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Abstract
This paper explores the application of fuzzy theory to solve fractional heat equations using a novel 
approach, the Optimal Homotopy Asymptotic Method (OHAM). We introduce a semi-analytical 
method to address fuzzy fractional-order heat equations, aiming to overcome the limitations of exist-
ing approaches. Our methodology leverages the generalized Caputo-Katugampola (CK) definition 
with two parameters α  and ρ , to define fractional derivatives. Through this research, we present a 
comprehensive framework for tackling this challenging problem. To illustrate the effectiveness and 
feasibility of our method, we provide several practical examples. The results are presented in tables 
and figures, and our approach is compared to the exact solutions. This study not only contributes to 
the field but also offers a powerful and efficient way to address fuzzy fractional heat equations with 
increased accuracy and reduced computational effort.
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1. Introduction

In the last three decades, there has been a significant surge in interest in fractional calculus, pri-
marily due to its established utility in various fields of physics, biology, and engineering. Because 
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the fractional-order differential operators are non-local, they can more accurately explain some phe-
nomena than integer-order differential operators. It is frequently employed to substitute a fractional 
derivative for the traditional time derivative in evolutionary equations [1–4].

Fuzzy differential equations (FDEs) play a pivotal role in expanding the repertoire of system models 
and fundamental tools for diversifying the array of machine models utilized across physics, engineer-
ing, biology, and other medical disciplines [5–7]. They find applications in addressing production 
problems, optimization tasks, artificial intelligence, diagnostic procedures in clinical settings, cosmo-
logical studies, and the development of specialized robotic systems, and serve as valuable tools for 
modeling uncertain nonlinear systems [8]. Hoa et al [9] have made major contributions to non-integer 
order differential equations with fuzzy solutions. They broadened the concept from classical to arbi-
trary order, resulting in important results in fuzzy fractional calculus. They also obtained significant 
results while employing the "Caputo generalized Hukuhara" fractional derivative. They looked into a 
few fascinating subjects concerning fractional-order fuzzy problems. Other significant investigations 
can be found in [10–14]. Several numerical and analytical methods have been developed for solving 
fuzzy fractional differential equations, such as the Power series expansion method [15], Sumudu 
transform [16], Adomian Decomposition Method (ADM) [17], Gegenbauer Wavelet Polynomials [18] 
and Variation Iteration Method (VIM) [19].

Caputo-Katugampola (CK) fractional integral and derivative [20] is a revolutionary fractional 
integral and derivative concept that generalizes the fractional derivatives with two parameters and 
retains certain essential and basic features of Caputo and Caputo-Hadamard derivatives [21]. The 
parameter values have a significant influence on the used derivative, presenting a helpful tool for cre-
ating fractional calculus models. In modeling and simulations, the CK derivative has two fractional 
parameters that provide greater generalization than other fractional formulations.

Optimal Homotopy Asymptotic Method (OHAM) has now evolved as a result of Marinca [22] and 
is used to solve nonlinear problems without relying on a tiny parameter. When compared to the 
Homotopy Perturbation Method (HPM), it was established that OHAM provides the best solution. 
Furthermore, unlike the Homotopy Analysis Method (HAM), OHAM does not require any initial guess 
or being aware of the h-curve. Furthermore, like the HAM, OHAM contains built-in convergence cri-
teria, but with a greater degree of flexibility. OHAM is also parameter-free and provides more pre-
cision than approximate analytical approaches of the same order of approximation. The downside of 
OHAM is that it necessitates the solution of a set of nonlinear algebraic equations at each order of 
approximation, and this technique comprises multiple unknown convergence-control factors, making 
calculation time-consuming. Over and above that, OHAM has been carried out effectively in a variety 
of technological and mathematical domains [23–26].

The general heat equation can be applied to the flow or distribution of heat in a thin rod, plane, or 
space from a high-temperature point to a lower-temperature point during a particular time interval. 
The considered equation is one of the diffusion equation’s special instances. Using the heat equation, 
one may anticipate that the heat flow will continue until the temperature of all bodies or particles 
remains constant [27]. The fuzzy fractional heat equation was investigated by Snehashish and other 
researchers [28] using the HPM. The variational iteration method (VIM) was discussed and inves-
tigated to solve fuzzy time-fractional diffusion equations which is taken in the Caputo sense [29]. 
Furthermore, the analysis for semi-analytical methods especially the Laplace transform along with 
decomposition techniques and the Adomian polynomial for Two-Dimensional Heat Equation under 
the Caputo–Fabrizio fractional differential operator was introduced by Sitthiwirattham et al [30]. The 
time-fractional heat equation has been investigated using the spectral tau technique under non-local 
conditions where CPs6 and their modified polynomials were used to choose suitable sets of basis func-
tions [3]. Additionally, the one- and two-dimensional heat partial differential equations (PDEs) with 
generalized Lucas polynomials (GLPs) involving two parameters are utilized as basis functions by the 
tau and collocation methods to convert the heat equations into subject to their underlying conditions 
into systems of linear algebraic equations [31]. Investigating the convergence analysis of the shifted 
fifth-kind Chebyshev polynomials (5CPs) utilized a spectral tau solution to the heat conduction equa-
tion is introduced in [32].
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This paper develops a novel efficient approach for solving FFHE in one dimension with CK deriv-
ative of two parameters using OHAM. This algorithm is based on selecting appropriate parameters 
that ensure the guaranteed convergence of solutions. Combining the fractional derivative form as CK 
definition with a powerful algorithm that regulates the convergence parameters (OHAM) will ensure 
an accurate solution that obeys real-world data.

