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1. Introduction

Fractional calculus is a branch of classical mathematics concerned with the generalization of integer 
order differentiation and integration of a function to non-integer order; it is a strong and expanding 
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topic in theory as well as in its found several applications in science and engineering during the last 
few decades. See [1, 3–6, 11, 21, 41] and the references therein for some important results in the 
theory of fractional calculus and fractional differential equations. The authors of [7, 12, 14–16, 18, 31, 
32, 36, 43] investigated the existence, uniqueness and stability results for several problems of differ-
ential and integral equations and inclusions.

The literature contains several definitions of fractional operators, and determining the importance 
of one over the other can be confusing. To address this, we can consider general operators that encom-
pass various special kernels and differential operators. By selecting specific kernels and differential 
operators, we can obtain classical fractional integrals and derivatives. For instance, the ψ -Caputo 
fractional operator [10] can be reduced to the Riemann–Liouville or Hadamard fractional derivative 
by changing the kernel function ψ . Despite the unknown kernel involving ψ , we can deduce proper-
ties of the fractional operator. As a result, the ψ -Caputo fractional operator is considered a generaliz-
ing operator. Additionally, the ψ -Caputo fractional derivative maintains the physical interpretation 
of the Caputo derivative, making it advantageous for applications in physics and engineering. For 
some recent developments on the ψ -Caputo fractional operator, see the paper [2, 11, 40]

The fractional derivative of an unknown function hybrid with nonlinearity is used in hybrid dif-
ferential equations. This class of equations derives from several fields of practical mathematics and 
physics, such as the deflection of a curved beam with a constant or variable cross-section, a three-
layer beam, electromagnetic waves, or gravity-driven flows, neural networks and so forth. For more 
details on the subject, we recommend these publications [17, 23, 25–27, 33–35, 38, 39] to the readers.

Periodic boundary conditions are widely used in physics, engineering, and biological models to 
effectively model large systems by modeling a smaller unit cell that replicates regularly in space [24]. 
This technique allows for the study of large systems’ behavior under various circumstances and over 
time without needing excessive computational resources. Periodic boundary conditions have been 
used in biological applications to investigate the behavior and interactions of membranes, proteins, 
and DNA with other molecules. Researchers have been able to understand the structure, dynamics, 
and interactions of Periodic boundary conditions with different solutes, such as ions and drugs, by 
using them in models of lipid bilayers. Similarly, Periodic boundary conditions have aided in the 
research of protein folding and stability, as well as the behavior of DNA under different conditions. 
See [37] for more information.

While solving differential equations precisely is difficult or impossible in several situations, along 
with nonlinear analysis and optimization, we investigate approximate solutions. It is important to 
stress that only stable estimates are acceptable. As a result, numerous methodologies for stability 
analysis are employed such as Lyapunov and exponential stability. Ulam, a mathematician, first 
raised the stability issue in functional equations in a 1940 lecture at Wisconsin University. S.M. Ulam 
posed the question, "Under what conditions does an additive mapping exist near an approximately 
additive mapping?" [42]. The succeeding year, Hyers addressed Ulam’s issue for additive functions 
defined on Banach spaces in [19]. Rassias [28] showed the presence of unique linear mappings close 
to approximation additive mappings in 1978, generalizing Hyers’ results. In comparison to Lyapunov 
and exponential stability analysis, Ulam-Hyers stability analysis focuses on the behavior of a func-
tion under perturbations, rather than the stability of a dynamical system or equilibrium point. The 
authors of [8, 9, 36] investigated the Ulam stabilities of fractional differential problems with different 
conditions. Significant attention has been paid to the research of the Ulam-Hyers and Ulam-Hyers-
Rassias stability of all types of functional equations, as evidenced by the book of Abbas et al. [1], 
and the work of Luo et al. [22] and Rus [29], which explored the Ulam-Hyers stability for operatorial 
equations.

In [40], Suwan et al. discussed two nonlinear fractional differential hybrid systems subjected to 
periodic boundary conditions. The first fractional nonlinear system is given by
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based on Dhage’s fixed point theorem.

