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Abstract

The fractional natural variation iteration analysis is used in this study to analyze partial differen-
tial equations using the Caputo fractional operator (FNVIM). The FNVIM approach, which is a type
of fractional Variation iteration with the natural transform, is used to generate the approximate
analytical solutions. Illustrative scenarios show off the great accuracy and fast convergence of this
innovative technique. The results show that the suggested approach may be used to solve nonlinear
fractional differential equations. Furthermore, we show that FNVIM is more effective, transparent,
and accurate in handling a large class of nonlinear equations utilizing the Caputo fractional operator,
which makes it extremely valuable in physics and engineering.
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1. Introduction

Over the past century, significant advancements have taken place in both the theory and applications
of fractional equations. In more and more domains of research, including the unification of absorption
and wave propagation phenomena, mechanical systems, continuous-time random walks anomalous
diffusive and subdiffusive systems, and others, these equations are being utilized to represent prob-
lems. The most significant benefit of employing fractional equations in these applications, as well
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as others, is their non-locality. It is well knowledge that the fractional order differential operator is
a non-local operator, in contrast to the integer order differential operator, which is a local operator.
Accordingly, a system’s subsequent that has on all of its previous states in addition to its present state.

Many experts utilize these models frequently to develop natural issues that are well recognized
for these occurrences, reduce the regulating design without compromising hereditary behaviors, and
easily explain its complex structures [1-6].

The most approximate and empirical procedures, such as the fractional variation iteration tech-
nique, the fractional differential transformation methodology, and the technique for extending frac-
tional series, using a fractional Laplace transform and the fractional Sumudu variation. Khan et al.
[4] originally developed the natural transform technique (NTM), he gave specific applications and
qualities of the natural transformation, which they designated to as the N-transform [7—29], which
have been effectively applied.

The variation iteration approach has gained popularity and has been used to solve a variety of non-
linear issues. The capacity and adaptability of this approach to correctly and properly solve nonlinear
equations is its key characteristic. Additionally, it has been recently highlighted that the variation
iteration approach, together with other analytical techniques, is thought to be an efficient way for
addressing a variety of non-linear problems without the use of general limiting assumptions.

We are attempting to present the FNVIM, a coupling method of the FVIM and NT, and utilize it to
resolve nonlinear fractional PDEs. The following sections make up the remaining portion of this work:
Some definitions for fractional calculus are provided in Section 2. Section 3 discusses the fundamental
definition of natural transforms. The FNVIM with CFO analysis is carried out in section 4. Section 5
demonstrates FNVIM applications. The study’s conclusion can be found in Section 6.

2. Preliminaries

This section goes over several fractional calculus principles and symbols that will come in handy
during this inquiry [1, 2, 25].

Definition 2.1: Suppose v({) € R ,{ >0, which is in the space C,,,meR if there exists

1p,(p>m),s.tv(g) = v, (),wherev, (¢) € C[0,8)]

and v({) is known as in the space C;, whenv"eC, , me N.
Definition 2.2: The fractional integral operator of order y >0 for Riemann Liouvilleof v(§) €C, ,m > -1

is given by the form

1 y_l
P o(C) = W)j €=y vE)de, 7>0,6>0

() =v($), y=0

where T'() is the recognizable Gamma function. The following are the characteristics of the operator
I":ForveCm, m>-1, y,6 >0, then

(2.1)

L TIvE)=T"v()
2. TTv()=IT v(¢)

Definition 2.3. In the understanding of Caputo, v({)’s fractional derivative is as follows:
1 ¢
D) =I""D" V() =———[ (¢ &y v (©)dE 2.2)
F(n-y)y

such that n-1<y<n,neN,{>0andve(C”,
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Definition 2.4. The following formula gives the Mittag-Leffler function E, if it satisfies the following:
For each y > 0, then:

E (z) = Zr(ny+1) (2.3)

3. Natural Transform definition

We present some context for the natural transform approach [25] in this section. Definition 3.1. The
function v(§) for { € Rhas a natural transform defined by

NIVO1=R@,0) = [e ™ v(10)dS, n,l e (~0,e0) (3.1)

We denote that the Natural transform of the time function v(¢) is N[v({)], and the variables n and /¢
are the Natural transform elements. Furthermore, define v({)H({) as on the axis of positive real, if
H(¢{) is Heaviside function, and { € (0,00). Consider

Kl
A={W(&):3IM t,,t,>0,with |v(E)IKMe " ,for¢ e (-1) x[0,00), je Z*}

The natural transform, often known as the NT, is defined as follows:
NIv(OH)]=N"[v(O]=R" (n,0)= J. TEv(6)dS, m,le(—wo,0) (3.2)
0
4. Fractional Natural Variation Iteration Method (FNVIM)
Suppose that the general fractional nonlinear PDEs with Caputo fractional operator
Dlv(t,8)+Rv(£,6)+Fv((,8)=0(4,8) m-1<y<m (4.1)

depending on the initial condition

v(t, 0) = 0(0), (4.2)

s.t. the derivative of v(/,{) is ng(f,g” ) in Caputo sense, R is linear differential operator, F nonlinear
differential operator, and the source phrase is d(/,{). Now, by taking NT on both sides of (4.1)

