metrics, Partial differential equations, Mathematical operators, Contact structure, Slant curve, Legendre curve, Lancret
Mathematics Subject Classification (2010): 53A55, 53B25, 53D15, 53C25, 53C50.

1. Introduction

The study of slant curves in contact three-manifolds was started by the authors in [1]. According to [2], slant curves are the generalization of Legendre curves. More precisely, let ($N^{3} ; \varphi, \xi, \eta, g$) be an almost contact Riemannian three-manifold. Then a smooth unit speed curve $v: J \rightarrow N^{3}$ is called slant curve if $g\left(\xi, v^{\prime}(s)\right)=\cos \vartheta(s)=$ constant, where J is an open interval and $\vartheta: I \rightarrow[0,2 \pi)$ is called

[^0]structural angle (or contact angle). In light of Theorem 3.1 of [1], we obtain for a non-geodesic slant curve v in Sasakian three-manifolds that
\[

$$
\begin{equation*}
\operatorname{Lancret}_{ \pm}(v)=\frac{ \pm \tau-1}{\kappa} . \tag{1.1}
\end{equation*}
$$

\]

The equation (1.1) signifies that the curve v is a Legendre helix if and only if the absolute value of its torsion is equal to 1 , that is, $|\tau|=1$. Several authors exhaustively studied and analyzed the geometry of slant curves (see [3-7]). Recently, in [8], the present authors defined pointwise slant curves (abbreviated as PS curves) as a natural generalization of slant curves. In this paper, we investigate how these curves are characterized in N^{3}, where N^{3} is a normal almost contact semi-Riemannian three-manifold (abbreviated as a. c. s. three-manifold).

The organizational structure of the paper is as follows: the basics of almost contact semiRiemannian manifolds are given in Sect. 2 and Sect. 3. The characterizations of PS curves in N^{3} are obtained in Sect. 4. The curvature and torsion of PS curves which are not geodesic in N^{3} are determined in Sect. 5. We derive the necessary and sufficient condition for the PS curve (which is not geodesic) having proper mean curvature vector \mathbb{H}. Examples are also constructed for illustration.

2. Preliminaries

Let the manifold $N^{2 n+1}$ of dimension $(2 n+1)$ be C^{∞} and paracompact. Let the Lie algebra of vector fields on $N^{2 n+1}$ is denoted by $\Xi\left(N^{2 n+1}\right)$ and $\Gamma(F)$ denotes $\Xi\left(N^{2 n+1}\right)$-module of sections of vector bundle F over the manifold.

The manifold $N^{2 n+1}$ is referred to as an almost contact manifold if the structure group $\mathrm{GL}_{2 n+1} \mathbb{R}$ of $\mathcal{T} N^{2 n+1}$ (tangent bundle) is reducible to $\mathrm{U}(n) \times\{1\}$. Equivalently, if there exists (φ, ξ, η)-structure satisfying

$$
\begin{equation*}
\varphi^{2}+I=\eta \otimes \xi \quad \text { and } \eta(\xi)=1, \tag{2.1}
\end{equation*}
$$

where the vector field ξ is called characteristic or Reeb vector field, φ is an endomorphism, \mathcal{I} denotes the identity, and η is a 1 -form such that $\eta \wedge(d \eta)^{n} \neq 0$ known as contact form; d is one of the mathematical operators called the exterior differential operator. It is simple to deduce from equation (2.1) that $\eta \circ \varphi=\varphi \xi=0$ and $\operatorname{rank}(\varphi)=2 n$ [9].

A semi-Riemannian metric g is called compatible with the (φ, ξ, η)-structure if

$$
g(\varphi \cdot, \varphi \cdot)+\varepsilon \eta(\cdot) \eta(\cdot)=g(\cdot, \cdot),
$$

where g has the signature $(2 q+1,2 n-2 q)$ or $(2 q, 2 n-2 q+1)$ depending on whether ξ is spacelike or timelike, respectively, and $\varepsilon^{2}=1$. $\left(N^{2 n+1} ; \varphi, \xi, \eta, g\right)$ is known as an almost contact semi-Riemannian $(2 n+1)$-manifold (abbreviated as a.c.s. $(2 n+1)$-manifold). Here, $g(\xi, \xi)=\varepsilon$ and $\eta(X)=\varepsilon g(X, \xi)$. This implies that ξ is never lightlike. Let Φ denotes the fundamental $2-$ form then it is given by $\Phi(\cdot, \cdot)=$ $\varepsilon g(\cdot, \varphi \cdot)$. Let the manifold $N^{2 n+1}$ further satisfies $d \eta=\Phi$, then it is called a contact semi-Riemannian manifold. Let \mathfrak{h} denotes the tensor field defined by $\mathfrak{h}=(1 / 2) £_{\epsilon} \varphi$. Then this tensor field plays a crucial role in $N^{2 n+1}$, where $£$ denotes the operator of Lie-derivative. Here \mathfrak{h} is self-adjoint and satisfies

$$
\nabla_{\xi \varphi}=0, \quad \nabla \xi=-\varphi \circ \mathfrak{h}-\varepsilon \varphi \mathfrak{h}(\xi)=\operatorname{trace}(\mathfrak{h})=0, \quad \varphi \circ \mathfrak{h}=-\mathfrak{h} \circ \varphi,
$$

where ∇ is a Levi-Civita connection. For more details about the geometry of the contact semiRiemannian manifold, we refer to [10-12].
Let us consider the product manifold $N^{2 n+1} \times \mathbb{R}:\left(Z, \varsigma \frac{d}{d t}\right)$ is an arbitrary tangent vector, ς is a smooth function on $N^{2 n+1} \times \mathbb{R}, t$ is the standard coordinate on \mathbb{R}, and $Z \in \Gamma\left(\mathcal{T} N^{2 n+1}\right)$.