Using Banach’s contraction mapping principle and Leray–Schauder nonlinear alternative fixed 
point theorem, Abbas [2] proved some existence and uniqueness of solutions of the following bound-
ary value problem for coupled systems of ψ -Caputo fractional differential equations with four-point 
boundary conditions:
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continuous functions.
Motivated by the above papers, we discuss the following nonlinear fractional differential hybrid 

system subject to periodic boundary conditions of the form:
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where c
a
i �

� �,  are the ψ -Caputo fractional derivatives of order �i � (1,2) , 0 < <a b, f C a bi � � �([ , ] , )    
and g C a bi ∈ ([ , ], {0}) \ . Our work in this paper is a direct continuation of the research mentioned in 
[40], where we build on the existing framework and by taking the results of [2] into considerations, 
to address the existence and Ulam stability results for the coupled system (1) by applying Banach’s 
contraction principle and Scheafer’s fixed point theorem.

The following is how this paper is organized. Section 2 contains definitions and lemmas that will be 
utilized throughout the work. Section 3 derives the existence and uniqueness results for the coupled 
system (1). The fourth section discusses the Ulam-Hyers stability results for our problem. In the final 
part, we present an example to demonstrate our main results.

2. Preliminaries

Let � �C J1( , )  be an increasing differentiable function such that � �� ( ) 0t , for all t J∈ . Now, we start 
by defining ψ -fractional integral and derivative as follows:

Definition 2.1: ([20]) The ψ –Riemann-Liouville fractional integral of order α > 0  for an integrable 
function � : J �   is given by
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Definition 2.2: ([10]) For n n�1 < <�  (n∈N� and � �, ( , )�C Jn  , the ψ -Caputo fractional deriva-
tive of a function ϖ  of order α  is given by
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From the above definition, we can express ψ -Caputo fractional derivative by formula
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Let us recall the following existence result of solution of the linear hybrid fractional periodic system 
(see, [40]).
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Lemma 2.6: The solution of the periodic hybrid system
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Solving in c0 and c1, we obtain their values. This finishes the proof.

Corollary 2.7: By the precedent theorem, we can deduce that the solution of the periodic hybrid non-
linear system (1) is given by
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The system will be fully nonlinear system if we let g t g t t ti i( ) = ( , ( ), ( ))1 2ϖ ϖ  by which we can obtain 
some results such as applying Banach fixed point theorem with some specific conditions. The exis-
tence results are obtained by using many fixed point theorems applied on the integral nonlinear 
equation (5).

3. Mains Results

By taking α α α1 2= = , we will rewrite the coupled system (1) in the following simple form:

c
a

c
a

t g t f t t t

t g t




�

�

� �

� �

� � �

�

,
1 1 1 1 2

,
2 2

( ( ) ( )) = ( , ( ), ( )),

( ( ) ( )) = ff t t t

a b a b ii i i

2 1 2( , ( ), ( )), (1,2),

( ) = ( ), ( ) = ( ), =1,2.

� � �

� � � �

�

� �

��

�
��

�
�
�

(6)

Remark 3.1: A solution of the coupled system (6) is a function ϖ ϖ ϖ*
1 2= ,( )  where ϖ ϖ1 2,  are continu-

ous functions satisfying the problem (6).
For i =1,2, we set

d g b g a g b a g a b g a g b g ai i i i i i i i= ( ) ( ) ( ) ( ) ( ) ( ) ( ) '( ) '(( )( ) (� � � � � �� � )) ( ) ( ) ( ) ,

= ( ) ( ) ( ) ( ) ( ) ,

=*

g b b a

A g a g a b g b a
d

A

i

i
i i i

i

i

)( )
( )

� �
� �

�
� � �

gg a g b g b g a
d

B g a b
d

A

i i i i

i

i
i

i

i
i

( ) '( ) ( ) '( ) ,

= ( ) ( ) ,

= 1
1

(

�

�

�
�

�

�

�
�

�( )
AA b a B g a g bi i i i
* ( ) ( ) )

1
( ( ) ( ) )

.
( )
( ) ( )
� �

� �

�

�
�

��

�

�
�

�

�

�
�

�

�

�
�
�
�
�

� �

���

�

�
�
�
�
�
�
�



Matar MM et al., Results in Nonlinear Anal. 6 (2023), 13–29. 19

Let � = C C�  be the product Banach space which we equiped with the norm ( )� � � �1 2 1 2, = ,
� C C�  

where C  denotes the Banach space of all continuous functions from J  into .
Set X g C ic

a i i= , ( ) , =1,2 .1 2
,{( ) }� � �� �� ��� with 

Let T  be the operator defined from X  into X  by:

T t T t T t t J( ) ( ( ) ( ) )� � � � � �1 2 1 1 2 2 1 2, ( ) = , ( ), , ( ) , ,� (7)

where

T t
g t

H t ii
i

i( ) ( )ϖ ϖ ϖ ϖ1 2 1 2, ( ) = 1
( )

, ( ), =1,2,

and

H t f t t t A A t ai a i i i a
( ) ( )� � � � � �� �

1 2
,

1 2
*, ( ) = ( , ( ), ( )) ( ( ) ( ) ) � � � � ��

� � � �

� � � �

� � � �

,
1 2( , ( ), ( ))

( ( ) ( ) ( ) ( ) ( ) (

f b b b

B b t g a t a g b
i

i i i( ) ( ) ))) ( , ( ), ( )),1,
1 2

a if b b b�
�� � � �

where f Ji : � � �    are continuous function such that  f ii < , =1,2.��  For i =1,2 we assume that 
fi  and gi  satisfy the following assumptions:
• The functions gi  are continuous on J  and there exists a positive real numbers M M1 2,  such that

g t M and g t M for all t J1 1 2 2( ) , ( ) , .� � �

• There exist ki > 0 , such that

f t x y f t x y k x x y yi i i( , , ) ( , , ) ,1 1 2 2 1 2 1 2� � � � ��� ��

for all t J∈ , and x y x y1 1 2 2, , , .∈

Remark 3.2: In all what follow, we will write ϖ  to indicate the ordered couple ( )ϖ ϖ1 2, .

Lemma 3.3: The operator T  given in (7) is well defined.

Proof. We will prove that T1 ,ϖ  T2ϖ  are continuous functions on J  and
c

a
c

a
T g T g C J � � �� � � �� �,
1 1 1

,
2 2 2( ), ( ) .( )

Let ( )tn  be a sequence in J  which converges to t0  in J. Then,

H t H t f t t t

A A t
n a n n n

n

1 1 0
,

1 1 2

1 1
*

( ) ( ) = [ ( , ( ), ( ))

( ( )

� � � �

�

� ��

� � �

�

( �� � �

� � �

� �( ) ) ( , ( ), ( ))

( ( ) ( ) ( ) ( )

,
1 1 2

1 1

a f b b b

B b t g a t
a

n n

)

( ) (

 �

� � � ��

�

�
�

�

� � �

�

� �

� �

( ) ( )) ( , ( ), ( ))]

[ ( , (
1

1,
1 1 2

,
1 0 1 0

a g b f b b b

f t t
a

a

) 

 )), ( )) ( ( ) ( ) ) ( , ( ), ( ))

(
2 0 1 1

*
0

,
1 1 2

1

� � � � �� �t A A t a f b b b

B
a

� � �

�

�( ) 

(( ) ( )� � � � � �� �( ) ( ) ( ) ( ) ( ) ( )) ( , ( ),0 1 0 1
1,

1 1 2b t g a t a g b f b b
a

� � � �
� (( ))].b

We have

( ( ) ( ) ( ) ( ) ( ) ( )) ( ( ) ( ) ( )1 1 0 1( ) ( ) ( ) (� � � � � �b t g a t a g b b t g an n� � � � � � �� �

� � � �

( ) ( ) ( ))
= ( ) ( ) ( ) ( ) ( ) ( )

0 1

1 0 1 0

t a g b
g a t t g b t tn n t

�

� � � �

)
( ) ( )

nn t� 0
0,
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and

[( ( ) ( ) ) ( ( ) ( ) )] = ( ) (1 1
*

1 1
*

0 1
*A A t a A A t a A t tn n� � � � � � �( ) ( ) (� � � � � � 00

0
) 0.) �

�tn t

It is easily checked that

 
a n n n a
f t t t f t t t

f
� ��

�

� � � �� � � �,
1 1 2

,
1 0 1 0 2 0

1

( , ( ), ( )) ( , ( ), ( ))

 

��

�

( )
( )( ( ) ( ))

( )
( )( ( )

�
� � �

�
� � �

�

t

tn
n

a

t
n

s t s ds

f s t

0

1

1 0

�

�

� �

� � �

�

  (( ))
( )

( )( ( ) ( ))s ds f s t s ds
a

t� �

�
� � �� �� � ��1 1 0

0
1 . 