N[Dlv(t,§)]1+N[Rv({,8) +Fv({,0)] =N[o(£,8)] (4.3)
noogro (k+1)
U—v(( ,0)+N[Rv(£,)+Fv(L,0)—0(4,8)] = (4.4)

k=0
The iteration formula:

g7~ (k+1)

i v((,0)+ N[Rv,((,5)+ Fv, ((,§) - 0(4,4)] (4.5)
k=0

S
Vaa(£,6) =v, +A(S) -

Where A(§) Lagrange multiplier
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Taking variation of (4.5)

S7 n SV—(kH)
o VT Zm—_kV(f,O) + N[Rv,((,§)+ Fv,(£,8) - 0(4,8)] (4.6)

k=0

6lv,. 1 (LO]=6lv, 1+ A(E)é

By using computation

4
olv, 1=0[v, 1+ (&) 5y olv,] (4.7)
We impose the condition 5[\[/’”1] =0
vﬂ
S}’
5[vn]{1+ﬂ,(§) - }zO (4.8)
S?’
1+ A(6) 50 (4.9)
Hence, from (4.9) we get
UV
ME) =— 5 (4.10)
1 U’
vn+1(£7€) :vn _Vn +§ V(E?O) - S—},N [RVn(E,C) + FVn(K,g)_ 6(&4)] (411)
By applying Natural inverse to (4.11) after placing the value of A(&), its follow:
Vn+1(£’g) =V(f,0) - N71 |:‘(S]_:N [RVn(f,é,) + Fvn(ﬁ,cj)— 6(€,§)]:| (412)

The solution is provided by v(¢,{) =limv,

5. Applications

This section will demonstrate how to use the suggested approach for solving Cauchy reaction diffusion
equations.

5.1 Example
Firstly, examine Cauchy reaction—diffusion equation which is indicated below
Div(t,0)=v, (£,§)—v((,E), 0<y<l (5.1)
with initial condition
v((,0)=e" +/ (5.2)
Applying NT to each side of (5.1), and by using the differential property of FNVIM, we have
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N[Dv(£,6)]= Nlv,, (£,8) —v(£,)]

v 7-1 (5.3)
S 0.8~ v(1,0)= Ny, (1.0) —v(1,0)]

u” U’
B S7 i v (0
Ven (GE) =v, + A(E) - v(£,8) - v(£,0) N{—aﬁ vn(f,C):H (5.4)
Applying (4.10) to (5.4), we get
1 U’ ol v (6.8
Vet =g V(L0 N{ . vnw,;)} (5.5)

Taking the inverse Natural transform to (5.5), we obtain

_ S| U ol v (8)
Vn+1(€,4)—V(€,O)+N |:S;, N|: aEZ Vn(f,C):|} (56)

Now, comparing (5.6), we get
Vv, =v((,0)=e"" +/¢

14
v,=e"’ +€+N{ gy N[e’( —e’ —Eﬂ

=e’ +€—€{ ¢’ }
['(y+1)

[ 14 14
vo=e' +{+N"! u Nle' —e' —(+1 6
S Iy +1)

- B.7)
Y 2y
=e' 40+ N~ v +/ u }
Sy+1 S2y+l
Y 2y
Sy | ol =5
I'(y +1) I'2y +1)
ny
N
I'(ny +1)
Therefore, we have
v(£,§)=lim ZVn
n—o o0
~ g’ ¢ (5.8)

=e +/|1- +
I'ly+1) T(Q2y+1)

—e” +(E, (-¢7)

If y=1, and by applying Taylor, the approximation yields
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v(t,0) = e +{1—§ +%—--} (5.9)

This actually represents the clear results to equation (5.1) in the scenario where y=1. Because of
this, the estimated solution eventually approaches the precise solution. Figures 1, 2 and 3 for vari-

ous values of y demonstrate the approximate solution of the estimated average and accurate values
developed by FNVIM.