The almost complex structure J on this direct product is given as follows:

$$
J\left(Z, \varsigma \frac{d}{d t}\right)=\left(\varphi Z-\varsigma \xi, \eta(Z) \frac{d}{d t}\right)
$$

Then $N^{2 n+1}$ is called normal if and only if

$$
d \eta(\cdot, \cdot) \xi+\frac{1}{2}[\varphi, \varphi](\cdot, \cdot)=0
$$

where $[\varphi, \varphi]$ denotes the Nijenhuis torsion, and it is given as follows:

$$
[\varphi, \varphi](\cdot, \cdot)=[\varphi ; \varphi \cdot]-\varphi[\varphi \cdot, \cdot]+\varphi^{2}[\cdot, \cdot]-\varphi[\cdot, \varphi \cdot]
$$

(see $[9,11]$).

3. Normal a. c. s. Three-Manifolds

In the present paper, we restrict ourselves to dimension three. Analogous to [13], we give some results related to this case. If we consider N^{3} to be an a. c. s. three-manifold, we find that

$$
\begin{equation*}
\left(\nabla_{Z 1} \varphi\right) Z_{2}=-\eta\left(Z_{2}\right) \varphi \nabla Z_{1} \xi+\varepsilon g\left(\varphi \nabla Z_{1} \xi, Z_{2}\right) \xi \tag{3.1}
\end{equation*}
$$

where $Z_{1}, Z_{2} \in \Gamma\left(\mathcal{T} N^{3}\right)$.
Proposition 3.1. In an a. c. s. three-manifold N^{3}, the following conditions are mutually equivalent:
(i) manifold \mathbb{M}^{3} is normal;
(ii) $\varphi \nabla Z \xi=\nabla \varphi Z \xi$;
(iii) $\nabla Z \xi=\varepsilon \beta(Z-\eta(Z) \xi)-\varepsilon \alpha \varphi Z$.

Here $Z \in \Gamma\left(\mathcal{T} N^{3}\right)$, a and β being smooth functions on N^{3} for which we have

$$
2 \alpha=\operatorname{trace}\left\{Z \rightarrow \varphi \nabla_{Z} \xi\right\}, 2 \beta=\operatorname{trace}\{Z \rightarrow \nabla Z \xi\}
$$

From equation (3.1) and Proposition 3.1, we find that

$$
\begin{equation*}
\left(\nabla_{Z_{1}} \varphi\right) Z_{2}=\beta\left(g\left(\varphi Z_{1}, Z_{2}\right) \xi-\varepsilon \eta\left(Z_{2}\right) \varphi Z_{1}\right)+\alpha\left(g\left(Z_{1}, Z_{2}\right) \xi-\varepsilon \eta\left(Z_{2}\right) Z_{1}\right. \tag{3.2}
\end{equation*}
$$

Moreover, manifold N^{3} satisfies

$$
\xi(\alpha)+2 \varepsilon \alpha \beta=0
$$

Therefore, $\beta=0$ if α is a non-zero constant. Analogous to [5], N^{3} is called

- Cosymplectic semi-Riemannian manifold if $\alpha=\beta=0$;
- quasi-Sasakian semi-Riemannian manifold if $\beta=0$ and $\xi(\alpha)=0$;
- B-Kenmotsu semi-Riemannian manifold if $\alpha=0$ and β is a non-zero constant.

In addition, N^{3} is said to be a Sasakian semi-Riemannian manifold if $\alpha=1, \beta=0$ and Kenmotsu semi-Riemannian manifold if $\alpha=0, \beta=1$. Now, we give examples of normal a. c. s. three-manifolds.

Example 3.2. Consider the standard Cartesian coordinates on \mathbb{R}_{1}^{3} as (x, y, z), 1 -form η is given by $\eta=$ $y d x+d z, \xi=\partial z$ and the endomorphism φ is defined by $\varphi \partial_{x}=\partial_{y}, \varphi \partial_{y}=y \partial_{z}-\partial_{x}, \varphi \partial_{z}=0$, where $\partial_{x}=\frac{\partial}{\partial x}$, $\partial_{y}=\frac{\partial}{\partial y}$ and $\partial_{z}=\frac{\partial}{\partial z}$. Then $\varphi^{2}+\mathcal{I}=\eta \otimes \xi$ and $\eta(\xi)=1$ are obtained. Therefore, the (φ, ξ, η)-structure is almost contact. Further, by simple computations, we find that the (φ, ξ, η)-structure is normal.

Let $\mathcal{N}_{\varepsilon}^{3}:=\mathbb{R}_{1}^{2} \times \mathbb{R}_{+} \subset \mathbb{R}_{1}^{3}$ and normal a. c. s. structure (φ, ξ, η, g) is restricted to $\mathcal{N}_{\varepsilon}^{3}$, where $g=\varepsilon \eta \otimes$ $\eta+z^{2}\left(d x^{2}+d y^{2}\right)$. Then, we have $g\left(\partial_{x}, \partial_{x}\right)=\varepsilon y^{2}+z^{2}, g\left(\partial_{y}, \partial_{y}\right)=z^{2}, g\left(\partial_{z}, \partial_{z}\right)=\varepsilon, g\left(\partial_{x}, \partial_{y}\right)=g\left(\partial_{y}, \partial_{x}\right)=0$,
$g\left(\partial_{x}, \partial_{z}\right)=g\left(\partial_{z}, \partial_{x}\right)=\varepsilon y, g\left(\partial_{y}, \partial_{z}\right)=g\left(\partial_{z}, \partial_{y}\right)=0$, where $\varepsilon^{2}=1$. Using φ and g, we have $g\left(\varphi Z_{1}, \varphi Z_{2}\right)=g\left(Z_{1}\right.$, $\left.Z_{2}\right)-\varepsilon \eta\left(Z_{1}\right) \eta\left(Z_{2}\right)$ and $\eta\left(Z_{1}\right)=\varepsilon g\left(Z_{1}, \xi\right)$, and thus $\left(\mathcal{N}_{\varepsilon}^{3} ; \varphi, \xi, \eta, g\right)$ is a normal a. c. s. three-manifold. For ∇ with respect to g, we have

