Results in Nonlinear Analysis 7 (2024) No. 2, 16–26 https://doi.org/10.31838/rna/2024.07.02.002 Available online at www.nonlinear-analysis.com

On Graded W-2-absorbing second submodules

Thikrayat Alwardat, Khaldoun Al-Zoubi*

Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan.

Abstract

Let \Re be a commutative graded ring with unity, \Im be a graded \Re -module, *W* be a multiplicatively closed subset of homogeneous elements of \Re and K be a graded submodule of \Im such that $Ann_{\mathfrak{g}}(K) \cap$ $W = \emptyset$. In this paper, we introduce the concept of graded *W*-2-absorbing second submodules of \Im as a generalization of graded 2-absorbing second submodules. We say *K* is a graded *W*-2-absorbing second submodule of \Im , if there exists a fixed $s_{\alpha} \in W$ and whenever $r_{g}t_{h}K \subseteq H$, where r_{g} , $t_{h} \in h(\Re)$ and H is graded submodule of \Im , then either $s_\alpha r_g K\subseteq H$ or $s_\alpha t_h K\subseteq H$ or $s_\alpha r_g t_h\in Ann_n(K)$. Several results concerning these classes of graded submodules are given.

Keywords and phrases: Graded W-2-Absorbing Second Submodules, Graded 2-Absorbing Second Submodules, Graded W-2-Absorbing Submodules

Mathematics Subject Classification (2010): 13A02, 16W50.

1. Introduction

Throughout this article, we assume that \Re is a commutative *G*-graded ring with identity and \Im is a unitary graded \Re -module. Atani in [7] introduced the concept of graded prime submodules. Al-Zoubi, Abu-Dawwas, and Çeken in [2] introduced the concept of graded 2-absorbing ideals of graded commutative rings. Later on, Al-Zoubi and Abu-Dawwas in [1] extended graded 2-absorbing ideals to graded 2-absorbing submodules. In [14], the authors introduced and studied the concept of graded *W*-2-absorbing submodules as a generalization of graded 2-absorbing submodules. The notion of graded second sub-modules was introduced in [5] and studied in [3, 4, 6, 8]. Recently, Al-Zoubi and

Email addresses: tdalwardat21@sci.just.edu.jo (Thikrayat Alwardat)*; *kfzoubi@just.edu.jo* (Khaldoun Al-Zoubi)

Al-Azaizeh in [3] introduced and studied the concepts of graded 2-absorbing second submodules. Here, we introduce the concept of graded *W*-2-absorbing second submodules over commutative graded rings as a generalization of graded 2-absorbing second submodules and investigate some properties of these classes of graded submodules.

2. Preliminaries

In this section we will give the definitions and results which are required in the next section.

Definition 2.1. (a) Let G be a group with identity e and \Re be a commutative ring with identity 1_{∞} . Then \Re is G -graded ring if there exist additive subgroups $\Re_{_g}$ of \Re indexed by the elements $g\in G$ such that $\mathfrak{R} = \bigoplus\limits_{g \in G} \, \mathfrak{R}_g$ and $\mathfrak{R}_g \mathfrak{R}_h \subseteq \mathfrak{R}_{gh}$ for all $g, h \in G$. The elements of \mathfrak{R}_g are called homogeneous of degree g .

The set of all homogeneous elements of \Re is denoted by $h(\Re)$, i.e. $h(\Re) = \bigcup\limits_{g \in G} \Re g$, see [11].

- (b) Let $\mathfrak{R} = \bigoplus_{g \in G} \mathfrak{R}_g$ be *G*-graded ring, an ideal *P* of \mathfrak{R} is called a graded ideal if $P = \sum_{h \in G} P \cap \mathfrak{R}_h = \sum_{h \in G} P_h$. By $P \leq_G^{\mathcal{U}} R$, we mean that *P* is a *G*-graded ideal of R . Also, by $P \leq_G^{\mathcal{U}} R$, we mean that *P* is a proper *G*-graded ideal of \Re , see [11].
- (c) A left \Re -module \Im is said to be a *G*-graded \Re -module if $\Im = \bigoplus_{g \in G} \Im_g$ with $\Re_g \Im_h \subseteq \Im_{gh}$ for all $g, h \in G$, where \Im_g is an additive subgroup of \Im for all $g \in G$. The elements of \Im_g are called homogeneous of degree *g*. The set of all homogeneous elements of \Im is denoted by $h(\Im)$, i.e, $h(\Im) = \bigcup_{g \in G} \Im_g$. Note that \mathfrak{S}_h is an \Re_e -module for every $h_\in G$, see [11].
- (d) A submodule *K* of \Im is called a graded submodule of \Im if $K = \bigoplus_{h \in g} (K \cap \Im_h) := \bigoplus_{h \in g} K_h$. By $K \leq_G^{sub} \Im$, we mean that *K* is a *G*-graded submodule of \Im . Also, by $K \leq_G^{sub} \Im$, we mean that *K* is a proper *G*-graded submodule of \Im , see [11].
- (e) If *K* is graded submodule of \Im , then $(K:_{\infty} \Im) = \{a \in \Re \mid a \Im \subseteq K\}$ is graded ideal of \Re , (see [7]). Furthermore, the annihilator of *K* in \Re is denoted and defined by $Ann_{\omega}(K) = \{a \in \Re \mid aK = \{0\}\}.$
- (f) A proper graded ideal *K* of \Re is called a graded prime ideal if whenever $r, s \in h(\Re)$ with $rs \in K$, we have $r \in K$ or $s \in K$. The graded radical of a graded ideal *P*, denoted by $Gr(P)$, is the set of all $t =$ $\sum_{g \in G} t_g \in R$ such that for each $g \in G$ there exists $n_g \in \mathbb{N}$ with $t_g^{ng} \in P$. Note that, if *r* is a homogeneous element, then $r \in Gr(P)$ if and only if $r^n \in P$ for some $n \in \mathbb{N}$, see [13].
- (g) A proper graded submodule P of \Im is called a graded prime submodule if whenever $a \in h(\Re)$ and $m \in h(\Im)$ with $am \in P$, then either $a \in (P :_{\Re} \Im)$ or $m \in P$, see [7].
- (h) A non-zero graded submodule K of a \Im is called graded second if for each $r \in h(\Re)$, the graded \Re -homomorphism $f: K \to K$ defined by $f(x) = rx$ is either surjective or zero. In other words, K is a graded second submodule of \Im if $rK = K$ or $rK = 0$ for every $r \in h(\Re)$. This implies that $P = Ann_{\infty}(K)$ is a graded prime ideal of \Re and K is called a P-graded second submodule. The graded second spectrum of \Im , denoted by $GSpec^s(\Im)$, is the set of all graded second submodules of \Im , see [6].
- (i) A proper graded submodule *K* of \Im is called a completely graded irreducible if $K = \bigcap_{\alpha \in \Lambda} K_{\alpha}$, where ${K_{\alpha}}_{\alpha\in\Lambda}$ is a family of graded submodule of \Im , implies that $K = K_{\alpha}$ for some $\alpha \in \Lambda$. Every proper graded submodule of \Im is the intersection of all completely graded irreducible submodules containing it, see [3].
- (j) A graded \Re -module \Im is called graded comultiplication module (gr-comultiplication module) if for every graded submodule *U* of \Im , there exists a graded ideal *P* of \Re such that $U = (0 : P)$, equivalently, for each graded submodule *U* of \Im , we have $U = (0 :_{\Im} Ann_{\mathfrak{m}}(U))$, see [5].

Definition 2.2. (a) A proper graded ideal *J* of \Re is said to be a graded 2-absorbing (briefly, *Gr*-2^{*abs*}) ideal of \Re if whenever *r*, *s*, $t \in h(\Re)$ with *rst* $\in J$, then $rs \in J$ or $rt \in J$ or $st \in J$.

- (b) A non-zero graded submodule K of \Im is called a graded 2-absorbing second (briefly, $Gr-2^{abs}$ -second) submodule of \Im if whenever $r, t \in h(\Re)$, *C* is a completely graded irreducible submodule of \Im , and *rtK* \subseteq *C*; then *rK* \subseteq *C* or *tK* \subseteq *C* or *rt* \in *Ann_p*(*K*), see [3].
- (c) A non-zero graded submodule K of \Im is called a graded strongly 2-absorbing second (briefly, Gr - 2^{abs}_{st} second) submodule of \Im if whenever $r, t \in h(\Re), C_1, C_2$ are completely graded irreducible submodules of \Im , and $rtK \subseteq C_1 \cap C_2$, then $rK \subseteq C_1 \cap C_2$ or $tK \subseteq C_1 \cap C_2$ or $rt \in Ann_R(K)$, see [3].
- (d) A nonempty subset *W* of a *G*-graded ring \Re is called a multiplicatively closed subset (briefly, *m.c.s.*) of \Re if $0 \notin W$, $1 \in W$ and $rt \in W$ for each $r, t \in W$.
- (e) Let $W \subseteq h(\mathbb{R})$ be a m.c.s. of \mathbb{R} and K a graded submodule of \Im such that $(K :_{\mathbb{R}} \Im) \cap W = \emptyset$. We say that *K* is a graded *W*-2-absorbing (briefly, *Gr*-*W*-2^{*abs*}) submodule of \Im if there exists a fixed $a_{\alpha} \in W$ and whenever $r_g s_h m_\lambda \in K$; where r_g , $s_h \in h(R)$ and $m_\lambda \in h(\Im)$, implies that $a_\alpha r_g s_h \in (K :_R \Im)$ or $a_\alpha r_g m_\lambda \in K$ or $a_{\alpha}s_{\beta}m_{\gamma} \in K$. In particular, a graded ideal J of \Re is called a graded *W*-2-absorbing (briefly, *Gr*-*W*-2^{*abs*}) ideal if *J* is a graded *W*-2-absorbing submodule of the graded \Re -module \Re , see [14].
- (f) Let $W \subseteq h(\Re)$ be a m.c.s. of \Re and $N \leq_G^{sub} \Im$ with $Ann_{\Re}(N) \cap W = \emptyset$. We say that *N* is a graded *W*-second (briefly, *Gr*-*W*-second) submodule of \Im if there exists $w_{\alpha} \in W$, and whenever $rN \subseteq K$ for some $r \in h(\Re)$ and graded submodule *K* of \Im , then either $w_a rN = 0$ or $w_a N \subseteq K$.