An outline of this article is as follows: Section (2) goes over some basic definitions and preliminaries 
that will be used throughout this work. Section (3) proposes the defuzzification of a fuzzy fractional 
heat equation. Section (4) shows the general form of fuzzy fractional OHAM. In Section (5), we use 
OHAM’s convergent analysis and provide a structural formula for the fuzzy fractional heat equation. 
In Section (6), we will illustrate and analyze the capabilities of the suggested fuzzy fractional OHAM 
in addressing a test scenario through our findings. Lastly, some concluding remarks for this work are 
presented in the final section.

2. Preliminary

Some essential definitions and basics of fuzzy and fractional calculus with Caputo-Katugampola frac-
tional derivatives are introduced in this section.

2.1. Fuzzy concept

Zadeh created a fuzzy set theory [33] in 1965. It is regarded as carrying crisp or (classical) set 
theory [34]. The crisp sets notion classifies the membership of items on a set’s topic in binary terms, 
with a detail either belonging to or not belonging to the set. Fuzzy set theory is defined by a mem-
bership function with a value in the interval [0, 1] and is defined as an extension of the classical set 
theory.

Definition 2.1: [35] Let A X : [0,1]→  be a fuzzy set. The ζ -level (ζ -cut) representation of a fuzzy set 
A  is defined as:

[ ] = { | ( ) > }, [0,1]A s X A s 

� � � �� �

Definition 2.2: [36] A triangular fuzzy number is a fuzzy number defined as triple numbers α α α1 2 3< <  
with the base on the interval [ , ]1 3α α  and at x = 2α  as a peak point and membership function is as the 
following:
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( ) = ( ), ( ) , [0,1]1 2 1 3 3 2s�� �� � � � ��� �� �

Definition 2.3: [37] Let S  be the set of all normal upper semi-continuous convex fuzzy numbers with 
ζ -level bounded intervals that satisfy the following condition:

[ ( )] = { : }, [0,1].� � � ��s s� � �
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An arbitrary fuzzy number is represented by an ordered pair of membership functions 
� � �

� �( ) = [ ( ), ( )]s s s�� ��  for all which is satisfying

 1. δ ( )s  is normal: there exists s0 ∈  such that δ ( ) =10s .
 2. δ ( )s  is convex: � �s t,   and � �[0,1], it holds that:

� � � � �( (1 ) ) {( ( ), ( )}s t s t� � �min

 3. δ  is upper semi continues: for any s0 ∈ , it satisfied that � �( ) ( )0 0
s ss s� � �lim .

 4. { : }s� � � �  is compact subset of  .

In the parametric form, which is represented by an ordered pair of functions
[ ] = [ ( ), ( )] = [ ( ; ), ( ; )], [0,1]� � � � � � � �� �s s s s � , that hold the below conditions:

 1. � �( ; )s  is a bounded left continuous non-decreasing in [0,1].
 2. � �( ; )s  is a bounded left continuous non-increasing in [0,1].
 3. � � � �( ; ) ( ; )s s� .

Definition 2.4: [38] Let h M S� �: →  be a map, so, for interval M S⊆   denote a fuzzy function with crisp 
variable, and we define ζ -level set as

[ ( )] = [ ( ; ), ( ; )] , [0,1],h s h s h s s M

� � � �� �

where S  sets all upper semi-continuous normal convex fuzzy numbers. That is, the fuzzifying func-
tion is a mapping from a domain to a set of fuzzy ranges. In a mathematical sense, the fuzzifying 
function and the fuzzy relation coincide.

Definition 2.5: [39] Given a function g S T: → , where S S S Sn= 1 2× × ×  and let A A A An� � � … �= 1 2× × × ,  
where A i ni� …, =1,2, , , be n-fuzzy subset in S  and t g s s sn= ( , , , )1 2   in T . Then, the extension principle 
allows defining a fuzzy subset B g A = ( ) in T  by:

B t t t g s s s s s s SB n n
� … …�= {( , ( )) : = ( , , , ), , , , }.1 2 1 2� �
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the extension principle can be written for n =1 as
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For s t S, ∈  , and � � , the sum s t+  is [ ] = [ ] [ ]s t s t� �� � �  and the product λ.s  is [ . ] = [ ]� �� �s s , and the 
diameter of the ζ -level set of s  as diam s s s[ ] = [ ( ) ( )]� � �� .

Definition 2.6: [40] Let s t S, ∈  . If there is r S∈  : s t r= + , then r  is said to be the Hukuhara difference 
of s  and t and it is denoted by s t .
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Definition 2.7: [40] Let s t,  be two fuzzy numbers then the distance D s t[ , ] (Hausdorff distance) is 
defined as

D s t s t s t[ , ] = {| ( ) ( )|,| ( ) ( )|}.
0 1� �

� �
�

� � � �supmax

Definition 2.8: [41] Let g I E: →   and s I0 ∈ . Then the fuzzy function g  is said to be Hukuhara dif-
ferentiable (H-differentiable) at s0 , if there is � �g s E( )0  , and for h > 0 , there are g s h g s( ) ( )0 0+   and 
g s g s h( ) ( )0 0 −  such that

�
� �

� �g s lim g s h g s
h

lim g s g s h
hh h( ) = ( ) ( ) = ( ) ( ) .0 0

0 0
0

0 0 

Definition 2.9: [42] Let g I E: →   for s I� �  . The nth  order Hukuhara differentiable functions at t

[ ( )] = [ ( ; ), ( ; )], [0,1].g t g t g t

� � � �� �

The functions g t g t( ; ), ( ; )ζ ζ  are both nth  order Hukuhara differentiable functions and

[ ( )] = [ ( ; ), ( ; )], [0,1].
( ) ( ) ( )
g t g t g t
n n n
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2.2. Caputo-Katugampola fractional derivative

The Caputo-Katugampola derivative is a novel fractional operator that generalizes the idea of Caputo 
and Caputo-Hadamard fractional derivatives.