$$
\begin{aligned}
& \nabla_{\partial_{x}} \partial_{x}=\frac{y}{z} \partial_{x}-\frac{\varepsilon y}{z^{2}} \partial_{y}-\left(\frac{z^{2}+\varepsilon y^{2}}{\varepsilon z}\right) \partial_{z}, \nabla_{\partial_{x}} \partial_{y}=\nabla_{\partial y} \partial_{x}=\frac{\varepsilon y}{2 z^{2}} \partial_{x}+\left(\frac{z^{2}-\varepsilon y^{2}}{2 z^{2}}\right) \partial_{z}, \\
& \nabla_{\partial_{x}} \partial_{z}=\nabla_{\partial_{z}} \partial_{x}=\frac{1}{z} \partial_{x}-\frac{\varepsilon}{2 z^{2}} \partial_{y}-\frac{y}{z} \partial_{z}, \nabla_{\partial_{y}} \partial_{y}=\frac{y}{z} \partial_{x}-\left(\frac{z^{2}+\varepsilon y^{2}}{\varepsilon z^{2}}\right) \partial_{z}, \\
& \nabla_{\partial_{y}} \partial_{z}=\nabla_{\partial_{z}} \partial_{y}=\frac{\varepsilon}{2 z^{2}} \partial_{1}+\frac{1}{z} \partial_{y}-\frac{\varepsilon y}{2 z^{2}} \partial_{z}, \nabla_{\partial_{z}} \partial_{z}=0 .
\end{aligned}
$$

Using the expressions above and the equation (3.2), we have $\beta=\frac{\varepsilon}{z}$ and $\alpha=\frac{1}{2 z^{2}}$.
Example 3.3. Let $\mathcal{K}_{\varepsilon}^{3}:=\mathbb{R}_{1}^{3}$ with (x, y, z) as standard Cartesian coordinates, $\eta=d z, \xi=\partial z$, endomorphism φ satisfies: $\varphi \partial_{x}=\partial_{y}, \varphi \partial_{y}=-\partial_{x}, \varphi \partial_{z}=0$ and metric tensor is given as $g=\varepsilon \eta \otimes \eta+\exp (2 z)\left(d x^{2}+\right.$ $d y^{2}$), where $\partial_{x}=\frac{\partial}{\partial x}, \partial_{y}=\frac{\partial}{\partial y}$ and $\partial_{z}=\frac{\partial}{\partial z}$. Then, by making straightforward computations, we find that $\left(\mathcal{K}_{\varepsilon}^{3} ; \varphi, \xi, \eta, g\right)$ is a normal a. c. s. three-manifold. For ∇ with respect to this g, we have

$$
\begin{align*}
& \nabla_{\partial_{x}} \partial_{x}=\nabla_{\partial_{y}} \partial_{y}=-\varepsilon \exp (2 z) \partial_{z}, \nabla_{\partial_{x}} \partial_{z}=\nabla_{\partial_{z}} \partial_{x}=\partial_{x}, \\
& \nabla_{\partial_{y}} \partial_{z}=\nabla_{\partial_{z}} \partial_{y}=\partial_{y}, \nabla_{\partial_{x}} \partial_{y}=\nabla_{\partial_{y}} \partial_{x}=\nabla_{\partial_{z}} \partial_{z}=0 . \tag{3.3}
\end{align*}
$$

By the virtue of partial differential equations (3.3) and equation (3.2), we obtain $\beta=\varepsilon$ and $\alpha=0$. Therefore, $\mathcal{K}_{\varepsilon}^{3}$ is a 3 -dimensional ε-Kenmotsu manifold. Furthermore, $\mathcal{K}_{\varepsilon}^{3}$ is a warped product $\mathbb{R} \times{ }_{f} \mathbb{F}$ where warping function f is given by $f(z)=\exp (\epsilon z)$.

For more information on warped geometry, we may refer to [14].

4. Pointwise Slant Curves

Let N^{3} be a normal a. c. s. three-manifold with Levi-Civita connection $\nabla, v: I \rightarrow N^{3}$ be an unit speed curve in N^{3}, I being an open interval. Then v is called a Frenet curve if the Frenet frame $\left\{T:=v^{\prime}, N, B\right\}$ of u satisfies (Frenet-Serret formulas) [7, p. 968]:

$$
\begin{equation*}
\nabla_{T} T=\kappa N, \nabla_{T} N=\varepsilon \tau B-\kappa T \text { and } \nabla_{T} B=-\tau N \tag{4.1}
\end{equation*}
$$

where $\kappa=\left|\nabla_{T} T\right|$ and τ are denote the curvature and torsion of v, respectively. The vectors T, B and N are known as the tangent, binormal and principal normal of v, respectively. The curve v is called geodesic if $\nabla_{v^{\prime}} v^{\prime}=0$ and it is not geodesic if $\kappa>0$ everywhere on I.

Following [8], we give
Definition 4.1. Let N^{3} be a normal a. c. s. three-manifold and $v: J \rightarrow N^{3}$ be a Frenet curve. Let ρ : $I \rightarrow I_{1} \subseteq \mathbb{R}$ be a smooth function, where $I_{1}=[-1,1]$ or $I_{1}=[0, \infty)$. Then v is said to be a pointwise slant curve (abbreviated as PS curve) if $\eta\left(v^{\prime}\right)=\rho$. We call ρ, a slant function. In particular, v is slant curve if $\rho=$ constant [4] and if $\rho=0$ it is Legendre curve ($[2,9])$. The PS curve is said to be proper, if neither ρ $=0$ nor $\rho=$ constant.