Remark 2.3. Let *K* and *H* are two graded submodule of an graded \Re -module. To prove $K \subseteq H$, its enough to show that if *J* is a completely graded irreducible submodule of \Im with $H \subseteq J$, then $K \subseteq J$, see [12].

3. Results

Definition 3.1. Let $W \subseteq h(\mathbb{R})$ be a *m.c.s.* of \mathbb{R} and $K \leq_G^{sub} \mathbb{S}$ with $Ann_{\mathbb{R}}(K) \cap W = \emptyset$. We say that *K* is a graded *W*-2-absorbing second (briefly, *Gr*-*W*-2^{*abs*}-second) submodule of \Im , if there exists $w_{\alpha} \in W$ and whenever $r_g t_h K \subseteq H$, where $r_g t_h \in h(\Re)$ and $H \leq_G^{sub} \Im$, then either $w_\alpha r_g K \subseteq H$ or $w_\alpha t_h K \subseteq H$ or $w_\alpha r_g t_h$ $\in Ann_{\infty}(K)$. In particular, a graded ideal *P* of \Re is said to be a graded *W*-2-absorbing second (briefly, $Gr-W-2^{abs}$ -second) ideal if *P* is a $Gr-W-2^{abs}$ -second submodule of \Im . By a $Gr-W-2^{abs}$ -second module, we mean a graded module which is a *Gr*-*W*-2*abs*-second submodule of itself.

Lemma 3.2. *Let* $W \subseteq h(\Re)$ be a *m.c.s.* of \Re and $L = \bigoplus_{g \in G} Lg \leq^{\text{id}}_G \Re$. *Let* K *be a Gr*-*W*-2^{*abs*}-second submodule *of* \Im , *then there exists* $w_{\alpha} \in W$ *and whenever* $t_{h} \in h(\Re)$, $H \leq_G^{sub} \Im$ *and* $g \in G$ *with* $L_g t_{h} K \subseteq H$, *then either* $w_{\alpha}L_{g}K \subseteq H$ or $w_{\alpha}t_{h}K \subseteq H$ or $w_{\alpha}t_{h}L_{g} \subseteq Ann_{\mathfrak{R}}(K)$.

Proof. Let $w_\alpha t_h K \nsubseteq H$ and $w_\alpha t_h L_g \nsubseteq Ann_n(K)$. Then there exists $b_g \in L_g$ with $w_\alpha t_h b_g K \neq 0$. Now $b_g t_h K \subseteq H$ and since *K* is a Gr -*W*-2^{abs}-second submodule of \Im , then $b_g w_\alpha K \subseteq H$. We show that $L_g w_\alpha K \subseteq H$. Let $c_g \in L_g$, then $(b_g + c_g)t_h K \subseteq H$, we get either $(b_g + c_g)w_\alpha K \subseteq H$ or $(b_g + c_g)t_h w_\alpha \in Ann_R(K)$. If $(b_g + c_g)w_\alpha K \subseteq H$, then since $b_g w_\alpha K \subseteq H$ we get $c_g w_\alpha K \subseteq H$. If $(b_g + c_g)t_h w_\alpha \in Ann_{\Re}(K)$, then since $w_\alpha t_h b_g K \neq 0$ we get $w_\alpha t_h c_g \notin$ $Ann_{\mathbb{R}}(K)$, but $c_g t_h K \subseteq H$ so $c_g w_\alpha K \subseteq H$. Thus $L_g w_\alpha K \subseteq H$.

Lemma 3.3. Let $W \subseteq h(\Re)$ be a m.c.s. of \Re , $L = \bigoplus_{g \in G} Lg \leq_G^{\mathrm{id}} \Re$ and $P = \bigoplus_{g \in G} P_g \leq_G^{\mathrm{id}} \Re$. Let K be a $Gr-W\text{-}2^{abs}\text{-}second\ submodule\ of\ \Im\$, then there exists $w_\alpha\in W$ and whenever $H\leq^{sub}_G\ \Im\ and\ g,h\in G$ such that $L_{g}P_{h}K \subseteq H$, then either $w_{\alpha}L_{g}K \subseteq H$ or $w_{\alpha}P_{h}K \subseteq H$ or $w_{\alpha}L_{g}P_{h} \subseteq Ann_{\mathfrak{R}}(K)$.

Proof. Let $w_a L_g K \nsubseteq H$ and $w_a P_h K \nsubseteq H$. We show that $w_a L_g P_h \subseteq Ann_{\mathcal{R}}(K)$. Let $r_g \in L_g$ and $t_h \in P_h$. By assumption there exists $x_g \in L_g$ such that $w_g x_g K \nsubseteq H$. Since $x_g P_h K \subseteq H$, by Lemma 3.2, $w_g x_g P_h \subseteq H$ $Ann_{\mathbb{R}}(K)$, and hence $(L_{\rho}\backslash(H:_{h(\mathbb{R})}K))P_{\rho}w_{\rho}\subseteq Ann_{\mathbb{R}}(K)$. Similarly there exists $y_{\rho}\in(P_{\rho}\backslash(H:_{h(\mathbb{R})}K))$ with $w_{\alpha}L_{\alpha}y_{h} \subseteq Ann_{\mathfrak{m}}(K)$ and $L_{\beta}(P_{h}\backslash (H:_{h(\mathfrak{N})} K))w_{\alpha} \subseteq Ann_{\mathfrak{m}}(K)$. Hence $w_{\alpha}x_{\beta}y_{h} \in Ann_{\mathfrak{m}}(K), w_{\alpha}x_{\beta}t_{h} \in Ann_{\mathfrak{m}}(K)$ and $w_{\alpha}r_{\beta}y_{h} \in Ann_{\mathbb{R}}(K)$. Since $r_{g} + x_{g} = (r+x)_{g} \in L_{g}$ and $y_{h} + t_{h} = (y+t)_{h} \in P_{h}$, $(r_{g} + x_{g})(y_{h} + t_{h})K \subseteq H$. Thus, $w_{\alpha}(r_{g}+x_{g}) K \subseteq H$ or $w_{\alpha}(y_{h}+t_{h}) K \subseteq H$ or $w_{\alpha}(r_{g}+x_{g})(y_{h}+t_{h}) \in Ann_{R}(K)$. If $w_{\alpha}(r_{g}+x_{g}) K \subseteq H$, then $w_{\alpha}r_{g} K \nsubseteq H$. So $r_g \in L_g \backslash (H :_{h(\mathfrak{R})} K)$ and hence $w_{\alpha} r_g t_h \in Ann_{\mathfrak{R}}(K)$. Similarly if $w_{\alpha} (y_h + t_h) K \subseteq H$, then $w_{\alpha} r_g t_h \in Ann_{\mathfrak{R}}(K)$. If $w_{\alpha}(r_g + x_g)(y_h + t_h) \in Ann_{\mathcal{R}}(K)$, then $w_{\alpha}(r_gy_h + r_gt_h + x_gy_h + x_gt_h) \in Ann_{\mathcal{R}}(K)$ so $w_{\alpha}r_gt_h \in Ann_{\mathcal{R}}(K)$. Thus $w_{\alpha}L_{\alpha}P_{h} \subseteq Ann_{\mathfrak{m}}(K)$, as needed. \Box

Remark 3.4. Let U and V be two graded submodules of \Re . To prove $U \subseteq V$, its enough to show that if N is a completely graded irreducible submodule of \Im such that $V \subseteq N$, then $U \subseteq N$, see([3], Lemma 2.2).

Theorem 3.5. Let $W \subseteq h(\Re)$ be a m.c.s. of \Re . For $K \leq_G^{sub} \Im$ with $Ann_x(K) \cap W = \emptyset$ the following statement are equivalent:

- (i) K is a Gr-W-2^{abs}-second submodule of \Im .
- (ii) There exists $w_{\alpha} \in W$ with $w_{\alpha}^2 r_s t_h K = w_{\alpha}^2 r_s K$ or $w_{\alpha}^2 r_s t_h K = w_{\alpha}^2 t_h K$ or $w_{\alpha}^3 r_s t_h K = 0$ for each r_s , $t_h \in h(\Re)$.
- (iii) There exists $w_a \in W$ and whenever $r_a t_h K \subseteq N_1 \cap N_2$ where r_a , $t_h \in h(\Re)$ and N_1, N_2 are completely graded irreducible submodules of \mathfrak{F} , implies either $r_{s^t} w_{\alpha} K = 0$ or $w_{\alpha} r_{\beta} K \subseteq N_1 \cap N_2$ or $w_{\alpha} t_{\beta} K \subseteq$ $N_{\rm L} \cap N_{\rm a}$.
- (iv) There exists $w_{\alpha} \in W$, and $L_{\varepsilon} P_{h} K \subseteq H$ implies either that $w_{\alpha} L_{\varepsilon} K \subseteq H$ or $w_{\alpha} P_{h} K \subseteq H$ or $w_{\alpha} L_{\varepsilon} P_{h} \subseteq H$ $Ann_{\mathcal{R}}(K)$, for each $L = \bigoplus_{g \in G} L_g \leq_G^{id} \Re; P = \bigoplus_{g \in G} P_g \leq_G^{id} \Re$ and $K \leq_G^{sub} \Im.$