Definition 2.10: [21] Both left and right generalized fractional integrals of the function f , called the 
Katugampola fractional integral are respectively given by:
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� �� �� �

�
� � � ��

�
,

1
1 1( ) =

( )
( ) ( ) ,

�

and

I f x s x s f s dsb x

b
�

�
� �� �� �

�
� � � ��

�
,

1
1 1( ) =

( )
( ) ( ) ,

�

where 0 < < < , : [ , ]a b f a b� �   is an integrable function, and α > 0  and ρ > 0  two fixed real 
numbers.

The following properties of the fractional integral operator I� �,  where � �� 0, > 0, and for constant 
c∈, holds:

 1. I I f x I f x I f x I I f x� � � � � � � � � � � � � �, , , , , ,( ) = ( ) = ( ) = ( )� � ,
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The first two properties are found in [43]. and the Proof of property (3) as follow.
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Proof. By Definition (2.10) and set a = 0 we have

I x s x s s dsn x n� �
�
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Definition 2.11: [21] Let 0 < < < , : [ , ]a b f a b� �   is an integrable function, and for 
m m m� � �1 < ,�   and ρ > 0 . Both left and right Caputo-Katugampola fractional derivatives of 
order α , ρ  are respectively defined by:
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The following properties of CK fractional derivative can be held for constant c∈ , a x b< ≤  where 
a m m� � �0, > 0, 1 <� �  and f C a bj∈ [ , ], first three properties can refer to [21, 44]:
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We going to prove property (4).
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Proof. By Definition (2.11) and set a = 0 we have
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Remark 2.12: [45]
• When � �1 , the Caputo-Katugampola fractional derivative is simplified to the standard Caputo.
• When � � �0 , the Caputo-Katugampola fractional derivative is simplified to the Caputo-

Hadamard derivatives.

3. Fuzzy Fractional Heat Equation

Let’s examine the equation governing fractional heat transfer in dimensional instances which may be 
written inside the forms:

D V s t A s V s t
s

B s s l tt
� �,

2

2( , ) = ( ) ( , ) ( ),0 < < , > 0, 





�
�

� (1)

referring to the initial/boundary conditions:

V s f s v t g t V l t z t� � � � � �( ,0) = ( ), (0, ) = ( ), ( , ) = ( ),

where V s t( , )  is the fuzzy function of t  and s  as the crisp variable. Furthermore, ∂
∂

2

2
( , )V s t
s



 is the fuzzy 

second partial derivative with s , here, D V s t� �, ( , )  fuzzy time fractional H -derivative of order � � �, , ,  
here A  and B  are given continuous positive and real-valued functions, respectively. V s( ,0)  is the 
fuzzy initial condition where f s( ) is fuzzy number and V t(0, )  as well as V l t( , ) is fuzzy boundary con-
ditions with g , z  being fuzzy convex numbers. Now the defuzzification of Eq. (1) with � �[0,1] is as 
follows [46]:

[ ] [ ]V s t V s t V S t( , ) = ( , ; ), ( , ; ) .ζ ζ ζ (2)
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such that � �
i
( ) and � �i ( ), i =1,2,3  are lower and upper convex fuzzy numbers and ψ ( )s  is a crisp 

function of the crisp variable s . Now, by the fuzzy extension principle, the membership function can 
be defined as follows
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Now, by fuzzification of Eq. (1) and defuzzification of Eqs. (2-13), we can rewrite the Eq. (1) in the 
following formula. The lower term of Eq. (1).
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The upper term is

D V s t s V s t
s

s

V s

t
� � � � � �

�
� � �

� �

,
2

2

2 3

1

( , ; ) = ( ) ( ) ( , ; ) ( ) ( ),

( ,0; ) =

�
�

�

(( ) ( ),
(0, ; ) = ( ), ( , ; ) = ( ).

� �

� � � �

s
V t g V l t z

�

�

�
�

�

�
�

(15)

4. General OHAM Technique for Fuzzy Fractional Heat Equation

OHAM is an amendment of the HAM that is primarily based on minimizing the residual error. In 
OHAM, the management and adjustment of the convergence vicinity are supplied conveniently. The 
production of fractional OHAM in a crisp environment turned into formulated in [26, 47]. To solve the 
fuzzy fractional heat equation, there is a need to fuzzify and then defuzzify OHAM. Consider the fuzzy 
differential equation for all � �[0,1] as follows:

D V s t s t V s t f s t s l

B V

t
� �

�

�

� � � �, ( , ; ) = , , ( , ; ); ( , ; ),0 < < ,

,

� � � �

�

 � � �
� ,, ,

, , = 0,
� �

� � �

V
t

�

�

�

�
��

�

�
��

�


��

�
�
�

(16)

where V s t( , ; )ζ  is the fuzzy fractional function of the crisp variables t  and s  and D V s tt
� � �, ( , ; )  is the 

linear operator of Eq.(16) and   

η η η= [ , ] is the fuzzy fractional function of fuzzy variable V . Now, 
we can formulate fuzzy fractional optimal homotopy �( , ; ; ) : [0, ] [0,1]s t p l� � �   which satisfy the fol-
lowing homotopy:

H s t p p p s t p f s t

p

� � � �

�

( ( , ; ; ), ) = (1 ) ( ( , ; ; )) ( , ; )

( ; )(

� �� � �

�

� �� �
�

L

H LL

A

� �

� � �
( ( , ; ; ))

(( ( , ; ; ), )) ( , ; )),
�

�

s t p
s t p p f s t

�

� ��� �

(17)

with 0 1≤ ≤p  is an embedding parameter, ( ; )ζ p  is a non zero auxiliary fuzzy function for p ≠ 0  
and ( ;0) = 0.ζ  When p = 0 , � ( , ; ;0) = ( , ; )0s t V s t� �  and when p =1, � ( , ; ;1) = ( , ; )s t V s t� �  which is the 
exact solution. Therefore, the approximate solution �( , ; ; )s t p�  will differ from the initial guess to the 
exact solution when p  deforms from 0  to 1. The following form is used to pick the auxiliary conver-
gence control function ( ; )ζ p  and in this situation:

 ( ; ) = ( ) ,
=1

� �p K p
i

k

i
i� (18)

where, K K Ki i i ( ) = ( ), ( )� � ��
�

�
�  the auxiliary convergence constants to be determined in each ζ -level 

set. Employ Taylor’s series to get an approximate solution � ( , ; ; ( ))s t r K i �  for 0 1� ��  as follows:

�    ( , ; ; ( )) = ( , ; ) ( , ; ; ( )) .0
=1

s t K V s t V s t r K pi
i

i i
i� � � ��

�

� (19)

Substituting Eqs. (18) and (19) into Eq. (??), we construct the general form of fuzzy fractional OHAM 
to explain the heat equation by equating the coefficient of identical powers of p . (1)



Alshbeel A et al., Results in Nonlinear Anal. 7 (2024), 44–63. 53

(1 ) ( , ; ) ( , ; ( ); ) ( ,,
0

=1
� �

�

�
�

�

�
� ��p D V s t V s t K p f s tt

i

k

i i
i� � � � �� � � � ;; )

= ( ) ( ( , ; ) ( , ;
=1

,
0

=1

�

� �� �

�

�
��

�

�
��

�� �
i

k

i
i

i

k

i iK p D V s t V s t K� � � � (( ); ) ( , , ( , ; ); ) ( , ; )).� � � � �p s t V s t f s ti�

�
�

�

�
� � �� � �

(20)

Afterward, equating each power of p  coefficient to zero in the homotopy form of Eq. (16). This method 
generates a system of linear equations based on V s t V s t� � …0 1( , ; ), ( , ; ),ζ ζ , so, the approximate series 
solution of kth  order about p  using the following form:

V s t K V s t V s t Kj
i

k

i i    ( , , ( ); ) = ( , ; ) ( , , ( ); ).0
=1

� � � � ��� (21)

Now, by calculating parameters K K Kk� � … �1 2( ), ( ), , ( )ζ ζ ζ  to get the best approximation solution of 
Eq.(1) and which should be identified for each � � level. Various techniques, including the least square 
method, the Galerkin method, the collocation method, the Ritz method, the Kantorovich method, 
and others, can be used to best identify these parameters. In this work, we employ the least-squares 
method to minimize the square residual error. Consider

J s t K E s t K dxdti
l

i   ( , , ( )) = ( , , ( )) .
0

2
� ��� (22)

Here, E  is the residual error, where 0  and l  are values that depend on the boundaries of the problem. 
The auxiliary convergence-control parameters Ki ( )ζ  can be calculated as follows:

∂
∂

∂
∂

∂
∂

J
K

J
K

J
Kk

�
�

�
� …

�
�1 2

= = = = 0. (23)

5. Convergence Analysis of OHAM for Fuzzy Fractional Heat Equation based on ML 
 Operator with Three Parameters

The general form of OHAM for general fuzzy fractional differential equations and fuzzy set theory 
properties are merged with fractional calculus. This version has been improved to produce an approx-
imation of the solution that was introduced in [48]. In this part, we introduce the convergence of 
OHAM, based on Sec. (3) and Sec. (4). Now, by rewriting Eq. (16) in the following lower and upper 
bound, respectively:

L A( ( , ; )) (( , , ( , ; )) ( , ; ) = 0,

( , ; ),

V s t s t V s t f s t

V s t V
s

� � �

�

�� �

�
�

�

�
�



��

�
�

�

�
�

�
� = 0,

(24)

L A( ( , ; )) ( , ( , ; )) ( , ; ) = 0,

( , ; ),

V s t s V s t f s t

V s t V
s

� � �

�

�� �

�
�

�

�
��

�

�



���

�

�
��

�
�
�

= 0.
(25)

According to the defuzzification of Eq. (1). The formulation for the lower and upper bound of Eq. (17) 
fuzzy fractional OHAM
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(1 )[ ( ( ; ; )) ( , ; )] = ( ; )[ ( ( , ; ; ))

(( , ,

� �

�

p s p f s t p s t p

s t V

L H L

A

� �� � � �

�
( , ; )) ( , ; )],

( , ; ; ), ( , ; ; ) = 0,

s t f s t

s t p s t p
s

� �

�
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(26)