Remark 4.2. For a PS curve v in N^{3}, we have

$$
\begin{equation*}
\rho=\varepsilon g\left(\xi, v^{\prime}(s)\right) \tag{4.2}
\end{equation*}
$$

If the characteristic vector field is timelike, then $\rho=\sinh \vartheta_{1}(s)$, where angle $\vartheta_{1}: I \rightarrow[0, \infty)$ is called Lorentzian timelike between v^{\prime} and characteristic vector field [15]. In this case, $\rho \in[0, \infty)$. Further, let
$\left\{v^{\prime}, \xi\right\}$ span a spacelike vector subspace, and if characteristic vector field is spacelike, then $\rho=\cos \vartheta_{2}(s)$, where $\vartheta_{2}: I \rightarrow[0,2 \pi)$ is the contact angle of $v[4]$. In this case, $\rho \in[-1,1]$.
Using Definition 4.1, we find that a curve $v(s)=\left(v_{1}(s), v_{2}(s), v_{3}(s)\right)$ in $\mathcal{N}_{\varepsilon}^{3}$ is a PS if and only if

$$
\left\{\begin{array}{l}
v_{1}^{\prime} v_{2}+v_{3}^{\prime}=\rho \\
v_{3}^{2}\left(v_{1}^{\prime 2}+v_{2}^{\prime 2}\right)=1-\varepsilon \rho^{2}
\end{array}\right.
$$

where ρ is a smooth function. It can be easily seen that

$$
v^{\prime}=v_{1}^{\prime} \partial_{1}+v_{2}^{\prime} \partial_{2}+\left(\rho-v_{1}^{\prime} v^{2}\right) \partial_{3} \text { and } \varphi v^{\prime}=-v_{2}^{\prime} \partial_{1}+v_{1}^{\prime} \partial_{2}+v_{2} v_{2}^{\prime} \partial_{3} .
$$

Here, it is important to mention that every unit speed curve in N^{3} is not necessarily a PS curve, for instance, consider the following curve in \mathcal{N}_{-1}^{3} :

$$
\gamma(s)=\left(-\sqrt{5} s, \frac{2}{\sqrt{5}}, 1\right), s \in \mathbb{R}
$$

Then we have $g\left(\gamma^{\prime}, \gamma^{\prime}\right)=1$. Here $\rho=-2$, this implies that $\sinh \vartheta 1(s)=-2$, which is not possible value for the above defined smooth function ρ.

After taking covariant differentiation of equation (4.2) along v, we get

$$
\begin{equation*}
\rho^{\prime}=\varepsilon g(\xi, \kappa N)+g\left(v^{\prime},-\alpha \varphi v^{\prime}+\beta\left(v^{\prime}-\rho \xi\right)\right)=\beta\left(1-\varepsilon \rho^{2}\right)+\kappa \eta(N) \tag{4.3}
\end{equation*}
$$

The interpretation of ξ in terms of the Frenet frame of v provides

$$
\begin{equation*}
\varepsilon \eta(N)^{2}+\eta(B)^{2}=1-\varepsilon \rho^{2} . \tag{4.4}
\end{equation*}
$$

Using equations (4.3) and (4.4), we have the following characterization result for the PS curve:
Proposition 4.3. Let $v: J \rightarrow N^{3}$ be a non-geodesic curve. Then v is a PS curve if and only if

$$
\begin{equation*}
\eta(N)=\frac{\rho^{\prime}-\beta\left(1-\varepsilon \rho^{2}\right)}{\kappa} \tag{4.5}
\end{equation*}
$$

Therefore, a necessary condition for v to be a PS curve is

$$
\begin{equation*}
\varepsilon \eta(N)^{2} \leq\left(1-\varepsilon \rho^{2}\right) \tag{4.6}
\end{equation*}
$$

only if $\rho \neq \pm 1$.

Remark 4.4.

(i) The characterization (4.5) (as well as (4.6)) is independent of the Sasakian part, i.e., does not depend on α. Thus for a (semi-Riemannian) quasi-Sasakian manifold, this expression gives $\eta(N)=\frac{\rho^{\prime}}{\kappa}$. Particularly, for ρ-slant curve v which is not geodesic in quasi-Sasakian 3 -manifold, we have $\eta(N)=0$ [1].
(ii) From (4.6), equality yields $\eta(N)^{2}=1-\rho^{2}$ (then $\eta(T)=\rho$ and $\eta(B)=0$) only if ξ is spacelike. Particularly, v is a Legendre curve with $\kappa=\beta \mid v$ and $N=-\xi$.
(iii) For a slant curve v with $\varepsilon=1$, equation (4.5) provides $\eta(N)=-\frac{\beta}{\kappa} \sin ^{2} \vartheta_{1}$ [4].

Let v be a PS curve in N^{3}. Consider $v^{\prime}, \varphi v^{\prime}, \xi$ such that $g(\xi, \xi)=\varepsilon, g\left(v^{\prime}, v^{\prime}\right)=1, g\left(v^{\prime}, \xi\right)=\varepsilon \rho, g\left(\varphi v^{\prime} \varphi v^{\prime}\right)=$ $1-\varepsilon \rho^{2}$ and $g\left(v^{\prime}, \varphi v^{\prime}\right)=g\left(\xi, \varphi v^{\prime}\right)=0 ; \rho$ being a smooth function. Then, the set $\left\{v^{\prime}, \varphi v^{\prime}, \xi\right\}$ is linearly independent, forms a basis of $\mathcal{T}_{v(s)} N^{3}$ for every $s \in I$ if and only if $m=\sqrt{\left|1-\varepsilon \rho^{2}\right|} \neq 0$. Now, we can define orthonormal vector fields as:

$$
\begin{equation*}
B_{1}=v^{\prime}, \quad B_{2}=\frac{\varphi v^{\prime}}{m}, \quad B_{3}=\frac{\xi-\varepsilon \rho v^{\prime}}{m} \tag{4.7}
\end{equation*}
$$

where $m=\sqrt{\left|1-\varepsilon \rho^{2}\right|}, g\left(B_{3}, B_{3}\right)=\varepsilon$ and $g\left(B_{1}, B_{1}\right)=g\left(B_{2}, B_{2}\right)=1$.
Here, $\left\{v^{\prime}, \varphi v^{\prime}, \xi\right\}$ is linearly dependent if and only if $v^{\prime}=\varepsilon \varphi v^{\prime}+\rho \xi$ or $v^{\prime}=\rho \xi$. Furthermore, if $\left\{v^{\prime}, \varphi v^{\prime}\right.$, $\xi\}$ is linearly dependent, then $|\rho|=1$ and ξ is spacelike. This implies that v is necessarily a geodesic. Therefore, we must have $m \neq 0$ for the non-geodesic curve v. The decomposition of ξ with respect to $\left\{B_{1}, B_{2}, B_{3}\right\}$ is as follows:

$$
\begin{equation*}
\xi=\varepsilon\left(m B_{3}+\rho B_{1}\right) . \tag{4.8}
\end{equation*}
$$