Proof. (*ii*) \Rightarrow (*i*): Let $r_g t_h \in h(\Re)$ and $H \leq_G^{sub} \Im$ with $r_g t_h K \subseteq H$. By part (ii), there exists $w_\alpha \in W$ such that $w_{\alpha}^2 r_s t_h K = w_{\alpha}^2 r_s K$ or $w_{\alpha}^2 r_s t_h K = w_{\alpha}^2 t_h K$ or $w_{\alpha}^3 r_s t_h K = 0$. Thus either $w_{\alpha}^3 r_s t_h K = 0$ or $w_{\alpha}^3 r_s K \subseteq w_{\alpha}^2 r_s K = w_{\alpha}^2 r_s t_h K$ $\subseteq w_\alpha^2 H \subseteq H$ or $w_\alpha^3 t_h K \subseteq w_\alpha^2 t_h K = w_\alpha^2 r_s t_h K \subseteq w_\alpha^2 H \subseteq H$. Put $w_\alpha := w_\alpha^3$ so we have either $w_\alpha^r r_s t_h K = 0$ or $w'_{a} r_{s} K \subseteq H$ or $w'_{a} t_{h} K \subseteq H$, as required. $(i) \Rightarrow (iii)$: This is clear. $(iii) \Rightarrow (ii)$: By part (iii), there exists $w_{\alpha} \in W$. Assume there are $r_{\varphi}t_{h} \in h(\Re)$ such that $w_{\alpha}^{2}r_{\varphi}t_{h}K \neq w_{\alpha}^{2}r_{\varphi}K$ and $w_{\alpha}^{2}r_{\varphi}t_{h}K \neq w_{\alpha}^{2}t_{h}K$. Then there exists a completely graded irreducible submodule N_1 , N_2 of \Im with $w_\alpha^2 r_g t_h K \subseteq N_1$, $w_\alpha^2 r_g t_h K \subseteq N_2$, $w_\alpha^2 r_g K \nsubseteq N_1$ and $w_\alpha^2 t_h K \nsubseteq N_2$ by remark 3.4. Now $(w_\alpha r_g)(w_\alpha t_h)K = w_\alpha^2 r_g t_h K \subseteq N_1 \cap N_2$ implies either $w_\alpha^2 r_g K \subseteq N_1 \cap N_2$ or $w_\alpha^2 t_h K \subseteq N_1 \cap N_2$ or $w_\alpha^3 r_g t_h K = 0$ by part (iii). If $w_\alpha^2 r_g K \subseteq N_1 \cap N_2$ or $w_\alpha^2 t_h K \subseteq N_1 \cap N_2$, then $w_\alpha^2 r_g K \subseteq N_1$ and $w_a^2 t_b K \subseteq N_a$, which is a contradiction. Thus $w_a^3 r_a t_b K = 0$.

(i) \Rightarrow (iv): By Lemma 3.3. (iv) \Rightarrow (i): Let $r_g t_h \in h(\mathbb{R})$ and $H \leq_G^{sub} \mathbb{S}$ with $r_g t_h K \subseteq H$. Now, let $L = R r_g$ and $P = Rt_h$ be two graded ideals of \Re generated by $r_a t_h$, respectively. Then $L_a P_h K \subseteq H$. By assumption, there exists $w_a \in W$ such that either $w_a L_{\nu} K \subseteq H$ or $w_a P_{\nu} K \subseteq H$ or $w_a L_{\nu} P_{\nu} K = 0$ and so either $w_a r_{\nu} K \subseteq H$ or $w_{\alpha}t_{h}K \subseteq H$ or $w_{\alpha}r_{\epsilon}t_{h} \in Ann_{\mathfrak{R}}(K)$.

Remark 3.6. Let $W \subseteq h(\Re)$ be a m.c.s. of \Re . Clearly every Gr-W-second submodule of \Im and every graded Gr_2^{abs} -second submodule K of \Im with $Ann_{\mathfrak{m}}(K) \cap W = \emptyset$ is $Gr-W_2^{abs}$ -second submodule of \Im . However, the converse is not generally true, as the following example demonstrates.

Example 3.7. Let $\mathbb{R} = \mathbb{Z}$ and $G = \mathbb{Z}_2$, then \mathbb{R} is a G-graded ring with $\mathbb{R}^2 = \mathbb{Z}$ and $\mathbb{R}^1 = \{0\}$. Consider $\Im = \mathbb{Z}_4$ as a \mathbb{Z} -module Then \Im is a G-graded module with $\Im_{0} = \mathbb{Z}_4$ and $\Im_{1} = \{\overline{0}\}\$. Take $W = \mathbb{Z}\setminus 2\mathbb{Z}$. Then \Im is not a Gr-W-second Z-module since for each $w \in W$, $2\mathbb{Z}_4 = 2s\mathbb{Z}_4 \neq w\mathbb{Z}_4 = \mathbb{Z}_4$ and $2s\mathbb{Z}_4 \neq 0$. However, if we consider $w = 1$, and $i, j \in \mathbb{Z}$ then there are three cases to consider:

Case 1 : If $i \neq 2n$ and $j \neq 2n$ for each $n \in \mathbb{N}$, then

$$
ij(1)^2\mathbb{Z}_4 = \mathbb{Z}_4 = (1)^2 i\mathbb{Z}_4 = (1)^2 j\mathbb{Z}_4
$$

Case 2 : If $i = 2n_1$ and $j = 2n_2$ for some $n_1, n_2 \in \mathbb{N}$, then

$$
ij(1)^3\mathbb{Z}_4=0.
$$

Case 3 : If $i = 2n_1$ for some $n_1 \in \mathbb{N}$ and $j \neq 2n$ for each $n \in \mathbb{N}$, then

$$
ij(1)^2\mathbb{Z}_4 = \overline{2}\mathbb{Z}_4 = (1)^2 i\mathbb{Z}_4.
$$

So, \mathbb{Z}_4 is a *Gr*-*W*-2^{*abs*}-second \mathbb{Z} -module.

Lemma 3.8. Let $W \subseteq h(\mathbb{R})$ be a m.c.s. of \mathbb{R} and K be a graded finitely generated submodule of \mathcal{S} . *If* $W¹K = 0$, *then there exists an* $w_{\alpha} \in W$ *such that* $w_{\alpha} K = 0$.

Proof. Suppose $W^{-1}K = 0$ and *K* is generated by $x_1, x_2, \ldots, x_n \in h(K)$, then $K = \Re x_1 + \Re x_2 + \ldots + \Re x_n$. We have for every $i = 1, 2, ..., n$, $\frac{x^i}{1} = 0$ in $W^{-1}K$, which means there is $w_i \in W$ such that $w_i x_i = 0$. Let $w_{\alpha} = w_1 w_2 \dots w_n \in W$. Then $w_{\alpha} x_i = 0$, for each $i = 1, 2, \dots, n$ and therefore $w_{\alpha} K = 0$ as *K* is generated by x_1, x_2 , ..., x_n .

Let $W \subseteq h(\Im)$ be a m.c.s. of \Re . Then $W^* = \{x_g \in h(\Re) : \frac{x_g}{1}$ is a unit of $W^{\perp} \Re\}$ is *m.c.s.* of \Re containing W.

Theorem 3.9. *Let* $W \subseteq h(\Re)$ *be a m.c.s. of* \Re *. Then:*

- (a) If K is Gr- 2^{abs}_{st} -second submodule with $Ann_{\mathbb{R}}(K) \cap W = \emptyset$, then K is Gr-W- 2^{abs} -second submodule. In *fact, if* $W \subseteq u(\Re)$ and K *is Gr*-*W*-2^{*abs*}-second submodule of \Im , *then* K *is a Gr*-2 $_{st}^{abs}$ -second submodule of \Im .
- (b) If $W_1 \subseteq W_2 \subseteq h(\Re)$ are multiplicative closed subsets of, and K is graded W_1 -2-absorbing second sub*module of* \Im , *then K is graded W*₂-2-*absorbing second submodule of* \Im *in case of Ann*_n(*K*)∩*W*₂ = \emptyset .
- (c) *K* is Gr-*W*-2^{*abs*}-*second submodule of* \Im *if and only if K is Gr-W*-2^{<i>abs*}-second submodule of \Im .
- (d) If K is a finitely generated Gr-W-2^{abs}-second submodule of \Im , then W⁻¹K is a Gr-2 $_{st}^{abs}$ -second submodule $of W^{-1}$ \Im .

Proof. (a) and (b) are clear.

(c) Suppose *K* is *Gr*-*W*-2^{*abs*}-second submodule of \Im . First we want to show $Ann_{\pi}(K) \cap W^* = \emptyset$. To see that suppose there exists $x_{\beta} \in Ann_{\mathbb{R}}(K) \cap W^*$. As $x_{\beta} \in W^*$, $x_{\beta}/1$ is a unit of $W^{\perp} \mathbb{R}$, so there exists $w_{\gamma} \in W$ and $a_i \in h(\Re)$ such that $(x_{\beta}/1)(a_i/w_{\gamma}) = 1$, hence $u_{\lambda}x_{\beta}a_i = u_{\lambda}w_{\gamma}$ for some $u_{\lambda} \in W$, so $u_{\lambda}w_{\gamma} = u_{\lambda}x_{\beta}a_{\lambda} \in Ann_{\Re}(K)$ ∩ *W*, which is a contradiction. Now as $W ⊆ W^*$, by part (b), *K* is graded *Gr*-*W*^{*}-2^{*abs*}-second submodule of \Im . Conversely, assume that *K* is *Gr*-*W**-2^{abs}-second submodule of \Im . Let r_g , $t_h \in h(\Re)$ and *H* a graded submodule of \Im with $r_g t_h K \subseteq H$. Since K is $Gr-W^*$ -2^{abs}-second submodule of \Im , there exists $w_\alpha \in W^*$ such that $w_{\alpha} r_{g} K \subseteq H$ or $w_{\alpha} t_{h} K \subseteq H$ or $w_{\alpha} r_{g} t_{h} \in Ann_{\mathfrak{N}}(K)$. Since $w_{\alpha} \in W^{\ast}$, $w_{\alpha}/1$ is unit of $W^{\ast} \mathfrak{R}$, so there exists $w_i, c_j \in W$ and $d \in h(\Re)$ such that $w_i c_j = w_i w_\alpha d$. Then $w_i c_j \in W$, note that $(w_i c_j) r_g t_h = (w_i w_\alpha d) r_g t_h = w_i$ $ds_{\alpha}r_{g}t_{h} \in Ann_{\mathfrak{m}}(K)$. or $(w_{i}c_{j})r_{g}K = (w_{i}w_{\alpha}d)r_{g}K = w_{i}ds_{\alpha}r_{g}K \subseteq H$ or $(w_{i}c_{j})t_{h}K = (w_{i}w_{\alpha}d)t_{h}K = w_{i}ds_{\alpha}t_{h}K \subseteq H$. Therefore *K* is $Gr-W-2^{abs}$ -second submodule of \Im .