(1 )[ ( ( , ; ; )) ( , ; )] = ( ; )[ ( ( , ; ; ))
(( ,

� �

�

p s t p f s t p s t p
s t
L H L

A

� �� � � �

� ,, ( , ; )) ( , ; )],

( , ; ; ), ( , ; ; ) = 0,

V s t f s t
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��
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�
�

�

�
�

(27)

where the lower and upper fuzzy fractional linear operators are the lower and upper auxiliary fuzzy 
function and [ ( , ; ; ), ( , ; ; )]� �s t p s t p� �  the lower and upper unknown fuzzy function respectively. 
Obviously, when p = 0  and p =1  respectively we have:

� �( , ;0; ) = ( , ; ), ( , ;1; ) = ( , ; ).0s t V s t s t V s t� � � � (28)

� �( , ;0; ) = ( , ; ), ( , ;1; ) = ( , ; ).0s t V s t s t V s t� � � � (29)

Therefore, when p  increase from 0  to 1, the solution �( , ; ; )� �t p  vary from V s t0( , ; )ζ  to the exact solu-
tion. Now when p = 0 , the lower and upper bounds of zeroth-order:





( ( , ;0; )) = ( , ; ), ( , ; ), ( , ; ) = 0,

( ( ,

�

�

s t f s t V s t V s t
s

s

� � �
��

�
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�
�

tt f s t V s t V s t
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;0; )) = ( , ; ), ( , ; ), ( , ; ) = 0,� � �
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�
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�
��

�

�

�
�

�

�
�

(30)

Now, the auxiliary function ( ; )p r  for Eq. (26) and (27) is:





( ; ) = ( ) = ( ) ( )

( ; ) = ( ) =

=1
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1
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(31)

where, K K K K K K� � …1 1 1 2 2 2( ) = [ ( ), ( )], ( ) = [ ( ), ( )], ,ζ ζ ζ ζ ζ ζ  is the auxiliary convergence constants. 
Expanding the solution �( , ; ; )s t p �  about p  by Taylor’s series get the series approximate solution via 
fuzzy fractional OHAM

�

�

( , ; ( ); ) = ( , ; ) ( , ; ( ); ) .

( ; ; (

0
=1

x t K V s t V x t K p

x t K

j
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j j
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)); ) = ( , ; ) ( , ; ( ); ) .0
=1

� � � �V s t V x t K p
j

j j
j�
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�
�

�

�
�

�

�
(32)

Substituting Eq. (31) and (32) in Eq. (26) and (27) and then collecting the coefficient of like powers 
of p  to find the lower and upper bound. This procedure give us a system of linear equations, For the 
zeroth-order given in (9) and for the first order
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The problem of second-order
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the general form of the governing problem via OHAM of kth  order
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Depending on parameter K K Kk1 2( ), ( ), , ( ),ζ ζ ζ  and at p =1  we have:

V s t K V s t V s t K

V x t K
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Approximating the series solution for k  term as:
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We can obtain of the residual error E E E = [ , ], by substituting Eq. (37) in Eq. (24) and (25)

E s t K K V s t K K
V s

i k( , , ( ), , ( ); ) = ( ( , , ( ), , ( ); ))
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(39)

In the case of E = 0 where E E E = [ , ], then V * yields the exact solution. To determine the auxiliary 
constants K K Kk� � … �1 2( ), ( ), , ( )ζ ζ ζ , we apply the least squares method
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(40)

Here, J J J = [ , ] and the optimal values for K K K K� � … �1 2( ), ( ), , ( )ζ ζ ζ , can be determined as follows:

∂
∂

∂
∂

∂
∂

J
K

J
K

J
Kk

�
�

�
� …

�
�1 2

= = = = 0. (41)

6. Numerical Experiment

In this part, the OHAM is used to get the analytical solution of the fuzzy fractional heat equation with 
a fuzzy initial condition. Consider the fuzzy fractional heat equation

Example 6.1: Consider the fuzzy fractional heat equation

D V s t s V s t
s

s t

V s s V

t
� �

�

, 2
2

2

1
2

( , ) = 1
2

( , ) ,0 < <1, > 0,

( ,0) = , (0

� �

� � �

�
�

,, ) = (1, ) = 0,t V t�
(42)

where, � � � �

1( ) = [0.01 0.01,0.01 0.01 ]� � , � �[0,1]. By [29], the exact solution of Eq.(42) when � �, 1� :

V s t s et� �( , ; ) = ( ) ,1
2� � � (43)
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we can get the third order of the homotopy series by

(1 )[ ( , ; ; )] = ( )[ ( , ; ; ) 1
2

( ,, , 2
2

� �
�p D V s t p D V s t p s V s

t t
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; ; ) ]2
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(44)

where
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i

i i
i

   ( , ; ; ) = ( , ; ) ( , ; ( ); ) ,0
=1

3
� � � ��� (45)

 ( ; ) = ( ) .
=1

q K p
i

k

i
i� �� (46)

Now, substituting (45) and (46) into (44), and equating the coefficient of the same powers of p  and 
using the initial condition in (44), we have the following equations:

Zeroth order, p0:

D V s tt
� � �,

0 ( , ; ) = 0, (47)

hence, by applying the left fractional integrals ( )I� �,  for Eq. (47) we have:

V s t s� �0 1
2( , ; ) = .� � (48)

First order, p1:
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hence, by applying the left fractional integrals ( )I� �,  for Eq. (49) we have:
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The general equations for order k ≥ 2 of (42) constructed as follows:
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(51)

Now, for kth -order fuzzy fractional OHAM, we can construct the approximation solution as follows:

V s t K K V s t V s t Kk
i

k

i i� � … � � � �* 1 0
=1

, , ( ), , ( ); = ( , ; ) ( , , ( );� � � � �� � �� �� ). (52)

By substituting Eq.(52) into Eq.(42) we can obtain the residual error as follows:
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E s t D V s t s V s t
st
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*

2
2

*
2� �
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�

�
(53)

Tables (1) and (2) provide the comparison for the upper and lower solution and accuracy for fuzzy 
fraction heat equation (42) between the tenth-order OHAM method and eighteenth-order term of the 
Variational iteration method with different values ζ  and α = 0.5, ρ =1 , x = 0.8 and s = 0.05 .