Remark 4.5. We define the Lancret coefficient of a PS curve v in N^{3} which is not geodesic by

$$
\begin{equation*}
\text { Lancret }(v)=\frac{\rho}{m} \tag{4.9}
\end{equation*}
$$

The insight for above definition is that for $\varepsilon=1$, the above expression yields Lancret $(v)=\frac{\cos \vartheta}{|\sin \vartheta|}$, where $\vartheta=$ constant, analogous to contact geometry [3].

5. Main Results

Let $\nabla_{v} B_{1}=a_{1} B_{1}+b_{1} B_{2}+c_{1} B_{3}$, where a_{1}, b_{1} and c_{1} are any C^{∞} functions. Then $a_{1}=g\left(\nabla v^{\prime} B_{1}, B_{1}\right)=0$, $b_{1}=g\left(\nabla v^{\prime} B_{1}, B_{2}\right)=\delta m$ and $-\varepsilon c_{1}=g\left(B_{1}, \nabla_{v^{\prime}} B_{3}\right)$, where $\delta=\frac{1}{m^{2}} g\left(\nabla_{\nu^{\prime}} v^{\prime}, \varphi v^{\prime}\right)$. Using equation (3.2), we get $g\left(B_{1}, \nabla_{v^{\prime}} B_{3}\right)=\varepsilon\left(\beta m-\frac{\rho^{\prime}}{m}\right)$. Thus, $\nabla_{\nu^{\prime}} B_{1}=\delta m B_{2}-\left(\beta m-\frac{\rho^{\prime}}{m}\right) B_{3}$. Analogy to this, we can find $\nabla_{v^{\prime}} B_{2}$ and $\nabla_{v^{\prime}} B_{3}$. This provides the following result:
Lemma 5.1. Let $v: J \rightarrow N^{3}$ be a PS curve which is not geodesic. Then, we have

$$
\begin{gather*}
\nabla_{v^{\prime}} B_{1}=m \delta B_{2}+\left(\frac{\rho^{\prime}}{m}-m \beta\right) B_{3} \tag{5.1}\\
\nabla v^{\prime} B_{2}=-m \delta B_{1}+(\alpha+\delta \rho) B_{3} \tag{5.2}\\
\nabla_{v^{\prime}} B_{3}=\varepsilon\left(\left(m \beta-\frac{\rho^{\prime}}{m}\right) B_{1}-(\delta \rho+\alpha) B_{2}\right), \tag{5.3}
\end{gather*}
$$

where

$$
\begin{equation*}
m=\sqrt{\left|1-\varepsilon \rho^{2}\right|} \text { and } \delta=\frac{1}{m^{2}} g\left(\nabla_{v^{\prime}} v^{\prime}, \varphi v^{\prime}\right) \tag{5.4}
\end{equation*}
$$

Theorem 5.2. Let $v: J \rightarrow N^{3}$ be a PS curve which is not geodesic. Then expression for curvature κ and torsion τ of v are as follow:

$$
\left\{\begin{array}{l}
\kappa=m \sqrt{\left|\varepsilon\left(\beta-\frac{\rho^{\prime}}{m^{2}}\right)^{2}+\delta^{2}\right|} \tag{5.5}\\
\tau= \pm\left(\alpha+\rho \delta+\frac{\left(\beta \delta^{\prime}-\beta^{\prime} \delta\right)-2\left(\frac{\rho^{\prime} \delta^{\prime}}{m^{2}}\right)+\left(\frac{\delta \rho^{\prime}}{m^{2}}\right)^{\prime}}{\varepsilon\left(\beta-\frac{\rho^{\prime}}{m^{2}}\right)^{2}+\delta^{2}}\right)
\end{array}\right.
$$

where m and δ are given in equation (5.4).

Proof. From equation (5.1) and by computation of length of $\nabla_{v^{\prime}} v^{\prime}$ i.e. $\left\|\nabla_{v^{\prime}}, v^{\prime}\right\|$, we receive κ. In light of equations (4.1) and (5.1), we get

$$
N=\frac{m \delta}{\kappa} B_{2}-\left(\frac{m \beta}{\kappa}-\frac{\rho^{\prime}}{m \kappa}\right) B_{3}
$$

Let $a=m \delta$ and $b=\left(m \beta-\frac{\rho^{\prime}}{m}\right)$. Then

$$
\begin{align*}
\nabla_{\nu^{\prime}} N & =\left(-\frac{a^{2}}{\kappa}-\frac{\varepsilon b^{2}}{\kappa}\right) B_{1}+\left(\frac{a^{\prime} \kappa-a \kappa^{\prime}}{\kappa^{2}}+\frac{\varepsilon b}{\kappa}\left(\alpha+\frac{a \rho}{m}\right)\right) B_{2}+\left(-\frac{\kappa b^{\prime}-\kappa^{\prime} b}{\kappa^{2}}+\frac{a}{\kappa}\left(\frac{a \rho}{m}+\alpha\right)\right) B_{3} \\
& =-\kappa B_{1}+\left(\frac{\varepsilon b B_{2}+a B_{3}}{\kappa}\right)\left(\alpha+\frac{\rho a}{m}+\frac{b a^{\prime}-b^{\prime} a}{\kappa^{2}}\right) \tag{5.6}
\end{align*}
$$