�

Therefore,

 
a n n n a
f t t t f t t t

f
� ��

�

� � � �� � � �,
1 1 2

,
1 0 1 0 2 0

1

( , ( ), ( )) ( , ( ), ( ))

 

�� �( )
( ( ) ( ))

( )
( ( ) ( )) ( ( ) ( )

�
� �

�
� � � �� �

�
� �

�
� � �

1 1
[0

1
0t t f t a t an n

  ))� ],

which implies that

 
a n n n a tn t
f t t t f t t t� � �

� �� � � �� � � �,
1 1 2

,
1 0 1 0 2 0( , ( ), ( )) ( , ( ), ( ))

00
0.

Consequently,

H t H tn tn t1 1 0
0

( ) ( ) 0,� �� �
�

that is H C J1 .� � ( )  From assumption ( )1S , we deduce that T1ϖ  is continuous on J. On the other hand,
c

a
c

a
T t g t H t f t t t � �

� � � �� � � �,
1 1

,
1 1 2( ( ) ( )) = ( ( )) = ( , ( ), ( )),

that is c
a
T g C J � �� � �,
1 1( ) .( )

In the same way we prove that T T g C Jc
a2
,

1 1, ( )� �� � � � ( ) . Therefore, ( )T T1 2,� � ��  and 
c

a i iT g C J i � �� � �, ( ) , =1,2( ) . The proof is completed.
The following theorem present our first main existence and uniqueness result.

Theorem 3.4: If the hypotheses ( )1S  and ( )2S  are hold, and if

0 < < ( ( ) ( )) ,1 1

1

2 2

2

k
M

k
M

b a� �
�

�

�
�

�

�
� � �� � � (8)

then the coupled system (6) has a unique solution.

Proof. Our main tool is Banach’s contraction principle. We prove that T  is a contraction. Indeed, let 
� �and �C J( ).  For any t J∈ , we have

H t H t f t t t f t t
a a1 1
,

1 1 2
,

1 1 2( ) ( ) ( , ( ), ( )) ( , ( ), (� � � � � �� � � �� � �� �  tt

A A t a f b b b f b
a a

))

( ( ) ( ) ) ( , ( ), ( )) ( ,1
* ,

1 1 2
,

1� � � �� �( )� � � �� � � �  �� �

� � � �

�

1 2

1 1 1

1

( ), ( ))

( ( ) ( ) ( ) ( ) ( ) ( ))

b b

B b t g a t a g b

a

� �� � � �� �
� �

� ,,
1 1 2

1,
1 1 2( , ( ), ( )) ( , ( ), ( )) .� � �� � � �f b b b f b b b

a
� �

�



Matar MM et al., Results in Nonlinear Anal. 6 (2023), 13–29. 21

We observe the following

sup
(t J a a

f t t t f t t t k
�

� �� � � � � �� � � �,
1 1 2

,
1 1 2

1( , ( ), ( )) ( , ( ), ( ))
� ��

� � � �

� �

�

� �

�
� �

� �
�

�

1
( ) ( ) ,

( ( ) ( ) ) (1 1
* ,

1

)
( )

sup ( )

b a

A A t a f

X

t J a

 

 bb b b f b b b

k A A b a

, ( ), ( )) ( , ( ), ( ))

1
( ) ( )

1 2 1 1 2

1 *

� � � �

�
� �

�

�
�

� �� � ��( )
(( )

sup ( ) ( )

� � � �

� � � �

�( ) ( ) ,

( ( ) ( ) ( ) ( ) ( )1 1

b a

B b t g a t a g

X

t J

� �

� � �
�

 

11

1,
1 1 2 1 2

1

( ))

( , ( ), ( )) ( , ( ), ( ))

b

f b b b f b b b

k
a

� �

�

�
�� � � � � �

�
�

�( )
( (( ) ( ) ( ) ( ) ,1 1 1b a B g a g b X� �� � �� � ��)  

and

 H H k
A A b a B g a g

C1 1 1
1 1

*
1 1 11

1
( ( ) ( ) )