(d) As *K* is a *Gr*-*W*-2^{*abs*}-second submodule of \Im , there is $w_{\alpha} \in W$. If $W^{-1}K = 0$, then as *K* is a graded finitely generated, there is a $u_{\beta} \in W$ such that $u_{\beta} K = 0$ by Lemma 3.8. Hence $Ann_{\mathbb{R}}(K) \cap W \neq \emptyset$, a contradiction. Thus $W^{-1}K \neq 0$. Now let a_i/t_{g1} , $b_j/v_{g2} \in W^{-1}\Re$. Since K is a graded W -2-absorbing second submodule of \Im , we have either $a_i b_j w_\alpha^2 K = a_i w_\alpha^2 K$ or $a_i b_j w_\alpha^2 K = b_j w_\alpha^2 K$ or $a_i b_j w_\alpha^3 K = 0$. This implies that either $(a_i/t_{g1})(b_j/v_{g2})W^{\perp}K = (a_i/t_{g1})W^{\perp}K$ or $(a_i/t_{g1})(b_j/v_{g2})W^{\perp}K = (b_j/v_{g2})W^{\perp}K$ or $(a_i/t_{g1})(b_j/v_{g2})W^{\perp}K = 0$, as required.

Theorem 3.10. *Let* $W \subseteq h(\Re)$ *be a m.c.s. of* \Re *, and* $K \leq^{sub}_{G} \Im$ *with* $Ann_{\Re}(K) \cap W = \emptyset$ *. Then* K *is a Gr*-*W*-2^{*abs*} $second\ submodule\ of\ \Im\ if\ and\ only\ if\ w_\alpha^3K\ is\ Gr\text{-} 2^{abs}_{st}\text{-}second\ submodule\ of\ \Im\ for\ some\ w_\alpha\in W.$

Proof. Suppose that *K* is a *Gr*-*W*-2^{*abs*}-second submodule of \Im and r_g , $t_h \in h(\Re)$. Then for some $w_\alpha \in W$, we get $w_\alpha^2 r_g t_h K \equiv w_\alpha^2 r_g K$ or $w_\alpha^2 r_g t_h K \equiv w_\alpha^2 t_h K$ or $w_\alpha^3 r_g t_h K \equiv 0$ by Theorem 3.5. Hence $r_g t_h w_\alpha^3 K \equiv r_g w_\alpha^3 K$ or $r_g t_h w_\alpha^3 K \equiv r_g w_\alpha^3 K$ $t_h w_\alpha^3 K$ or $r_g t_h w_\alpha^3 K = 0$. Since $Ann_R(K) \cap W = \emptyset$, then $w_\alpha^3 K \neq 0$. So $w_\alpha^3 K$ is Gr -2^{*dbs*} -second submodule of \Im , by [3, Theorem 3.2]. Conversely, let $w_\alpha^3 K$ is Gr - 2^{abs}_{st} -second submodule of \Im , for some $w_\alpha\in W$ and $r_{g'}t_h\in$ h(R). Then $r_g t_h w_\alpha^3 K = r_g w_\alpha^3 K$ or $r_g t_h w_\alpha^3 K = t_h w_\alpha^3 K$ or $r_g t_h w_\alpha^3 K = 0$ by [3, Theorem 3.2]. Thus $w_\alpha^6 r_g t_h K = w_\alpha^6 r_g K$ or $w_{\alpha g}^6 r_g t_h K = w_{\alpha h}^6 K$ or $w_{\alpha g}^9 r_g t_h K = 0$. Put $u_{\alpha} :_{\alpha} w_{\alpha}^3 \in W$, then $u_{\alpha g}^2 r_g t_h K = u_{\alpha g}^2 r_g K$ or $u_{\alpha g}^2 r_g t_h K = u_{\alpha h}^2 K$ or $u_{\alpha g}^3 r_g t_h K = 0$. Hence, by Theorem 3.5, *K* is a $Gr-W-2^{abs}$ -second submodule of \Im .

Theorem 3.11. Let $W \subseteq h(\Re)$ be m.c.s. of \Re . Let $N \subset K$ be two graded submodules of \Im with $Ann_{\infty}(K/N) \cap$ $W = \emptyset$ and K is Gr-*W*-2^{*abs*}-*second submodule of* \Im . *Then K/N is Gr-W-2^{<i>abs*}-*second submodule of* \Im/N .

Proof. Assume that *K* is a *Gr*-*W*-2^{*abs*}-second submodule of \Im . Let r_g , $t_h \in h(\Re)$ and $H/N \leq_G^{sub} \Im/N$ such that $r_g t_h(K/N) \subseteq (H/N)$. Thus $r_g t_h K \subseteq H$, $H \leq_G^{sub} \Im$. Since *K* is *Gr*-*W*-2^{*abs*}-second submodule of \Im , then there is $w_{\alpha} \in W$ such that $w_{\alpha} r_{g} K \subseteq H$ or $w_{\alpha} t_{h} K \subseteq H$ or $w_{\alpha} r_{g} t_{h} K = 0$. So, $w_{\alpha} r_{g} (K/N) \subseteq (H/N)$ or $w_{\alpha} t_{h} (K/N) \subseteq (H/N)$ or $w_{\alpha} r_g t_h(K/N) = N$, as needed.

Theorem 3.12. Let $W \subseteq h(\Re)$ be a m.c.s. of \Re and K is a Gr-W-2^{*abs*}-second submodule of a graded \Re -module \Im . Then we have the following:

- (i) $Ann_{\omega}(K)$ *is a Gr-W-2^{<i>abs*} *ideal of* \Re .
- (ii) *If* $H \leq_G^{sub}$ \Im *with* $(H:_{\Re} K) \cap W = \emptyset$, *then* $(H:_{\Re} K)$ *is a Gr-W-2^{<i>abs*} *ideal of* \Re .
- (iii) *There exists* $w_{\alpha} \in W$ with $w_{\alpha}^n K = w_{\alpha}^{n+1} K$, for all $n \geq 3$.

Proof. (i) Let r_g , t_h , $c_\lambda \in h(\Re)$ and $r_g t_h c_\lambda \in Ann_\Re(K)$, then there is $w_\alpha \in W$ and $r_g t_h K \subseteq r_g t_h K$ implies that $r_{g}w_{\alpha}K \subseteq r_{g}t_{h}K$ or $t_{h}w_{\alpha}K \subseteq r_{g}t_{h}K$ or $w_{\alpha}r_{g}t_{h}K = 0$. If $w_{\alpha}r_{g}t_{h}K = 0$, we are done. If $r_{g}w_{\alpha}K \subseteq r_{g}t_{h}K$, then $c_{\lambda}r_{g}w_{\alpha}K$ $\subseteq c_{\lambda} r_{g} t_{h} K = 0$, hence $c_{\lambda} r_{g} w_{\alpha} K = 0$. If $t_{h} w_{\alpha} K \subseteq r_{g} t_{h} K$, then $c_{\lambda} t_{h} w_{\alpha} K \subseteq c_{\lambda} r_{g} t_{h} K = 0$, so $c_{\lambda} t_{h} w_{\alpha} K = 0$.

(ii) Let r_{g} , t_{h} , $c_{\lambda} \in h(\Re)$ and $r_{g}t_{h}c_{\lambda} = (r_{g}c_{\lambda})t_{h} \in (H :_{\Re} K)$, so $(r_{g}c_{\lambda})t_{h}K \subseteq H$. Then there exists $w_{\alpha} \in W$ with $w_{\alpha}r_{g}c_{\lambda}K \subseteq H$ or $w_{\alpha}c_{\lambda}t_{h}K \subseteq w_{\alpha}t_{h}K \subseteq H$ or $w_{\alpha}r_{g}t_{h}c_{\lambda} \in Ann_{\Re}(K) \subseteq (H:_{\Re} K)$. Thus $w_{\alpha}r_{g}c_{\lambda} \in (H:_{\Re} K)$ or $w_{\alpha}c_{\lambda}t_{h} \in$ $(H:_{\Re} K)$ or $w_{\alpha} r_{g} t_{h} c_{\lambda} \in (H:_{\Re} K)$.

(iii) Since *K* is *Gr*-*W*-2^{*abs*}-second submodule of \Im , there exists $w_{\alpha} \in W$. It is enough to show that $w_{\alpha}^3 K$ $w^4_\alpha K$, it is clear that $w^4_\alpha K \subseteq w^3_\alpha K$. Since K is *Gr*-*W*-2^{*abs*}-second submodule and $w^2_\alpha w^2_\alpha K = w^4_\alpha K \subseteq w^4_\alpha K$, either $w_\alpha^3 K \subseteq w_\alpha^4 K$ or $w_\alpha^5 K = 0$. If $w_\alpha^5 K = 0$, then $w_\alpha^5 \in Ann_\mathbb{R}(K) \cap W = \emptyset$ which is a contradiction. Thus $w_\alpha^3 K \subseteq w_\alpha^4 K$, as needed.

Theorem 3.13. Let $W \subseteq h(\Re)$ be a m.c.s. and K is a Gr-W-2^{*abs*}-second submodule of \Im . Then the follow*ing statement hold for some* $w_{\alpha} \in W$.

- (a) $a_{\beta}w_{\alpha}K \subseteq a_{\beta}d_{\gamma}K$ or $d_{\gamma}w_{\alpha}K \subseteq a_{\beta}d_{\gamma}K$, for all $a_{\beta}, d_{\gamma} \in W$.
- (b) $(Ann_{\mathfrak{R}}(K) :_{\mathfrak{R}} a_{\beta}d_{\gamma}) \subseteq (Ann_{\mathfrak{R}}(K) :_{\mathfrak{R}} w_{\alpha}a_{\beta})$ or $(Ann_{\mathfrak{R}}(K) :_{\mathfrak{R}} a_{\beta}d_{\gamma}) \subseteq (Ann_{\mathfrak{R}}(K) :_{\mathfrak{R}} w_{\alpha}d_{\gamma})$, for all $a_{\beta}, d_{\gamma} \in W$.