Using Frenet-Serret formulas, we obtain from equation (5.6) that $\tau= \pm\left(\frac{\rho a}{m}+\frac{b a^{\prime}-b^{\prime} a}{\kappa^{2}}+\alpha\right)$
Hence, it completes the proof.
Now, we can give the following result as a corollary of the above theorem:
Corollary 5.3. Let v be a slant curve in N^{3} which is not geodesic. Then the expressions for curvature and torsion of v are as follows:

$$
\left\{\begin{array}{l}
\kappa=m \sqrt{\left|\varepsilon \beta^{2}+\delta^{2}\right|} \tag{5.7}\\
\tau= \pm\left(\rho \delta+\alpha+\frac{\beta \delta^{\prime}-\beta^{\prime} \delta}{\delta^{2}+\varepsilon \beta^{2}}\right)
\end{array}\right.
$$

Then the associated Lancret of v for $\delta \neq 0$, is given by

$$
\begin{equation*}
\operatorname{Lancret}_{ \pm}(v)=\frac{\left(\beta^{\prime} \delta-\beta \delta^{\prime}\right)\left|\delta^{2}+\varepsilon \beta^{2}\right|^{-\frac{1}{2}}-(\alpha \mp \tau)\left|\delta^{2}+\varepsilon \beta^{2}\right|^{\frac{1}{2}}}{\kappa \delta} \tag{5.8}
\end{equation*}
$$

where m and δ are given in equation (5.4).
Proof. Since $\rho^{\prime}=0$, i.e., v is slant. Thus, equation (5.5) leads to (5.7) and equation(5.8) follows directly from (4.9) and (5.7). Hence, it completes the proof.

Consider $\xi=p_{1} T+p_{2} N+p_{3} B$, where p_{1}, p_{2}, and p_{3} are any smooth functions. By the virtue of equations (4.1), (4.7), (5.1)-(5.3), and (5.6), we can readily compute p_{1}, p_{2}, and p_{3}. This provides the following result:

Proposition 5.4. Let $v: J \rightarrow N^{3}$ be a PS curve which is not geodesic. Then, the decomposition of ξ is expressed as follows

$$
\xi=\varepsilon\left(\rho \kappa T+\left(\rho^{\prime}-m^{2} \beta\right) N+m^{2} \operatorname{sgn}(\tau) \delta B\right) / \kappa,
$$

where $\{T, N, B\}$ denotes the Frenet frame of v and m, δ are given in equation (5.4).

Now, we present the κ and τ values of a non-geodesic PS curve in some subclasses of N^{3}.
Corollary 5.5. Let $v: J \rightarrow N^{3}$ be a PS curve which is not geodesic.
(a) Let N^{3} be a Cosymplectic semi-Riemannian manifold then we have

$$
\left\{\begin{array}{l}
\kappa=m \sqrt{\left|\varepsilon\left(\frac{\rho^{\prime}}{m^{2}}\right)^{2}+\delta^{2}\right|} \tag{5.9}\\
\tau= \pm\left(\rho \delta-\frac{2\left(\frac{\rho^{\prime} \delta^{\prime}}{m^{2}}\right)-\left(\frac{\rho^{\prime} \delta}{m^{2}}\right)^{\prime}}{\varepsilon\left(\frac{\rho^{\prime}}{m^{2}}\right)^{2}+\delta^{2}}\right)
\end{array}\right.
$$

(b) Let N^{3} be a quasi-Sasakian semi-Riemannian manifold then we have

$$
\left\{\begin{array}{l}
\kappa=m \sqrt{\left|\varepsilon\left(\frac{\rho^{\prime}}{m^{2}}\right)^{2}+\delta^{2}\right|} \\
\tau= \pm\left(\alpha+\rho \delta-\frac{2\left(\frac{\rho^{\prime} \delta^{\prime}}{m^{2}}\right)-\left(\frac{\rho^{\prime} \delta}{m^{2}}\right)^{\prime}}{\varepsilon\left(\frac{\rho^{\prime}}{m^{2}}\right)^{2}+\delta^{2}}\right)
\end{array}\right.
$$

(c) Let N^{3} be a β-Kenmotsu semi-Riemannian manifold then we have

$$
\left\{\begin{array}{l}
\kappa=m \sqrt{\left|\varepsilon\left(\beta-\frac{\rho^{\prime}}{m^{2}}\right)^{2}+\delta^{2}\right|} \\
\tau= \pm\left(\rho \delta+\frac{\beta \delta^{\prime}-2\left(\frac{\rho^{\prime} \delta^{\prime}}{m^{2}}\right)+\left(\frac{\rho^{\prime} \delta}{m^{2}}\right)^{\prime}}{\varepsilon\left(\beta-\frac{\rho^{\prime}}{m^{2}}\right)^{2}+\delta^{2}}\right)
\end{array}\right.
$$

where m and δ are given in equation (5.4).
Below, we give certain proper PS curves in $\mathcal{N}_{\varepsilon}^{3}$:
Example 5.6. Let in \mathcal{N}_{1}^{3}

$$
v^{1}(s)=(s, 0, \sin s), s \in(0,2 \pi)
$$

Then the curve v^{1} is a proper PS curve in \mathcal{N}_{1}^{3}. Here, we have $\alpha\left(v^{1}(s)\right)=\frac{1}{2} \csc ^{2} s, \beta\left(v^{1}(s)\right)=\csc s, \delta(s)=$ $-\cot s \csc s, \rho=\cos s$,

$$
\kappa=\left(1+3 \sin ^{2} s\right)^{\frac{1}{2}} \csc s \text { and } \tau=\left|\frac{\cot ^{2} s}{2 \kappa^{2}}-1\right| .
$$

The Euclidean image of v^{1} is depicted in Figure 1. Moreover, some of the particular cases of v^{1} are striking, these are portrayed in Figures 2, 3, and 4.

Figure 1: $\rho=\cos s$

Figure 2: $\rho=\frac{\sqrt{3}}{2}$.

Figure 4: $\rho=0$.