1
( ( )

� �
�

� �

�
� �

�
�

� �

�
�

�

� �( )
( )
( )

(( ) )

( ( ) ( )) .

b

b a X

�( )�

� � � ��

�

�

�
�

�

�

�
�

� � � 

We conclude that

   H H k b aC X1 1 1 1( ( ) ( )) .� � � � � ��� � � �� (9)

From inequality (9) and the assumption ( )1S  we obtain

T T k
M

b aC X1 1
1 1

1
( ( ) ( )) .� � � � � ��� � � �

�
  (10)

Following the same steps, we get

T T k
M

b aC X2 2
2 2

2
( ( ) ( )) .� � � � � ��� � � �

�
  (11)

Setting � � � �:= ( ( ) ( )) ,1 1

1

2 2

2

k
M

k
M

b a� �
�

�

�
�

�

�
� �  and taking into account (10), (11) and (8), we obtain

T T T T T TX C C X� � � � � � � � �� � � � � �= ,1 1 2 2  

with 0 < <1.η  Then, T  is a contraction and the proof is completed.

Remark 3.5: If in addition we assume that there exists y y J1 2, ∈  such that f y1 1,0,0 0( ) ≠  and 
f y2 2 ,0,0 0,( ) ≠  then the solution of the problem (6) is non trivial.

Our second main result is to prove that the problem (6) has at least a non trivial solution using a 
variant of Schaefer’s fixed point theorem.

Assume the following hypothesis:
• There exist �ki i, > 0 , such that

f t x y k x yi i i( , , ) ( ) ,� � �� 

for all t J∈ , and x y, .∈
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Let γ i i; =1,2 be two positive constants such that

�
� �

�
� � �

�

i
i

i i i i i
b a
M

A A b a B g a g b= ( ) ( )
1

[1 ( ) ( ) ( ) ( )*( )
( )

( )�
�

� � � � �
�

�� �]; =1,2.i

Theorem 3.6: Assume that the hypotheses ( )1S  and ( )3S  hold. If

max ( ) ( ) ( ) , <1,1 1

1

2 2

2
1 1 2 2

� �
� �k

M
k
M

b a k k� �
� �� � �

�
�
�

��

�
�
�

��
� � � �

�
(12)

then problem (6) has at least a non trivial solution.

Proof. The proof is established in some steps.

Step 1: The continuity of the operator T  follows from the continuity of the function fi  and gi . So, we 
need demonstrate the compactness of T .

Let D X rX= ;� �� �� � be a subset of X  where

r
M M

b a

k
M

k
M

�
�

�

�
�

�

�
� �� �

� �
�

�
��

�

�
��

 1 1

1

2 2

2

1 1

1

2 2

2

( ) ( )

1

� �

� �

� �
�

� �
�� �

�( ) ( )
.

b a�� �

We have to prove that T  maps the bounded set D  into bounded set D. Let � �D , then we have

H t f t t t A A t a
a a1
,

1 1 2 1 1
* ,( ) = ( ( , ( ), ( ))) ( ( ) ( ) )� � � � �� � � � � �� � �( ) (( ( , ( ), ( )))

( ( ) ( ) ( ) ( ) ( ) ( ))
1 1 2

1 1 1

f b b b

B b t g a t a g b

� �

� � � �� � � �( ) ( ) 
a

f b b b�
�� � � �1,

1 1 2( ( , ( ), ( ))).

For all t J∈ , by hypothesis ( )3S  we have

H k b aC X1 1 1 1 ( ) ( ) ,� � � � �� � �� ( )( )�
  

which implies

T
M

k r b aC1
1

1
1 1 ( ) ( ) ,� � � �� � �

� ( )( )� 

and

T
M

k r b aC2
2

2
2 2 ( ) ( ) .� � � �� � �

� ( )( )� 

Therefore,

T k
M

k
M

b a r
M MX� � � �� �

�

�
��

�

�
�� � � �

�

�
�

�� �
1 1

1

2 2

2

1 1

1

2 2

2
( ) ( )� � � �( )  

��
� �( )� � �( ) ( ) ,b a (13)

and by (12) we have

T rX� � .
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That is T D D( ) ⊂ .