Proof. (a) Let *K* be a *Gr*-*W*-2^{*abs*}-second submodule, then exists $w_{\alpha} \in W$. Let *N* be a completely graded irreducible submodule of \Im with $a_\beta d_\gamma K$ \subseteq ${\rm N},$ where a_β, d_γ \in $W.$ Then $a_\beta w_\alpha K$ \subseteq N or $w_\alpha d_\gamma K$ \subseteq N or $w_\alpha a_\beta d_\gamma K$ = 0. As $Ann_{\mathbb{R}}(K) \cap W = \emptyset$, we get $w_{\alpha}a_{\beta}d_{\gamma}K \neq 0$. If for each completely graded submodule of \Im we have $a_{\beta}w_{\alpha}K \subseteq N$ (resp. $w_{\alpha}d_{\gamma}K \subseteq N$), then we are done by Remark 3.4. So suppose that there are completely graded submodules N_1 and N_2 of \Im with $a_\beta w_\alpha K \nsubseteq N_1$ and $w_\alpha d_\gamma K \nsubseteq N_2$. Since K is $Gr-W\text{-}2^{abs}\text{-}second$ submodule of \Im , $w_\alpha d_\gamma K\subseteq N_1$ and $a_\beta w_\alpha K\subseteq N_2.$ As $a_\beta d_\gamma K\subseteq N_1\cap N_2,$ we get $w_\alpha d_\gamma K\subseteq N_1\cap N_2$ or $a_\beta w_\alpha K\subseteq N_2$ $N_1 \cap N_2$, which is a contradiction.

(b) Let $r_g \in (Ann_{\mathfrak{R}}(K) :_{\mathfrak{R}} a_{\beta}d_{\gamma}) \cap h(\mathfrak{R})$. Then $r_g a_{\beta}d_{\gamma} \in Ann_{\mathfrak{R}}(K)$. By Theorem 3.12 (i), $Ann_{\mathfrak{R}}(K)$ is $Gr-W$ - 2^{abs} ideal of \Re , so $w_{\alpha} r_{g} a_{\beta} \in Ann_{\Re}(K)$ or $w_{\alpha} r_{g} d_{\gamma} \in Ann_{\Re}(K)$ or $w_{\alpha} a_{\beta} d_{\gamma} \in Ann_{\Re}(K)$, for some $w_{\alpha} \in W$. Since $Ann_{\mathfrak{R}}(K) \cap W = \emptyset$, then $w_{\alpha}a_{\beta}d_{\gamma} \notin Ann_{\mathfrak{R}}(K)$. Thus $r_{g} \in (Ann_{\mathfrak{R}}(K) :_{\mathfrak{R}} w_{\alpha}a_{\beta})$ or $r_{g} \in (Ann_{\mathfrak{R}}(K) :_{\mathfrak{R}} w_{\alpha}d_{\gamma})$.

Lemma 3.14. Let \Im be gr-comultiplication \Re -module, $W \subseteq h(\Re)$ be a m.c.s. of \Re and $K \leq^{sub}_G \Im$. If $Ann_{\Re}(K)$ i *s* a $Gr-W-2^{abs}$ *ideal of* \Re *, then K a Gr-W-2^{abs}-second submodule of* \Im *.*

Proof. Let $r_g t_h \in h(\Re)$ and $H \leq_G^{sub} \Im$ with $r_g t_h K \subseteq H$. Thus $Ann_{\Re}(H)r_g t_h K = 0$. Since $Ann_{\Re}(K)$ is a $Gr-W$ 2^{abs} ideal of \Re and $Ann_{\Re}(H)r_{g}t_{h} \subseteq Ann_{\Re}(K)$, then there is $w_{\alpha} \in W$ such that either $w_{\alpha} Ann_{\Re}(H)r_{g}K = 0$ or $w_{\alpha} Ann_{\Re}(H)t_{h} K = 0$ or $w_{\alpha} r_{g} t_{h} K = 0$. If $w_{\alpha} r_{g} t_{h} K = 0$, we are done. If $w_{\alpha} Ann_{\Re}(H)r_{g} K = 0$ or $w_{\alpha} Ann_{\Re}(H)t_{h} K = 0$, t hen $Ann_{\mathbb{R}}(H) \subseteq Ann_{\mathbb{R}}(w_{\alpha}r_{g}K)$ or $Ann_{\mathbb{R}}(H) \subseteq Ann_{\mathbb{R}}(w_{\alpha}t_{h}K)$. Since \Im is gr-comultiplication module, $w_{\alpha}r_{g}K$ \subseteq *H* or $w_{\alpha}t_{\beta}K \subseteq H$.

Example 3.15. Let $\mathbb{R} = \mathbb{Z}$ and $G = \mathbb{Z}_2$. Then \mathbb{R} is a *G*-graded ring with $\mathbb{R}_0 = \mathbb{Z}$ and $\mathbb{R}_1 = \{0\}$. Let $\Im = \mathbb{Z}$ as a Z-module, $=$ is a *G*-graded module with \Im ₀ = Z and \Im ₁ = {0}. \Im is not a gr-comultiplication module, see [15, Example 3.3]. Take the multiplicative closed set $W = \mathbb{Z}\setminus\{0\}$. The graded submodule $q\mathbb{Z}$ of \Im , where *q* is prime number, is not *Gr*-*W*-2^{*abs*}-second submodule of \Im , since take $n = 3$, $m = 2 \in \mathbb{Z}$, then for all $w \in W$ we have $w^2(3)(2)q\mathbb{Z} \neq w^2(3)q\mathbb{Z}$ and $w^2(3)(2)q\mathbb{Z} \neq w^2(2)q\mathbb{Z}$ and $w^3(3)(2)q\mathbb{Z} \neq 0$. But $Ann_{\mathbb{R}}(q\mathbb{Z})$ $= 0$ is a *Gr*-*W*-2^{*abs*} ideal of \mathbb{Z} .

Theorem 3.16. Let \Im be a gr-comultiplication \Re -module and $W \subseteq h(\Re)$ be a m.c.s. of \Re : If the *zero graded submodule of* \Im *is Gr-W-*2^{*abs submodule, then every K* \leq_G^{sub} \Im *with Ann*_{\Re}(*K*) \cap *W* = \emptyset *is a*} $Gr-W-2^{abs}\n$ -second submodule of \Im .

Proof. Let \Im be a gr-comultiplication \Re -module with the zero graded submodule is $Gr-W-2^{abs}$ -submodule and $K \leq^{sub}_{G} \mathcal{F}$ with $Ann_{\mathbb{R}}(K) \cap W = \emptyset$. We show that $Ann_{\mathbb{R}}(K)$ is $Gr-W\text{-}2^{abs}$ ideal of \mathbb{R} . Let $r_{g}, t_{h}, c_{\lambda} \in h(\mathbb{R})$ and $r_g t_h c_\lambda = (r_g c_\lambda) t_h \in Ann_R(K)$. Then there exists $w_\alpha \in W$ such that $r_g c_\lambda w_\alpha K = 0$ or $c_\lambda t_h w_\alpha K \subseteq t_h w_\alpha K = 0$ or $w_{\alpha} r_g t_h c_{\lambda} \in Ann_{\mathfrak{R}}(\mathfrak{S}) \subseteq Ann_{\mathfrak{R}}(K)$. Thus $Ann_{\mathfrak{R}}(K)$ is $Gr-W\text{-}2^{abs}$ ideal of \mathfrak{R} . By Lemma 3.14, we get the result.

Definition 3.17. We say that \Im satisfy the double annihilator conditions (DAC) if $P \leq_G^{\mathcal{U}} \Re$, then $P = Ann_{\omega}(0 : P)$. A graded R-module \Im is said to be strong gr-comultiplication module if \Im is a gr -comultiplication \Re -module and satisfy the DAC conditions.

Theorem 3.18. Let \Im be strong gr-comultiplication \Re -module and $K \leq^{sub}_{G} \Im$ with $Ann_{\Re}(K) \cap W = \emptyset$, where $W \subseteq h(\mathbb{R})$ *be a m.c.s. of* \mathbb{R} *. Then the following are equivalent*

- (a) K is $Gr-W-2^{abs}$ -second submodule of \Im .
- (b) $Ann_m(K)$ *is Gr-W-2^{<i>abs*} *ideal of* \Re *.*
- (c) $K = (0 :_{\alpha} I)$ for some Gr-W-2^{*abs*} ideal I of \Re with $Ann_{\mathfrak{B}}(K) \subseteq I$.

Proof. (*a*) \Rightarrow (*b*): From Theorem 3.12.

 $(b) \Rightarrow (c)$: Since \Im is gr-comultiplication \Re -module, $K = (0 :_{\Re} Ann_{\Re}(K))$. We can see the result clearly.

(c) \Rightarrow (a): Since \Im satisfy the double annihilator conditions (DAC), $Ann_{\pi}((0 :_{\Im} I)) = I$. By Lemma 3.16, we get the result. \Box **Lemma 3.19.** Let $W \subseteq h(\Re)$ be m.c.s. of \Re and K be a Gr-W-second submodule of \Im . Then there e *xists* $w_{\alpha} \in W$ *and whenever* $r_{g}t_{h}K \subseteq H$ *, where* $r_{g}t_{h} \in h(\Re)$ and $H \leq^{sub}_{G} \Im$, then either $w_{\alpha}r_{g} \in Ann_{\Re}(K)$ or $w_{\alpha}t_{\beta} \in Ann_{\mathfrak{B}}(K)$ *or* $w_{\alpha}K \subseteq H$ *.*

Proof. Let K be a Gr -W-second submodule of \Im and $r_g t_h K \subseteq H$, where $r_{g'} t_h \in h(\Re)$ and $H^{\leq^{sub}_G}\Im$. Then $r_g K$ \subseteq $(H :_{\alpha} t_{\beta})$, since *K* is a *Gr-W*-second submodule of \Im , there exists $w_{\alpha} \in W$ such that $w_{\alpha} r_{\alpha} \in Ann_{\mathfrak{m}}(K)$ or $w_{\alpha}t_{h}K \subseteq H$, we will show if $w_{\alpha}t_{h}K \subseteq H$; then $w_{\alpha}t_{h} \in Ann_{\mathbb{R}}(K)$ or $w_{\alpha}K \subseteq H$. Assume that $t_{h}K \subseteq (H:_{\mathbb{R}} w_{\alpha})$, since *K* is a *Gr*-*W*-second submodule of \Im , we get either $w_{\alpha}t_h \in Ann_{\Re}(K)$ or $w_{\alpha}^2 K \subseteq H$. If $w_{\alpha}t_h \in Ann_{\Re}(K)$, we are done. Suppose $w_\alpha^2 K \subseteq H$, let *N* be a completely graded irreducible submodule of \Im such that $w_\alpha^2 K \subseteq N$, then either $w_\alpha K \subseteq N$ or $w_\alpha^3 K = 0$, since $Ann_R(K) \cap W = \emptyset$, we get $w_\alpha^3 K \neq 0$, so $w_\alpha K \subseteq N$. By Remark 3.4, $w_{\alpha} K \subseteq w_{\alpha}^2 K$. Hence $w_{\alpha} K \subseteq H$.