Example 5.7. Let in \mathcal{N}_{-1}^{3}

$$
v^{2}(s)=(k, s, \cosh s), \quad s \in(0, \infty), k \in \mathbb{R} .
$$

Then v^{2} is a proper PS curve in \mathcal{N}_{-1}^{3}. Here, we find $\beta\left(v_{2}(s)\right)=-\operatorname{sech} s, \delta(s)=\operatorname{sech} s(-s+\tanh s)$, $\alpha\left(v^{2}(s)\right)=\frac{1}{2} \operatorname{sech}^{2} s, \rho=\sinh s$,

$$
\kappa=\sqrt{\left|4-(s-\tanh s)^{2}\right|} \text { and } \tau=\left|(\tanh s)(s-\tanh s)-\frac{1}{2} \operatorname{sech}^{2} s+\frac{2 \tanh ^{2} s}{4-(s-\tanh s)^{2}}\right| \text {. }
$$

From Definition 4.1, the necessary and sufficient conditions for $v(s)=\left(v_{1}(s), v_{2}(s), v_{3}(s)\right)$ to be a PS curve in $\mathcal{K}_{\varepsilon}^{3}$ are given by

$$
\left\{\begin{array}{l}
v_{3}^{\prime}=\rho, \tag{5.10}\\
v_{1}^{\prime 2}+v_{2}^{\prime 2}=\exp \left(-2 v_{3}\right) m^{2} .
\end{array}\right.
$$

Now, we have

$$
v^{\prime}=v_{1}^{\prime} \partial_{x}+v_{2}^{\prime} \partial_{y}+\rho \partial_{z} \text { and } \varphi v^{\prime}=-v_{y}^{\prime} \partial_{x} 1+v_{1}^{\prime} \partial_{y} .
$$

From (5.10), we find

$$
v_{1}^{\prime}=m \exp \left(-v_{3}\right) \cos \varsigma(s), v_{2}^{\prime}=m \exp \left(-v_{3}\right) \cos \varsigma(s), v_{3}^{\prime}=\rho,
$$

where $\varsigma \in C^{\infty}(I)$. This leads to the following result:
Proposition 5.8. Let $v: J \rightarrow \mathcal{K}_{\varepsilon}^{3}$ be a PS curve in $\mathcal{K}_{\varepsilon}^{3}$ which is not geodesic. Then v can be expressed as follows:

$$
v(s)=\left(\int_{s_{0}}^{s} \Psi(t) \Omega(t) m d t, \int_{s_{0}}^{s} \rho(t) d t\right),
$$

where $\Psi(s)=(\cos \varsigma(s)$, sin $\varsigma(s))$ is parametrization of circle $\mathbb{S} 1, \Omega(s)=\exp \left(-\int_{s_{0}}^{s} \rho(t) d t\right)$ and ς is a
smooth function on I. smooth function on I.
By straightforward computations, we get

$$
\left\{\begin{array}{l}
\kappa=m \sqrt{\left\lvert\, \varepsilon\left(1-\frac{\varepsilon \rho^{\prime}}{m^{2}}\right)^{2}+\varsigma^{\prime 2}\right.}, \\
\tau= \pm\left(\rho \varsigma^{\prime}+\frac{\varepsilon \varsigma^{\prime \prime}-2\left(\frac{\varsigma^{\prime \prime} \rho^{\prime}}{m^{2}}\right)+\left(\frac{\rho^{\prime} \varsigma^{\prime}}{m^{2}}\right)^{\prime}}{\varsigma^{\prime 2}+\varepsilon\left(1-\frac{\varepsilon \rho^{\prime}}{m^{2}}\right)^{2}}\right) .
\end{array}\right.
$$

Let us consider a PS curve $v: J \rightarrow N^{3}$ in N^{3}. Then we have

$$
\mathbb{H}=\nabla_{v^{\prime}}, v^{\prime}
$$

where \mathbb{H} denotes the mean curvature vector field. Then PS curve v is known as a curve with proper \mathbb{H}, if we have a C^{∞} function λ such that

$$
\begin{equation*}
\Delta \mathbb{H}=\lambda \mathbb{H} . \tag{5.11}
\end{equation*}
$$

Here Δ denotes the Laplace operator and it is explicitly given by

$$
\Delta=-\nabla_{v^{\prime}} \nabla_{v^{\prime}} .
$$

If $\lambda=0$ then PS curve v is said to be a curve with harmonic \mathbb{H} ([4, 6]). Using Frenet-Serret formulas, (5.11) can be rewritten as

$$
-3 \kappa \kappa^{\prime} v^{\prime}+\varepsilon\left(2 \kappa^{\prime} \tau+\kappa \tau^{\prime}\right) B+\left(\kappa^{\prime \prime}-\kappa^{3}-\varepsilon \kappa \tau^{2}\right) N=-\kappa \omega N .
$$

This implies that the relation $\Delta \mathbb{H}=\lambda \mathbb{H}$ holds if and only if $\kappa \tau^{\prime}=0$ and $\varepsilon \tau^{2} \kappa+\kappa^{3}=\lambda \kappa$. This yields the following remark:

Remark 5.9. Let v be a PS curve in N^{3}. Then it holds $\Delta \mathbb{H}=\lambda \mathbb{H}$ if and only if PS curve v is either geodesic or helix satisfying

$$
\begin{equation*}
\varepsilon \tau^{2}+\kappa^{2}=\lambda . \tag{5.12}
\end{equation*}
$$

In view of the above remark, it can be easily seen that the PS curve which is not geodesic with harmonic \mathbb{H} does not exist in N^{3}. In light of equations (5.5), (5.11) and (5.12), we provide the following proposition which generalizes result 3.7 of [3] and result 3 of [4].