Step 2: We will prove that T D( )  is an equicontinuous set of X .
Let t t J, 0 ∈  with t t0 < , and � �D  we have,

T t T t
g t

f t t t A A t
a1 1 0

1

,
1 1 2 1 1

*( ) ( ) = 1
( )
[ ( , ( , ( )) ( ( )� � � � �� �� � � �� ( �� � �

� � � �

� �( ) ) ( , ( ), ( ))

( ( ) ( ) ( ) ( )

,
1 1 2

1 1

a f b b b

B b t g a t

a
)

( ) (

 �

� � � � (( ) ( )) ( , ( ), ( ))]

1
( )

[ ( ,

1
1,

1 1 2

1 0

,
1 0

a g b f b b b

g t
f t

a

a

) 



�
�

��

� �

� �

� �

�� � � �

� �

� �
1 0 2 0 1 1

*
0

,

1 1 2

( ), ( )) ( ( ) ( ) )

( , ( ), (

t t A A t a

f b b b
a

� � �

�

�( ) 

)))
( ( ) ( ) ( ) ( ) ( ) ( )) ( ,1 0 1 0 1

1,
1 1� � � � �

�B b t g a t a g b f b
a

( ) ( )� � � � �� � (( ), ( ))].2b b�

Thus

T t T t
g t

f t t t
g ta a1 1 0

1

,
1 1 2

1 0

,( ) ( ) = 1
( )

( , ( ), ( )) 1
( )

� � � �� � � �� �� �  ff t t t

k r g t g t
M

t

1 0 1 0 2 0

1 1 1 0 1

1
2

( , ( ), ( ))

( )| ( ) ( )|
1

� �

�
��

� �
�

� 
�( )

( ( )) ( )) ( ( ) ( ))� � �� � �� �a t a0 .

Therefore, we can obtain

T t T t
t t1 1 0

0
( ) ( ) 0.� �� �

� (14)

The same process lead to

T t T t
t t2 2 0

0
( ) ( ) 0.� �� �

� (15)

Then, T D� � is equicontinuous in X .  Since T  is a continuous operator which maps bounded sets of X  
into uniformly bounded and equicontinuous sets in X  therefore, by Ascoli-Arzela theorem it follows 
that T X X: →  is a compact operator.

Step 3: In order to apply Schaefer’s fixed theorem, it remains to prove that the set

� = : = , 0 < <1 .{ }� � � � ��X T is bounded

Let � ��. Hence � � �T1 1=  and � � �T2 2= .
Since λ <1  and using ( ),( )1 3S S  and (12), we have

� � �
� � �

�
� �

�

1 1
1 1

1
1 1

*=
( ) ( ) ( )

1
1 ( ) ( )C C

XT
k b a

M
A A b a�

� �

�
� � �

�  ( )
( )

(
�

)) ( )� ��
�

�
�� B g a g b1 1 1( ) ( ) ,

and

� � �
� � �

�
� �

�

2 2
2 2

2
2 2

*=
( ) ( ) ( )

1
1 ( ) ( )C C

XT
k b a

M
A A b a�

� �

�
� � �

�  ( )
( )

(
�

)) ( )� ��
�

�
�� B g a g b2 2 2( ) ( ) .
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Thus

� � �
� � �

�
� �

�

X C C
Xk b a
M

A A b a=
( ) ( ) ( )

1
1 ( ) (1 2

1 1

1
1 1

*� �
� �

�
� � �

�  ( )
( )

(
�

)) ( ) ( )

( ) ( ) ( )
1

1

1 1 1

2 2

2

) ( )

( )
( )

� ��
�

�
�

�
� �

�
�

�

� � �

�

�

B g a g b

k b a
M

AX
� 

� 22 2
*

2 2 2

1 1 2 2 1

( ) ( ) ( ) ( )

( ) (

� � � ��
�

�
�

� � �

A b a B g a g b

k k X

( ) ( )� � �

� � �� �  �� �1 2 2 ).�

Thus, by (12) we have

�
� �
� �X k k

�
�

� �
 1 1 2 2

1 1 2 21 ( )
,� �

that is

� �� ,

where ρ  is a positive number satisfying

�
� �
� �

�
�

� �
 1 1 2 2

1 1 2 21 ( )
.� �k k

Consequently, Scheafer’s fixed point theorem gives the solution of (6).