Theorem 3.20. Let $W \subseteq h(\Re)$ be a m.c.s. of \Re . Then the sum of two Gr-W-second submodules is a Gr-W- 2^{abs} -second submodule of \Im .

Proof. Let K_1 , K_2 be two $Gr-W$ -second submodules of \Im and let $K = K_1 + K_2$. Let $r_g t_h K \subseteq H$, where $r_g t_h$ $\lambda \in h(\Re)$ and *H* is graded submodule of \Im . As $r_g t_h K_1 \subseteq r_g t_h K \subseteq H$ and K_1 is *Gr*-*W*-second submodule of \Im , there exists $w_{\alpha1} \in W$ such that $w_{\alpha1} r_g \in Ann_R(K_1)$ or $w_{\alpha1} t_h \in Ann_R(K_1)$ or $w_{\alpha1} K_1 \subseteq H$ by Lemma 3.19. Also, K_2 is *Gr*-*W*-second submodule of \Im , there exists $w_{\alpha2} \in W$ such that $w_{\alpha2} r_g \in Ann_R(K_2)$ or $w_{\alpha2} t_h \in Ann_R(K_2)$ or $w_{\alpha2}K_2 \subseteq H$. Without loss of generality, we may assume $w_{\alpha1}r_g \in Ann_R(K_1)$ and $w_{\alpha2}K_2 \subseteq H$. Now, Set $w_{\alpha} = w_{\alpha 1} w_{\alpha 2} \in W$. Thus $w_{\alpha} r_{g} K \subseteq H$ and hence *K* is a *Gr-W-2^{abs}-second submodule of* \Im .

As shown in the example below, the sum of two *Gr*-*W*-2*abs*-second submodules is not necessarily a *Gr*-*W*-2*abs*-second submodule.

Example 3.21. Let $\mathbb{R} = \mathbb{Z}$ and $G = \mathbb{Z}_2$. Then \mathbb{R} is a *G*-graded ring with $\mathbb{R}_0 = \mathbb{Z}$ and $\mathbb{R}_1 = \{0\}$. Let $\Im = \mathbb{Z}_p$ $\oplus \mathbb{Z}_{q^k}$ as a \mathbb{Z} -module, where $k \in N$ and p,q are distinct prime numbers. Then \Im is a *G*-graded module with $\mathfrak{S}_0 = \mathbb{Z}_{p^k} \oplus 0$ and $\mathfrak{S}_1 = 0 \oplus \mathbb{Z}_{q^k}$. Put $W = \{t \in \mathbb{Z} : gcd(t, pq) = 1\}$. So W is a *m.c.s.* of Z. We have $\mathbb{Z}_{p^k} \oplus 0$ and $0 \oplus \mathbb{Z}_{q^k}$ both are *Gr*-*W*-2^{*abs*}-second submodules. However \Im is not a *Gr*-*W*-2^{*abs*}-second \mathbb{Z} -module, $\text{since } p^k \Im \subseteq 0 \oplus \mathbb{Z}_{q^k}, p^{k-1} t M \nsubseteqq 0 \oplus \mathbb{Z}_{q^k}$, $pt \mathbf{M} \nsubseteqq 0 \oplus \mathbb{Z}_{q^k}, \text{ and } tp^k \Im \neq 0 \text{ for each } t \in W.$

Lemma 3.22. If P is Gr-W-2^{*abs*} *ideal of* \Re , *then Gr(P) is Gr-W-2^{<i>abs*} *ideal of* \Re .

Proof. Let r_g , t_h , $c_\lambda \in h(\Re)$ and $r_g t_h c_\lambda \in Gr(P)$, so there exists $n \in \mathbb{N}$ such that $(r_g t_h c_\lambda)^n \in P$. Since P is $Gr-W$ - 2^{abs} ideal of \Re and $r_g^nt_n^nc_\lambda^n\in P,$ then there exists $w_\alpha\in W$ such that either $w_\alpha r_g^n t_h^n\in P$ or $w_\alpha r_g^n c_\lambda^n\in P$ or $w_\alpha t_h^n c_\lambda^n$ $\lambda \in P$. Hence $(w_{\alpha}r_{g}t_{\beta})^{n} = w_{\alpha}^{n}r_{g}^{n}t_{\beta}^{n} \in P$ or $(w_{\alpha}r_{g}c_{\lambda})^{n} = w_{\alpha}^{n}r_{g}^{n}c_{\lambda}^{n} \in P$ or $(w_{\alpha}t_{\beta}c_{\lambda})^{n} = w_{\alpha}^{n}t_{\beta}^{n}c_{\lambda}^{n} \in P$. Therefore, $w_{\alpha}r_{g}t_{\beta} \in P$ *Gr*(*P*) or $w_{\alpha} r_{g} c_{\lambda} \in Gr(P)$ or $w_{\alpha} t_{h} c_{\lambda} \in Gr(P)$. Thus $Gr(P)$ is $Gr-W$ -2^{*abs*} ideal of \Re .

For a graded \Re -submodule *U* of \Im , the graded second radical of *U* is defined as the sum of all graded second \Re -submodules of \Im contained in *U*, and its denoted by *GSec(U)*. If *U* does not contain any graded second \Re -submodule, then $GSec(U) = \{0\}$. The graded second spectrum of \Im is the collection of all graded second \Re -submodules, and it is represented by the symbol *GSpec^s*(\Im). On the other hand, the set of all graded prime \Re -submodules of \Im is called the graded spectrum of \Im , and is denoted by $GSpec(\Im)$. The map $\phi: GSpec(\Im) \to GSpec(\Re/Ann_{\Re}(\Im))$ defined by $\phi(U) = Ann_{\Re}(U)/Ann_{\Re}(\Im)$ is called the natural map of $GSpec^s(\Im)$; see [12].

Theorem 3.23. Let \Im be a gr-comultiplication \Re -module and the natural map ϕ of $GSpec^s(K)$ is sur*jective, if K is Gr*-*W*-2^{*abs*}-*second submodule of* \Im , *then GSec(K) is a Gr*-*W*-2^{*abs*}-*second submodule of* \Im .

Proof. Let *K* be *Gr*-*W*-2^{*abs*}-second of \Im . By Theorem 3.12 (i), $Ann_{\alpha}(K)$ is $Gr-W-2^{abs}$ ideal of \Re . Hence $Gr(Ann_{\mathbb{R}}(K))$ is $Gr-W\text{-}2^{abs}$ ideal of \Re by Lemma 3.22. Using [12, Lemma 4.7], $Gr(Ann_{\mathbb{R}}(K)) = Ann_{\mathbb{R}}(GSec(K))$ so $Ann_{\mathbb{R}}(GSec(K))$ is $Gr-W\text{-}2^{abs}$ ideal of \Re By Lemma 3.14 we get the result so $Ann_{\alpha}(GSec(K))$ is $Gr-W-2^{abs}$ ideal of \Re . By Lemma 3.14, we get the result.

Theorem 3.24. Let $W \subseteq h(\Re)$ be a m.c.s. of \Re and $\varphi : \Im \rightarrow \Im'$ be a graded monomorphism of graded <-*modules. Then we have the following:*

- (i) If K is a Gr-W-2^{*abs*}-second submodule of \Im , then $\varphi(K)$ is a Gr-W-2^{*abs*}-second submodule of \Im' .
- (ii) If K' is a Gr-W-2^{*abs*}-second submodule of \Im' and $K \subseteq \varphi(\Im)$, then $\varphi^{-1}(K)$ is a Gr-W-2^{*abs*}-second</sup> submodule of \Im .

Proof. (i) $Ann_{\mathbb{R}}(\varphi(K)) \cap W = \emptyset$, since $Ann_{\mathbb{R}}(K) \cap W = \emptyset$ and φ graded monomorphism. Let $r_g, t_h \in h(\mathbb{R})$: Since K is a Gr -W-2 abs -second submodule of $\Im,$ there exists $w_\alpha\in W$ such that $w_\alpha^2\,r_g t_h K\!=w_\alpha^2 r_g K$ or $w_\alpha^2\,r_g t_h K\!=w_\alpha^2$ $t_{h}K$ or $w_{\alpha g}^{3}t_{g}t_{h}K=0$. Hence, $w_{\alpha g}^{2}t_{h}\varphi(K)=w_{\alpha g}^{2}t_{g}\varphi(K)$ or $w_{\alpha g}^{2}t_{h}\varphi(K)=w_{\alpha g}^{2}t_{h}\varphi(K)$ or $w_{\alpha g}^{3}t_{g}t_{h}\varphi(K)=0$.

(ii) Since $Ann_{\mathbb{R}}(K) \cap W = \emptyset$, then $Ann_{\mathbb{R}}(f^{-1}(K)) \cap W = \emptyset$. Let $r_g, t_h \in h(\mathbb{R})$. Since *K* is a *Gr*-*W*-2^{*abs*}-second of of \Im , then there exists a fixed $w_{\alpha} \in W$ such that $w_{\alpha}^2 r_g t_h K = w_{\alpha}^2 r_g K$ or $w_{\alpha}^2 r_g t_h K = w_{\alpha}^2 t_h K$ or $w_{\alpha}^3 r_g t_h K = 0$. Thus $w_{\alpha g}^2 r_g t_h f^{-1}(K) = s_{\alpha g}^2 r_g f^{-1}(K)$ or $w_{\alpha g}^2 r_g t_h f^{-1}(K) = w_{\alpha g}^2 t_h f^{-1}(K)$ or $w_{\alpha g}^3 r_g t_h f^{-1}(K) = 0$, as needed.