Figure (1) shows the upper and lower three-dimensional fuzzy fractional solution for the heat equa-
tion (42), and Figures (2) and (3) are the residual error for lower and upper fuzzy fractional OHAM, 
respectively, at � �= 0.5, =1, = 0.05, [0,0.8]t s�  and � �[0,1].

Table 1: Comparison between OHAM and Variational Iteration method (VIM) [29] 
for lower solution and accuracy for, at � �= 0.5, =1 and t = 0.05 , s = 0.8 .

ζ V s t OHAM( , ; )ζ E s t OHAM( , ; )ζ V s t VIM( , ; )ζ E s t VIM( , ; )ζ
0 –0.00839894 –2.91032 � �10 6 –0.00839973 0.00000187

.2 –0.00671915 –2.32826 � �10 6 –0.006719784 0.000001496

.4 –0.00503936 –1.74619 � �10 6 –0.005039838 0.000001122

.6 –0.00335958 –1.16413 � �10 6 –0.003359892 0.000000748

.8 –0.00167979 –5.82065 � �10 6 –0.001679946 0.000000374

0 0 0 0

Table 2: Comparison between OHAM and Variational Iteration method (VIM) [29] 
for upper solution and accuracy for, at � �= 0.5, =1 and t = 0.05 , s = 0.8 .

ζ V s t OHAM( , ; )ζ E s t OHAM( , ; )ζ V s t VIM( , ; )ζ E s t VIM( , ; )ζ
0 0.00839823 6.9994 � �10 7 0.00839973 0.00000187

.2 0.00671859 5.59952 � �10 7 0.006719784 0.000001496

.4 0.00503894 4.19964 � �10 7 0.005039838 0.000001122

.6 0.00335929 2.79976 � �10 7 0.003359892 0.000000748

.8 0.00167965 1.39988 � �10 7 0.001679946 0.000000374

0 0 0 0

Figure 1: Upper and lower fuzzy fractional OHAM solution for (42), at 
� �= 0.5, =1, = 0.05, [0,0.8]t s�  and � �[0,1]
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For Eq. (42), at � �= 0.8, = 0.8, = 0.5, [0,0.5]t s�  and ζ = 0 . Figure (4) provides the triangular form 
fuzzy fractional five-order OHAM solution. Figure (5) shows the upper and lower solution. Figures (6) 
and (7) show the lower and upper residual error respectively.

Table 3: Five-order OHAM lower and upper solution and accuracy for Eq. (42) 
at � �= 0.8, = 0.8  and t s= = 0.5.

ζ V s t( , ; )ζ E s t( , ; )ζ V s t( , ; )ζ E s t( , ; )ζ
0 –0.00611042 3.78087 � �10 7 0.00611042 –3.78085 � �10 7

.2 –0.00488833 3.02469 � �10 7 0.00488833 –3.02468 � �10 7

.4 –0.00366625 2.26852 � �10 7 0.00366625 –2.26851 � �10 7

.6 –0.00244417 1.51235 � �10 7 0.00244417 –1.51234 � �10 7

.8 –0.00122208 7.56174 � �10 8 0.00122208 –7.5617 � �10 8

0 0 0 0

Figure 2: Residual error for lower fuzzy fractional OHAM for (42), at � �= 0.5, =1, = 0.05, [0,0.8]t s�  
and � �[0,1]

Figure 3: Residual error for upper fuzzy fractional OHAM for (42), at � �= 0.5, =1, = 0.05, [0,0.8]t s�  
and � �[0,1]
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Figure 4: Triangular form fuzzy fractional five-order OHAM solution for Eq. (42), at 
� �= 0.8, = 0.8, = 0.5, [0,0.5]t s�  and ζ = 0

Figure 5: Upper and lower fuzzy fractional five-order OHAM solution for Eq. (42), at 
� �= 0.8, = 0.8, = 0.5, [0,0.5]t s�  and ζ = 0

Figure 6: The residual error for lower fuzzy fractional five-order OHAM solution for Eq. (42), at 
� �= 0.8, = 0.8, = 0.5, [0,0.5]t s�  and ζ = 0

V
E

V
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Conclusion

The fundamental goal of this research is to find an approximate analytical solution to the fuzzy heat 
equation. The fuzzy fractional heat equation, which is based on generalized Caputo-Katugampola 
with two parameters, was solved using the OHAM. This study demonstrates that the recommended 
technique for regulating solution convergence is simple, adaptable, and practical. It also performs 
well in terms of accuracy as the order of approximations increases. Numerical examples, such as a 
linear fuzzy heat equation with a fuzzy initial condition, demonstrate the method’s potential through 
the numerical and graphical results with different orders of fractional derivatives that fulfill the cri-
teria of the fuzzy number in the shape of a triangular fuzzy number.