4. Ulam-Hyers Stability

Following [13, 30], we present the generalized Ulam-Hyers stability and the Ulam-Hyers stability of 
the problem (6).

Definition 4.1: ([13, 30]) The fractional boundary value problem (2) is generalized Ulam-Hyers 
stable if there exists � �f fC� � �� �( , ), 0 = 0,   such that for each ε > 0 and for each solution v C∈  of the 
inequality

| ( ( ) ( )) ( )| ,,c
a

t g t f t t J � � � �� � � � ,

there exists a solution � �C  of the fractional boundary value problem (2) with

� � � �( ) ( ) ( )t t t Jf� � �, .

If � � �f e e( ) = > 0,with  then the fractional boundary value problem (2) is Ulam-Hyers stable.

Theorem 4.2: If all assumptions of Theorem (3.4) are met, then problem (6) is Ulam-Hyers stable.

Proof. Let ε  be a real positive number and ϖ  the unique solution of the problem (6). Let v v v X= ,1 2( )∈  
be a sollution of the coupled system of inequalities

| ( ( ) ( )) ( , ( ), ( ))| , 1,2

|

,
1 1 1 1 2

c
a

c
a

v t g t f t v t v t t J



�

�

� � � �� � � �, ( )

�� � � �,
2 2 1 1 2( ( ) ( )) ( , ( ), ( ))| , 1,2

( ) = (

v t g t f t v t v t t J

v a vi i

� � � �, ( )

bb a b

v a v b a b i
i i

i
'

i
'

i
'

i
'

) = ( ) = ( ),

( ) = ( ) = ( ) = ( ), =1,2,

� �

� �

�

�

�
�
�
�

�

�
��
�
�

(16)



Matar MM et al., Results in Nonlinear Anal. 6 (2023), 13–29. 25

where � � �= ,1 2( )�X  is the unique solution of the coupled system (6). then, by using

v a v b a b v a v b a bi i i i i i i i( ) = ( ) = ( ) = ( ), ( ) = ( ) = ( ) = ( )� � � �� � � � (17)

and by integrating the inequalities (18) and (19) bellow

| ( ( ) ( )) ( , ( ), ( ))| , 1,2,
1 1 1 1 2

c
a

v t g t f t v t v t t J � � � � �� � � �, ( ) (18)

| ( ( ) ( )) ( , ( ), ( ))| , 1,2,
2 2 1 1 2

c
a

v t g t f t v t v t t J � � � � �� � � �, ( ) (19)

we obtain

v t T v t
g t M

b a

v

a1 1
1

,

1

2

( ) ( ) 1
| ( )|

(1) 1
1

( ) ( ) ,

(

� � �
�

���
�

� � �� � �
�( )

( )

tt T v t
g t M

b a
a

) ( ) 1
| ( )|

(1) 1
1

( ) ( ) .2
2

,

2
� � �

�
���

�
� � �� � �

�( )
( )

On the other hand,

v v Tv Tv v T v v T v Tv T

M M

X X X X X X� � � � � � � � � � �

� �
�

�
�

�

�
�

� � �( )

1 1 1
1 1 2 2

1 2 �(��
� � � � ��

�
� � �

1
( ) ( ) ,

)
( )b a v X

where we have used assumptions of Theorem (3.4) and the fact that the operator T  is a contraction. 
Therefore,

( ) ( )
( )

1 1 1 ( ) ( )
1

,
1 2

� � � �
�

�
�

�

�
�

�
�

� �
� �

�
�

�

v
M M

b a
X �

since 0 < <1,η  then

v
M M

b a
X� � �

�

�
�

�

�
�

�
� �

�
� �

� �
�

�1 1 ( ) ( )
1 1

.
1 2

( )
( ) ( )�

Consequently, there exists a positive continuous function � �fi
( )  such that

v X fi
� �� � �( ), (20)

with � �
� �

� �
�

�

fi M M
b a( ) ( )

( ) ( )
= 1 1 ( ) ( )

1 11 2
�

�

�
�

�

�
�

�
� ��

 and φfi ( )0 = 0.  Then the problem (6) is Ulam-Hyers stable.

5. Applications

We close this paper by the following example.