Theorem 3.25. Let $\Re = \Re_1 \times \Re_2$ be graded ring, where \Re_1 and \Re_2 be two commutative graded rings with $1 \neq 0$ and let $W_1 \subseteq (\Re_1)_e$ and $W_2 \subseteq (\Re_2)_e$ be two multiplicatively closed sets. Let $\Im = \Im_1 \times \Im_2$ be graded \Re -module, where \Im_1 is a graded \Re_1 -module and \Im_2 is a graded \Re_2 -module. Suppose that K = $K_1\times K_2 \leq^{sub}_G \Im$. *If either Ann*_{\Re_1} (K_1) \cap W_1 \neq \emptyset and K_2 is a graded Gr-W₂-2^{abs}-second submodule of \Im_2 or Ann $_{\Re_2}$ (K_2) \cap W_2 \neq \emptyset and $K_{_1}$ is a Gr-W₁-2 abs -second submodule of \mathfrak{S}_1 or $K_{_1}$ is Gr-W₁-second submodule of \mathfrak{S}_1 and $K_{_2}$ is Gr-W₂ $second\ submodule\ of\ \Im 2,\ then\ K\ is\ Gr\text{-}W\text{-}2^{abs}\text{-}second\ submodule\ of\ \Im.$

Proof. Suppose K_1 is a $Gr-W_1$ -2^{*abs*}-second submodule of \mathfrak{S}_1 and $Ann_{\mathfrak{N}_2}(K_2) \cap W_2 \neq \emptyset$. We will show that *K* is *Gr*-*W*-2^{*abs*}-second submodule of \Im . Then there exists $(w_2)_e \in Ann_{\Re_2}(K_2) \cap W_2$. Let $((r_1)_g, (r_2)_g)((t_1)_h,$ $(t_2)_h$) $K_1 \times K_2 \subseteq H_1 \times H_2$, where $(r_i)_g \in (\Re_i)_g$, $(t_i)_h \in (\Re_i)_h$ and $H_i \leq^{sub}_G \Im_i$, where $i = 1, 2$. Then $(r_i)_g(t_1)_h K_1 \subseteq H_1$. Since K_1 is a $Gr-W_1$ -2^{*abs*}-second submodule of \mathfrak{S}_1 , there exists $(w_1)_e \in W_1$ such that $(w_1)_e(r_1)_g K_1 \subseteq H_1$ or $(w_1)_e(t_1)_h K_1 \subseteq H_1$ or $(w_1)_e(r_1)_g(t_1)_h K_1 = 0$. Put $w_e = ((w_1)_e, (w_2)_e) \in W_1 \times W_2$. Then $w_e((r_1)_g, (r_2)_g) K_1 \times K_2 \subseteq H_1$ $\times H_2$ or $w_e((t_1)_h, (t_2)_h)K_1 \times K_2 \subseteq H_1 \times H_2$ or $w_e((r_1)_g, (r_2)_g)((t_1)_h, (t_2)_h)K_1 \times K = 0$. Therefore, K is Gr-W-2^{abs}second submodule of \Im . Similarly for if $Ann_{\Re 1} (K_1) \cap W_1 \neq \emptyset$ and K_2 is a $Gr-W_2$ -2^{*abs*}-second submodule of \Im_2 , then *K* is *Gr*-*W*-2^{*abs*}-second submodule of \Im . Now suppose K_1 is *Gr*-*W*₁-second submodule of \Im_1 and K_2 is $Gr-W_2$ -second submodule of \Im_2 . Let $(a_g, x_g)(b_h, y_h)K_1 \times K_2 \subseteq H_1 \times H_2$, where $a_g \in (\Re_1)_g$, $x_g \in (\Re_2)_g$, $b_h \in (\Re_1)h$, $y_h \in (\Re_2)h$, H_1 is graded submodule of \Im_1 and H_2 is graded submodule of \Im_2 . Then we have $a_g b_h K_1 \subseteq H_1$ and $x_g y_h K_2 \subseteq H_2$. As K_1 is *Gr*-*W*₁-second submodule of \mathfrak{F}_1 , there exists $w'_e \in W_1$ such that w'_e $a_g \in Ann_{\mathfrak{R}_1}(K_1)$ or $w'_e b_h \in Ann_{\mathfrak{R}_1}(K_1)$ or $w'_e K_1 \subseteq H_1$ by Lemma 3.19. Similarly, there exists $w''_e \in W_2$ $\text{such that } w''_e x_g \in Ann_{\Re2}(K_2) \text{ or } w''_e y_h \in Ann_{\Re2}(K_2) \text{ or } w''_e K_2 \subseteq H_2 \text{ by Lemma 3.19. Without loss of generality,}$ we have three cases:

Case 1: If $w'_e a_g \in Ann_{\Re 1}(K_1)$ and $w''_e K_2 \subseteq H_2$, then

$$
(w_e',\,w_e'') (a_g,\,x_g) K_1 \times K_2 = w_e' a_g K_1 \times w_e'' x_g K_2 \subseteq 0 \times K_2 \subseteq K_1 \times K_2.
$$

Case 2: If $w'_e a_g \in Ann_{\Re 1}(K_1)$ and $w''_{e} a_g \in Ann_{\Re 2}(K_2)$, then

$$
(w'_e, w''_e)(a_g, x_g)(b_h, y_h)K_1 \times K_2 = 0
$$

Case 3: If $w'_e K_1 \subseteq H_1$ and $w''_e K_2 \subseteq H_2$, then

$$
(w'_e, w'_e)(b_h, y_h)K_1 \times K_2 \subseteq (w'_e, w'_e)K_1 \times K_2 \subseteq H_1 \times H_2.
$$

Hence, *K* is $Gr-W-2^{abs}$ -second submodule of \Im .

Definition 3.26. Let $W \subseteq \mathbb{R}_e$ be $m.c.s.$ of \mathbb{R} and $K \leq^{sub}_G \mathbb{S}$ with $Ann_{\mathbb{R}}(K) \cap W = \emptyset$. We say that K is $e-W-2$ absorbing second (*e*-*W*-2^{*abs*}-second) submodule of \Im , if there exists $w_e \in W$ and whenever $r_e t_e K \subseteq H$, $\mathcal{L}_{e}^{m}W_{e} \subseteq \mathcal{L}_{e}^{m}W$ or $\mathcal{L}_{e}^{m}W_{e} \subseteq \mathcal{L}_{e}^{m}W$ and $\mathcal{L}_{e}^{m}W_{e}$ and $\mathcal{L}_{e}^{m}W_{e}$ and $\mathcal{L}_{e}^{m}W_{e}$

Definition 3.27. Let $W \subseteq \mathbb{R}_e$ be a *m.c.s.* of \mathbb{R} and $K \leq_G^{sub} \mathfrak{F}$ such that $Ann_{\mathbb{R}}(K) \cap W = \emptyset$. We say that *K* is a *e*-*W*-second submodule of \Im , if there exists $w_e \in W$ and whenever $r_e K \subseteq H$, where $r_e \in \Re_e$ and $H \leq_G^{sub} \Im$, then $w_e K \subseteq H$ or $w_e r_e K = 0$

Theorem 3.28. Let $\mathbb{R} = \mathbb{R}^1 \times \mathbb{R}^2$ be G-graded ring, where \mathbb{R}^1 and \mathbb{R}^2 be two commutative G-graded rings and let $W_1 \subseteq (\Re_1)_e$ be m.c.s. of \Re_1 and $W_2 \subseteq (\Re_2)_e$ be a m.c.s. of \Re_2 . Let $\Im = \Im_1 \times \Im_2$ be a graded \Re -module, $where \; \mathfrak{S}_1$ is a graded \mathfrak{R}_1 -module and \mathfrak{S}_2 is a graded \mathfrak{R}_2 -module. Suppose that $K = K_1 \times K_2 \leq^{sub}_G \mathfrak{S}$. Then *the following conditions are equivalent.*

- (i) *K* is e-W-2^{*abs*}-second submodule of \Im .
- (ii) *Either Ann*_{$\mathfrak{m}_1(K_1) \cap W_1 \neq \emptyset$ and K_2 is a e-W₂-2^{*abs*}-second submodule of \mathfrak{S}_2 or Ann_{$\mathfrak{m}_2(K_2) \cap W_2 \neq \emptyset$ and}} K_i *is a e-W*₁-2 abs -second submodule of \mathfrak{S}_1 or K_i *is e-W*₁-second submodule of \mathfrak{S}_1 and K_2 *is e-W₂-second* $submodule of \mathfrak{T}_2.$