References
[1] Ahmed Gamal Atta, Waleed Mohamed Abd-Elhameed, Galal Mahrous Moatimid, and Youssri Hassan Youssri. Modal 

shifted fifth-kind chebyshev tau integral approach for solving heat conduction equation. Fractal and Fractional, 
6(11):619, 2022.

[2] Minh Duc Tran, Vu Ho, and Hoa Ngo Van. On the stability of fractional differential equations involving generalized 
caputo fractional derivative. Mathematical Problems in Engineering, 2020, 2020.

[3] Mohammud Foondun, Wei Liu, and McSylvester Omaba. Moment bounds for a class of fractional stochastic heat equa-
tions. The Annals of Probability, pages 2131–2153, 2017.

[4] Didier Dubois and Henri Prade. Towards fuzzy differential calculus part 3: Differentiation. Fuzzy sets and systems, 
8(3):225–233, 1982.

[5] Wen Yu and Raheleh Jafari. Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and 
Z-Number. John Wiley & Sons, 2019.

[6] Udita N Katugampola. New approach to a generalized fractional integral. Applied Mathematics and Computation, 
218(3):860–865, 2011.

[7] AK Alomari, Vedat Suat Erturk, Shaher Momani, and Ahmed Alsaedi. An approximate solution method for the 
fractional version of a singular bvp occurring in the electrohydrodynamic flow in a circular cylindrical conduit. The 
European Physical Journal Plus, 134(4):1–11, 2019.

[8] Ricardo Almeida, Agnieszka B Malinowska, and Tatiana Odzijewicz. Fractional differential equations with depen-
dence on the caputo–katugampola derivative. Journal of Computational and Nonlinear Dynamics, 11(6), 2016.

[9] AA Alderremy, Khaled M Saad, Praveen Agarwal, Shaban Aly, and Shilpi Jain. Certain new models of the multi 
space-fractional gardner equation. Physica A: Statistical Mechanics and Its Applications, 545:123806, 2020.

[10] Y Chalco-Cano, H Roman-Flores, and MA Rojas-Medar. Fuzzy differential equations with generalized derivative. In 
NAFIPS 2008-2008 Annual Meeting of the North American Fuzzy Information Processing Society, pages 1–5. IEEE, 
2008.

[11] Giangiacomo Gerla and Luisa Scarpati. Extension principles for fuzzy set theory. Information Sciences, 106(1-2):49–
69, 1998.

[12] Ravi P Agarwal, Dumitru Baleanu, Juan J Nieto, Delfim FM Torres, and Yong Zhou. A survey on fuzzy fractional 
differential and optimal control nonlocal evolution equations. Journal of Computational and Applied Mathematics, 
339:3–29, 2018.

Figure 7: The residual error for upper fuzzy fractional five-order OHAM solution for Eq. (42), at 
� �= 0.8, = 0.8, = 0.5, [0,0.5]t s�  and ζ = 0

E



Alshbeel A et al., Results in Nonlinear Anal. 7 (2024), 44–63. 62

[13] Esraa Magdy Abdelghany, Waleed Mohamed Abd-Elhameed, Galal Mahrous Moatimid, Youssri Hassan Youssri, and 
Ahmed Gamal Atta. A tau approach for solving time-fractional heat equation based on the shifted sixth-kind cheby-
shev polynomials. Symmetry, 15(3):594, 2023.

[14] Snehashish Chakraverty, Smita Tapaswini, and Diptiranjan Behera. Fuzzy arbitrary order system: fuzzy fractional 
differential equations and applications. John Wiley & Sons, 2016.

[15] Dulfikar Jawad Hashim, Ali Fareed Jameel, Teh Yuan Ying, AK Alomari, and NR Anakira. Optimal homotopy 
asymptotic method for solving several models of first order fuzzy fractional ivps. Alexandria Engineering Journal, 
61(6):4931–4943, 2022.

[16] Zaid Odibat and Dumitru Baleanu. Numerical simulation of initial value problems with generalized caputo-type frac-
tional derivatives. Applied Numerical Mathematics, 156:94–105, 2020.

[17] Vasile Marinca and Nicolae Herisanu. The optimal homotopy asymptotic method for solving blasius equation. Applied 
Mathematics and Computation, 231:134–139, 2014.

[18] Vangipuram Lakshmikantham and Ram N Mohapatra. Theory of fuzzy differential equations and inclusions. CRC 
press, 2004.

[19] Jiraporn Reunsumrit, Muhammad Sher, Kamal Shah, Nasser Aedh Alreshidi, and Meshal Shutaywi. On fuzzy partial 
fractional order equations under fuzzified conditions. Fractals, 30(01):2240025, 2022.

[20] Ebrahim Esmailzadeh, Davood Younesian, and Hassan Askari. Integral based methods. In Analytical Methods in 
Nonlinear Oscillations, pages 197–247. Springer, 2019.

[21] Thanin Sitthiwirattham, Muhammad Arfan, Kamal Shah, Anwar Zeb, Salih Djilali, and Saowaluck Chasreechai. 
Semi-analytical solutions for fuzzy caputo–fabrizio fractional-order two-dimensional heat equation. Fractal and 
Fractional, 5(4):139, 2021.

[22] NA Abdul Rahman and Muhammad Zaini Ahmad. Solving fuzzy fractional differential equations using fuzzy sumudu 
transform. Journal of Nonlinear Sciences and Applications, 10(1):2620–2632, 2017.