Example 5.1: Consider the following problem:

c
a i i i

i i

t g t f t t t t J � �
1
2
,

1 2( ( ) ( )) = ( , ( ), ( )), := [0,1],

(0) =

�
� � �

� � ((1), (0) = (1), =1,2,� �

�
�
�

�� � �i i i
(21)

where α α1 2= = 1
2

, a = 0, b =1 .
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For t J� �, ,1 2� �  , set

f t t
e

f t

t1 1 2
1 2

2
1

2 1 2

( , , ) = ( )(1 )
105 (2 | |)

,

( , , ) =

� �
� �

�

� �

sin

co

� �
�� �

ss

( sin )

( )(1 )
275 (1 | |)

,

( ) = 2
133

5 ( ) 3 ,

1 2
4

1

1
2

t
e

g t t t

t
� �
�

� �

� �

� �
�

and

g t t t2
3( ) = 1

233
3 ( ) 2 .( cos )+ +

It is clear that the functions fi  and gi  are continuous and that g ti ( ) 0≠  for all t∈[0,1]. And, since

g t and g t for all t J1 2( ) 9 2
133

, ( ) 6
233

, .� � �

then the hypothesis ( )1S  is verified with M1 =
9 2
133

 and M2 =
6
233

. For t J∈  and x y x y1 1 2 2, , , ∈ , we 

have

f t x y f t x y
e
x x y y1 1 1 1 2 2 1 2 1 2( , , ) ( , , ) 1

105
,� � � � ��� ��

and

f t x y f t x y
e

x x y yi2 1 1 2 2 3 1 2 1 2( , , ) ( , , ) 1
278

.� � � � ��� ��

Thus, the hypothesis ( )2S  is satisfied with k
e1 =

1
105

 and k
e2 3= 1

278
.

Further, we have

d1
2

= 2 (1) 2
133

30( (1) 1)
17689

16(4 5 (1))
17

��

�
��

�

�
�� �

�
�

�sin cos sin
6689

0.00442798229593582,

= 2 (1)
233

3(11
2

2

�

�
�

�

�
� � �

��

�
�

�

�
� �d cos ��

�
��

�
�

�

�
� �

sin cos(1))
54289

10 2 (1)
54289

0.000476120728675036,

AA
d

A

1
1

=

3 2
133

3 2
133

4 2 (1) 2
133

0.141061004750783,
�

��

�
��

�

�
��
�

sin

22
2

1
*

=

3
233

3
233

5 (1)
233 0.294834109281285,

=

30(

�
��

�
�

�
�
�
� �

cos

d

A

ccos sin(1) 1)
17689

16(4 5 (1))
17689 1.0865865824454

1

�
�

��
�
�

�
�
�
�

d
77,

=

3(11 (1))
54289

10 2 (1)
54289 0.75034402

*

2
A

d

�
�

��
�
�

�
�
�
�

sin cos

777448057,
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B
d

B
d

1
1

2
2

1

= 3 2
133

7.20408346432856,

= 3
233

27.042587531354,

=

� �

�

�
22 2( )

3 2
133

4 2 (1) 2
1331 1

* 1

� � �
�

�
�

�
��

�
��

�

�
��

�

�

�
�
�
�
�

�

�

�
�
�
�

A A B sin

��

�

�
�

�
�

��
�
�

2.85244557564326,

= 2 2( )
3
233

5 (1)
233

2
2 2

* 2
�

� �

A A B cos ��
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�
�

�
�

�

�
� �

�

�

2.86692357704738,

( (1 1

1

2 2

2

k
M

k
M

� � bb a
e e

) ( )) = 133
945 2

233
1668

1 0.875630910021 2
3�



�

�

�
�

�

�
� � � ��� � � � 221

< 0.

As all the assumptions of Theorem 3.4 are verified, then we can deduce that problem (21) admits a 
unique solution defined on [0,1].

Remark 5.2: If we rather employ Theorem 3.6 to find and demonstrate the existence results for our 
problem (21), then we can simply take �k ki i i= =  to satisfy the hypothesis ( )3S . Then, we can deduce 
our existence result based on Theorem 3.6.

Remark 5.3: Since the assumptions of Theorem 3.4 are met, then Theorem 4.2 implies that the prob-
lem (21) is Ulam-Hyers stable.
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