Proof. (i) \Rightarrow (ii) Let $K = K_1 \times K_2$ be *e*-*W*-2*abs*-second submodule of \Im . By Theorem 3.12, $Ann_{\Re}(K) = Ann_{\Re(1)}$ $(K_1) \cap Ann_{\mathfrak{R}_2}(K_2)$ is $Gr-W\text{-}2^{ab}$ ideal of \mathfrak{R} . Thus either $Ann_{\mathfrak{R}_1}(K_1) \cap W_1 = \emptyset$ or $Ann_{\mathfrak{R}_2}(K_2) \cap W_2 = \emptyset$. Assume that $Ann_{\mathbb{R}1}(K_1) \cap W_1 \neq \emptyset$. We show that K_2 is a $e \cdot W_2$ -2^{*abs*}-second submodule of \mathfrak{S}_2 . Let $r_{e2}t_{e2}K_2 \subseteq H_2$ for some r_{e2} , $t_{e2} \in (\Re_2)_e$ and $H_2 \leq G$ \Im_2 . Hence $(1, r_{e2}) (1, t_{e2}) K_1 \times K_2 \subseteq \Im_1 \times H_2$. Since *K* is e -*W*-2^{*abs*}-second $\text{submodule of \mathfrak{F}, there exists $w_{e} = (w_{e1}, w_{e2}) \in W$ such that $(w_{e1}, w_{e2}) (1, r_{e2}) K_1 \times K_2 \subseteq \mathfrak{F}_1 \times H_2$ or (w_{e1}, w_{e2})},\$ $(1, t_{e2})K_1 \times K_2 \subseteq \Im_1 \times H_2$ or $(w_{e1}, w_{e2})(1, r_{e2})(1, t_{e2})K_1 \times K_2 = 0$, it follows that either $w_{e2}r_{e2}K_2 \subseteq H_2$ or $w_{e2}t_{e2}K_2$ $\subseteq H_2$ or $w_{e2}r_{e2}t_{e2}K_2 = 0$. So K_2 is $e-W_2$ -2^{abs}-second submodule of \Im_2 . Similarly if $Ann_{\Re_2}(K_2) \cap W_2 \neq \emptyset$, then K_1 is a *e*- W_1 -2^{*abs*}-second submodule of \mathfrak{F}_1 . Assume that $Ann_{\mathfrak{R}_1}(K_1) \cap W_1 = \emptyset$ and $Ann_{\mathfrak{R}_2}(K_2) \cap W_2 = \emptyset$. We show that K_1 is e - W_1 -second submodule of \Im_1 and K_2 is e - W_2 -second submodule of \Im_2 . Note that there exists $w_e = (w_{e1}, w_{e2}) \in W$ satisfying that *K* is $e-W\text{-}2^{abs}\text{-}$ second submodule of \Im . Suppose that K_1 is not e -*W*₁-second submodule of \mathfrak{F}_1 . So there exists $a_{e1} \in (\Re_1)_e$ and $H_1 \leq^{sub}_G \mathfrak{F}_1$ such that $a_{e1}K_1 \subseteq H_1$ but $w_{e1}K_1 \nsubseteq H_1$ and $w_{e1}a_{e1}K_1 \neq 0$. Moreover, $Ann_{32}(K_2) \cap W_2 = \emptyset$ so $w_{e2}k_2 \neq 0$. Thus by Remark 3.4, there exists a completely graded irreducible submodule $N_{_2}$ of $\Im _{_2}$ such that $w_{_e2}K_{_2}\nsubseteq N_{_2}.$ Furthermore,

$$
(a_{e1}, 1)(1, 0)K_1\times K_2\subseteq a_{e1}K_1\times 0\subseteq H_1\times 0\subseteq H_1\times N_2.
$$

Since *K* is *e*-*W*-2^{*abs*}-second submodule of \Im , either $(w_{e1}, w_{e2})(a_{e1}, 1)K_1 \times K_2 \subseteq H_1 \times N_2$ or $(w_{e1}, w_{e2})(1, 0)$ $K_1 \times K_2 \subseteq H_1 \times N_2$ or $(w_{e1}, w_{e2})(1, 0)(a_{e1}, 1)K_1 \times K_2 = 0$. Hence, $w_{e2}K_2 \subseteq N_2$ or $w_{e1}K_1 \subseteq H_1$ or $w_{e1}a_{e1}K_1 = 0$, which them are contradictions. So K_1 is e - W_1 -second submodule of \Im_1 . Similarly one can see that K_2 is e -*W*₂-2^{*abs*}-second of \Im ₂.

(ii) \Rightarrow (i) Suppose that K_1 is a *e*- W_1 -2^{*abs*}-second submodule of \Im_1 and $Ann_{R_2}(K_2) \cap W_2 \neq \emptyset$. We show that K is e -*W*-2^{*abs*}-second submodule of \Im . Then there exists $w''_e \in Ann_{\Re2}(K_2) \cap W_2$. Let $(c_1, c_2)(d_1, d_2)K_1 \times K_2 \subseteq$ $H_1 \times H_2$ for some $c_1, d_1 \in (\Re_1)_e$, $c_2, d_2 \in (\Re_2)_e$ and H_1 (resp. H_2) $\leq^{sub}_G \Im_1$ (resp. \Im_2). Then $c_1d_1K_1 \subseteq H_1$. Since K_i is a e - W_i - 2^{abs} -second submodule of \mathfrak{S}_i , there exists $w'_e \in W_i$ such that $w'_e c_1 K_1 \subseteq H_1$ or $w'_e d_1 K_1 \subseteq H_1$ or $w'_e c_1 d_1 K_1 = 0$. Put $w_e = (w'_e, w''_e)$. Then $w_e(c_1, c_2) K_1 \times K_2 \subseteq H_1 \times H_2$ or $w_e(d_1, d_2) K_1 \times K_2 \subseteq H_1 \times H_2$ or $w_e(c_1, c_2)$ $(d_1, d_2)K_1 \times K_2 = 0$. Thus *K* is *e*-*W*-2^{*abs*}-second submodule of \Im . Similarly if K_2 is a *e*-*W*₂-2^{*abs*}-second submodule of \Im_2 and $Ann_{R_1}(K_1) \cap W_1 \neq \emptyset$, then *K* is *e-W-2^{abs}-second submodule of* \Im . Assume that K_1 is $e \cdot W_1$ -second submodule of \Im_1 and K_2 is $e \cdot W_2$ -second submodule of \Im_2 . Let $a_{e1}, b_{e1} \in (\Re_1)_e$, $x_{e2}, y_{e2} \in (\Re_2)_e$ and H_1 (resp. H_2) \leq^{sub}_G \Im (resp. \Im ₂) such that Let $(a_{e_1}, x_{e_2})(b_{e_1}, y_{e_2})K_1 \times K_2 \subseteq H_1 \times H_2$. Then we have $a_{e_1}b_{e_1}K_1$ $\subseteq H_1$ and $x_{e^2}y_{e^2}K_1 \subseteq H_1$. As K_1 is $e-W_1$ -second submodule of \mathfrak{S}_1 , then there exists $w_{e^1} \in W_1$ such that $w_{e1} a_{e1} \in Ann_{\mathfrak{M}}(K_1)$ or $w_{e1} b_{e1} \in Ann_{\mathfrak{M}}(K_1)$ or $w_{e1} K_1 \subseteq H_1$ by Lemma 3.19. Similarly, there exists $w_{e2} \in W_2$

 \Box

such that $w_{\rho}x_{\rho} \in Ann_{n}(\mathcal{K})$ or $w_{\rho}y_{\rho} \in Ann_{n}(\mathcal{K})$ or $w_{\rho}K \subseteq H_{\rho}$. Without losing generality, we can infer $w_{e_1} a_{e_1} \in Ann_{\mathfrak{R}_1} (K_1)$ and $w_{e_2} K_2 \subseteq H_2$ or $w_{e_1} a_{e_1} \in Ann_{\mathfrak{R}_1} (K_1)$ and $w_{e_2} x_{e_2} \in Ann_{\mathfrak{R}_2} (K_2)$ or $w_{e_1} K_1 \subseteq H_1$ and $w_{\rho_2}K_2 \subseteq H_{\rho_2}$. If $w_{\rho_1}a_{\rho_1} \in Ann_{\mathfrak{g}_1}(K_1)$ and $w_{\rho_2}K_2 \subseteq H_{\rho_2}$, then

$$
(w_{e1},\,w_{e2}\,)(a_{e1},\,x_{e2}\,)K_1\times K_2\subseteq w_{e1}a_{e1}K_1\times w_{e2}x_{e2}K_2\subseteq 0\times H_2\subseteq H_1\times H_2.
$$

If $w_{e1}a_{e1} \in Ann_{\mathfrak{R}1}(K_1)$ and $w_{e2}x_{e2} \in Ann_{\mathfrak{R}2}(K_2)$, then

$$
(w_{e1}, w_{e2})(aa_{e1}, x_{e2})(b_{e1}, y_{e2})K_1 \times K_2 = 0
$$

If $w_{a}K_{1} \subseteq H_{1}$ and $w_{a}K_{2} \subseteq H_{2}$, then

$$
(w_{_{e1}},\,w_{_{e2}})(a_{_{e1}},\,x_{_{e2}})K_1\times K_2\subseteq (w_{_{e1}},\,w_{_{e2}})K_1\times K_2\subseteq H_1\times H_2.
$$

Thus K is $e-W-2^{abs}$ -second submodule of \Im .

Declaration of interests statement

The authors declare no conflict of interest

References

- K. Al-Zoubi and R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, J. Math. Sci. $\lceil 1 \rceil$ Adv. Appl. 28 (2014), 45-60.
- $[2]$ K. Al-Zoubi, R. Abu-Dawwas and W. Ceken, On graded 2-absorbing and graded weakly 2-absorbing ideals, Hacet. J. Math. Stat., 48(3) (2019), 724-731.
- K. AL-Zoubi and and M. AL-Azaizeh, On graded 2-absorbing second submodules of graded modules over graded com- $[3]$ mutative rings, Kragujevac J. Math. 48(1) (2024), 55–66.
- K. Al-Zoubi and A. Al-Qderat, Some properties of graded comultiplication modules, Open Math., 15(1) (2017), 187–192. $[4]$
- $[5]$ H. Ansari-Toroghy and F. Farshadifar, Graded comultiplication modules, Chi-ang Mai J. Sci., 38(3) (2011), 311–320.
- H. Ansari-Toroghy, F. Farshadifar, On graded second modules, Tamkang J. Math. 43(4) (2012), 499-505. $[6]$
- S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., 33 (2006), 3-7. $[7]$
- S. Çeken and M. Alkan, On graded second and coprimary modules and graded secondary representations, Bull. Malays. $[8]$ Math. Sci. Soc., 38(4) (2015), 1317-1330.
- C. Nastasescu and F. Van Oystaeyen, Graded and Ntered rings and modules, Lecture notes in mathematics 758, $[9]$ Berlin-New York: Springer-Verlag, 1982.
- [10] C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, 1982.
- [11] C. Nastasescu and F. Van Oystaeyen, Methods of Graded Rings, LNM 1836. Berlin-Heidelberg: Springer-Verlag, 2004.
- $[12]$ M. Refai, R.Abu-Dawwas, On generalizations of graded second submodules. Proyecciones (Antofagasta) 39(6) (2020), 1537-1554.
- $\lceil 13 \rceil$ M. Refai and K. Al-Zoubi, On graded primary ideals, Turk. J. Math. 28 (2004), 217–229.
- $[14]$ S. Al-Kaseasbeh, K. Al-Zoubi, On graded A-2-absorbing submodules of graded modules over graded commutative rings, Novi Sad J. Math. (2022), https://doi.org/10.30755/NSJOM.12403
- [15] M. Hamoda and K. Al-Zoubi, On graded S-comultiplication modules, arXiv preprint arXiv: 2205,00882.