[23] S Siah Mansouri and N Ahmady. A numerical method for solving nth-order fuzzy differential equation by using char-
acterization theorem. Communication in Numerical Analysis, 2012:12, 2012.

[24] Zahra Alijani, Dumitru Baleanu, Babak Shiri, and Guo-Cheng Wu. Spline collocation methods for systems of fuzzy 
fractional differential equations. Chaos, Solitons & Fractals, 131:109510, 2020.

[25] Hamzeh Zureigat, Ahmad Izani Ismail, and Saratha Sathasivam. Numerical solutions of fuzzy fractional diffusion 
equations by an implicit finite difference scheme. Neural Computing and Applications, 31(8):4085–4094, 2019.

[26] Xiaobin Guo and Dequan Shang. Approximate solution of th-order fuzzy linear differential equations. Mathematical 
Problems in Engineering, 2013, 2013.

[27] Fazle Mabood, Waqar A Khan, and Ahmad Izani Ismail. Optimal homotopy asymptotic method for flow and heat trans-
fer of a viscoelastic fluid in an axisymmetric channel with a porous wall. PLoS One, 8(12):e83581, 2013.

[28] RK Thambynayagam. The diffusion handbook: applied solutions for engineers. (No Title), 2011.
[29] N Herisanu, V Marinca, and Gh Madescu. An analytical approach to non-linear dynamical model of a permanent 

magnet synchronous generator. Wind Energy, 18(9):1657–1670, 2015.
[30] Ngo Van Hoa, Ho Vu, and Tran Minh Duc. Fuzzy fractional differential equations under caputo–katugampola frac-

tional derivative approach. Fuzzy Sets and Systems, 375:70–99, 2019.
[31] Luciana T Gomes and Laécio C Barros. A note on the generalized difference and the generalized differentiability. 

Fuzzy Sets and Systems, 280:142–145, 2015.
[32] AF Jameel, Nidal Anakira, AK Alomari, I Hashim, and Shaher Momani. A new approximation method for solving 

fuzzy heat equations. Journal of Computational and Theoretical Nanoscience, 13(11):7825–7832, 2016.
[33] Lotfi Asker Zadeh. The concept of a linguistic variable and its application to approximate reasoningâ€”i. Information 

sciences, 8(3):199–249, 1975.
[34] Ekhtiar Khodadadi, Mesut Karabacak, and Ercan Çelik. Solving fuzzy fractional riccati differential equations by the 

variational iteration method. International Journal of Engineering and Applied Sciences, 2(11):35–40, 2015.
[35] Meriem Araour and Abdelaziz Mennouni. A new procedures for solving two classes of fuzzy singular integro-dif-

ferential equations: Airfoil collocation methods. International Journal of Applied and Computational Mathematics, 
8(1):1–23, 2022.

[36] AK Alomari. Homotopy-sumudu transforms for solving system of fractional partial differential equations. Advances in 
Difference Equations, 2020(1):1–16, 2020.

[37] N Ratib Anakira, AK Alomari, and Ishak Hashim. Numerical scheme for solving singular two-point boundary value 
problems. Journal of Applied Mathematics, 2013, 2013.

[38] M Shahidi and A Khastan. Solving fuzzy fractional differential equations by power series expansion method. In 2018 
6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), pages 37–39. IEEE, 2018.

[39] S Siah Mansouri and N Ahmady. A numerical method for solving nth-order fuzzy differential equation by using char-
acterization theorem. Communication in Numerical Analysis, 2012:12, 2012.

[40] Saurabh Kumar and Vikas Gupta. An application of variational iteration method for solving fuzzy time-fractional 
diffusion equations. Neural Computing and Applications, 33:17659–17668, 2021.

[41] YH Youssri, WM Abd-Elhameed, SM Sayed, et al. Generalized lucas tau method for the numerical treatment of the 
one and two-dimensional partial differential heat equation. Journal of Function Spaces, 2022, 2022.

[42] Ali Ahmadian, Soheil Salahshour, Dumitru Baleanu, H Amirkhani, and Robiah Yunus. Tau method for the numerical 
solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xylose. 
Journal of Computational Physics, 294:562–584, 2015.



Alshbeel A et al., Results in Nonlinear Anal. 7 (2024), 44–63. 63

[43] Vasile Marinca, Nicolae Herisanu, and Iacob Nemes. Optimal homotopy asymptotic method with application to thin 
film flow. Open Physics, 6(3):648–653, 2008.

[44] Ali Ahmadian, Mohamed Suleiman, Soheil Salahshour, and Dumitru Baleanu. A jacobi operational matrix for solving 
a fuzzy linear fractional differential equation. Advances in Difference Equations, 2013(1):1–29, 2013.

[45] Mcsylvester Ejighikeme Omaba. On a mild solution to hilfer time-fractional stochastic differetial equation. J. Fract. 
Calc. Appl, 12:1–10, 2021.

[46] Daniela S Oliveira and Edmundo Capelas de Oliveira. On a caputo-type fractional derivative. Advances in Pure and 
Applied Mathematics, 10(2):81–91, 2019.

[47] Lotfi Asker Zadeh, George J Klir, and Bo Yuan. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers, volume 6. 
World Scientific, 1996.

[48] Manal Alqhtani, Mohamed M Khader, and Khaled Mohammed Saad. Numerical simulation for a high-dimensional 
chaotic lorenz system based on gegenbauer wavelet polynomials. Mathematics, 11(2):472, 2023.