Proposition 5.10. If we consider a PS curve v in N^{3} which is not geodesic. Then v is having proper \mathbb{H} if and only if it is helix such that $\lambda=\left(\alpha+\rho \delta+\frac{\varrho}{\kappa^{2}}\right) \varepsilon+\kappa^{2}$, where δ and m are given in (5.4) and $\varpi=\left(\beta \delta^{\prime}-\beta^{\prime} \delta\right) m^{2}-2 \delta^{\prime} \rho^{\prime}+m^{2}\left(\frac{\rho^{\prime}}{m^{2}}\right)^{\prime}$.
Example 5.11. Let in \mathcal{N}_{1}^{3}

$$
v^{3}(s)=\left(1, \ln s, \frac{s}{\sqrt{2}}\right), s \in(0, \infty)
$$

then v^{3} is a slant Frenet curve in \mathcal{N}_{1}^{3}. Here, we find $\rho=\frac{1}{\sqrt{2}}$ (that is, $\vartheta=\frac{\pi}{4}$), $\beta\left(v^{3}(s)\right)=\frac{\sqrt{2}}{s}, \alpha\left(v^{3}(s)\right)=\frac{1}{s^{2}}$, $\delta(s)=-\frac{\sqrt{2}}{s^{2}} \ln s e \neq 0$,

$$
\kappa=\frac{\sqrt{s^{2}+(\ln s e)^{2}}}{s^{2}} \text { and } \tau=\left|\left(\frac{s^{2}}{(\ln s e)^{2}+1}-1\right) \frac{\ln s}{s^{2}}\right| \text {. }
$$

Using (5.8), we find Lancret $\left(v^{3}\right)=1$. Now, we have that

$$
\tau^{2}+\kappa^{2}=\frac{\left(2 \ln s e-(\ln s)^{2}\right)}{s^{2}\left(1+(\ln s e)^{2}\right)}+\frac{(2 \ln s \ln s e+1)}{s^{4}}+\frac{(\ln s)^{2}}{\left(1+(\ln s e)^{2}\right)^{2}} .
$$

From the above equation, we get $\tau^{2}+\kappa^{2}=$ non-constant. Therefore, by the consequence of Proposition 5.10 , we find v^{3} is without proper \mathbb{H}.

Example 5.12. Let in \mathcal{N}_{-1}^{3}

$$
v^{4}(s)=\left(\sqrt{3} s, 1, \frac{2}{\sqrt{3}}\right), s \in \mathbb{R}
$$

then v^{4} is slant curve in \mathcal{N}_{-1}^{3}. For v^{4}, we have $\rho=\sqrt{3}$ (that is, $\left.\vartheta=\arcsin h \sqrt{3}\right), \alpha\left(v^{4}(s)\right)=\frac{3}{8}$, $\delta(s)=-\frac{3 \sqrt{3}}{4} \neq 0, \beta\left(v^{4}(s)\right)=-\frac{\sqrt{3}}{2}, \kappa=\frac{\sqrt{15}}{2}$ and $\tau=\frac{21}{8}$. Using equation (5.8), we get Lancret $\left(v^{4}\right)=\frac{\sqrt{3}}{2}$.
Now, we obtain that $\kappa^{2}-\tau^{2}=$ constant. Therefore, in light of Proposition 5.10, we have v^{4} is helix and having proper \mathbb{H} with $\lambda=-\frac{201}{64}$.

Acknowledgements

Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this project.

References

[1] Cho, J.T.; Inoguchi, J.; Lee, J.E. Slant curves in Sasakian 3-manifolds. Bull. Austral. Math.Soc. 2006, 74, 359-367.
[2] Baikoussis, C.; Blair, D.E. On Legendre curves in contact 3-manifolds. Geom. Dedicata 1994, 49, 135-142.
[3] Călin, C.; Crasmareanu, M. Slant curves in three-dimensional normal almost contact geometry. Mediterr. J. Math. 2013, 10, 1067-1077.
[4] Călin, C.; Crasmareanu, M.; Munteanu, M.I. Slant curves in 3-dimensional f-Kenmotsu manifolds. J. Math. Anal. Appl. 2012, 394, 400-407.
[5] Inoguchi, J.; Lee, J.E. Slant curves in 3-dimensional almost contact metric geometry. Internat. Elect. J. Geom. 2015, 8, 106-146.
[6] Inoguchi, J.; Lee, J.E. Almost contact curves in normal almost contact 3-manifolds. J. Geom. 2012, 103, 457-474.
[7] Welyczko J. Slant curves in 3-dimensional normal almost paracontact metric manifolds. Mediterr. J. Math. 2014, 11, 965-978.
[8] Sood, K.; Srivastava, K.; Srivastava, S.K. PS curves in quasi-paraSasakian 3-manifolds. Mediterr. J. Math. 2020, 17, 114. https://doi.org/10.1007/s00009-020-01554-y
[9] Blair, D.E. Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhäuser Boston, Inc. Boston, MA, 2002.
[10] Perrone, D. Contact pseudo-metric manifolds of constant curvature and CR geometry, Results Math. 2014, 66, 213-225.
[11] Calvaruso, G.; Perrone, D. Contact pseudo-metric manifolds. Differential Geom. Appl. 2010, 28, 615-634.
[12] Deshmukh, S.; Belova, O.; Turki, N.B.; Vîlcu, G.E. Hypersurfaces of a Sasakian manifold-revisited. Journal of Inequalities and Applications 2021, 2021, 1-24. https://doi.org/10.1186/s13660-021-02584-0
[13] Olszak, Z. Normal almost contact manifolds of dimension three. Ann. Pol. Math. 1986, 47, 42-50.
[14] O'Neill, B. Semi-Riemannian geometry with applications to Relativity. Academic Press, New York, 1983.
[15] Ali, A.T.; Turgut, M. Position vector of a time-like slant helix in Minkowski 3-space. J. Math. Anal. Appl. 2010, 365, 559-569.

[^0]: Email addresses: sachin@cuhimachal.ac.in (S. K. Srivastava); soodkanika1212@gmail.com (K. Sood); ksriddu22@gmail.com (K. Srivastava); m.nazrul@qu.edu.sa (Mohammad Nazrul Islam Khan)
 *Corresponding Author
 Received November 21, 2023; Accepted December 18, 2023; Online January 9, 2024