5.2 Example
We examine Cauchy reaction—diffusion equation which is indicated below
Dv(t,5)=v, (6,5) = A+4L*)Wv(1,8), 0<y<1 (5.10)

with initial condition

v(£,0)=e" (5.11)

100
50

-50
-100

Figure 2: The surface graph of the approximate solution v(/,{) of (5.1) wheny =0.4
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Figure 3: The surface graph of the approximate solution v(/,{) of (5.1) when y =0.6
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Figure 4: The surface graph of the approximate solutionv(/,{) of (5.1) wheny =0.8

Wi, {)

Figure 5: The approximate and exact solutions of v(/,{) of (5.1) for different values of y.
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Applying NT to each side of (5.10), and by using the differential property of FNVIM, we have

NIDIv(£,6)]= N{%— 1+ 4f2>v<e,c>}

SV . Fo(e.0) (5.12)
V(£,0) = N{ ovite) —(1+4€2)v(£,§)}
ol
SV B ‘
vn+1<e,c>=vn+x<é>[ V(0 2 v(1,0) - N{ Va( S v art, @, 4)“ (5.13)
Applying (4.10) to (5.13), we get
1 U ] v, (.0 |
Vn+1(f,§) :g V(€70)+ S}, NI: afZ - (1+4£2) vn(€9§)_ (514)
Taking the inverse Natural transform to (5.14), then
L U v, (¢
Ven (0,6 =v(£,0)+ N 5 N{ VG( .6) —(1+4£%)v, (¢, C)] (5.15)
Now, comparing (5.15), we get
Vo =v(€,0)=e£2
2 4 2 2 2 2
v, =e' +N{—Zy N[4r%e" +2e" —e" —4r%e' ]}
_ezz L N! U’ &
- Sy+1
_ 7 ¢’ elfz
I'(y +1)
2 4 2 2 2 4 2 2 4 2
vy=e" +N* U N [40%e" +2e" +2¢' _¢ —e' —e' _s —40%e' (5.16)
S7 L(y+1) L(y +1)
2 4 2 2y )
=e +N‘{ SZZH e + SZM e’}
_ zZ ¢’ e£2+ CZy eéz
F(j/+1) 2y +1)
g’ I
0,{)=—=——
Vu(6:6) F(ny+1)e
Therefore, we have
v(f,g)zlimZvn
" (5.18)

4 . 4’27 . 437 — e

=e"E (¢7)
I'y+1) T'Cy+1) T'(By+1) I'(ny +1)

vit,e)y=e" |1+
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If y=1,v(,{) = "¢ is the accurate result of (5.10).

Figure 6 represents the clear results to equation (5.10) in the scenario where y =1. Because of this,
the estimated solution eventually approaches the precise solution. Figures 7, 8, 9 and 10 for various
values of y demonstrate the approximate solution of the estimated average and accurate values devel-

oped by FNVIM.

5.8 Example

We consider Cauchy reaction—diffusion equation which is indicated below
ng(g’g):vu(gag)_(£7C)+V(€7g)vu(£a§)_VZ(E’C)—}_V(E?CL 0<7S1 (519)
w.r.t initial condition

v, 0) =€ (5.20)

! 0.8~
1.0 0.0

Figure 6: The surface graph of the approximate solution v(/,{) of (5.10) when y=1.

Figure 7: The surface graph of the approximate solution v(¢,&) of (5.10) wheny =0.4
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Figure 10: The approximate and exact solutions of v(/,{) of (5.10) for different values of y.
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Applying NT to each side of (5.19), and by using the differential property of FNVIM, we have
N[Dv((,5)]=Nlv, v, +vv, —vZ+v]
% St ) (5.21)
- v(£,§)— 7 v((,0)=Nl[v,, -v,+vv,,—v" +V]
v v 12| Sy~ 0y N| L P, T 5.22
n+l\* ~'n Uy n U;, ’ 8[2 or n a€2 n n ( . )
Applying
U7
ME=—
to (5.22), we get
1 U’ o*v,  ov o*v
0,)=—v(£,0)+ N LIty n_ (v ) 4y .
V(60 =5 VLD [aﬁ =) } (5.23)
Taking the inverse Natural transform to (5.23), then
v () =v,0+ N LN vy vy, OV, v )+ 5.24
n+1 Vs - ’ Sy 8€2 or n agz n n ( . )
Now, comparing (5.24), we get
Vo v(,0)=¢"
o a4 U ‘
vV, =€ + N |:S—yN(e )
4
= e( + N_l |: U e€:|
Sy+1
— 4 4’}’ eZ
I'(y +1)
¢’ (5.25)

v, U¥

:e"]+N‘{ e’

y+1 + 2y+1 e
S S

¢ & g

v (¢ C)zé—nyeé
n [(ny +1)

Therefore, we have

e + e + e
I'(y +1) r'2y +1)
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v(/,{)=lim Zvn
n—w =

] T S & + & TR (5.26)
F(y+1) I'2y+1) I'GBy+1) C(ny +1)
=e"E,(¢")

If y=1,v(¢,{) =e"**, which is the accurate result of (5.19).

Figure 11 represents the clear results to equation (5.19) in the scenario where y =1. Because of this,
the estimated solution eventually approaches the precise solution. Figures 12, 13, 14, and 15 for var-
ious values of ¥ demonstrate the approximate solution of the estimated average and accurate values

developed by FNVIM.

6. Conclusion

This work has been using the FNVIM to successfully give an analytical estimation approach to the
nonlinear of FPDEs. The FNVIM provides both exact solution considerations and results in the form
of convergent series with easily estimated constituents.

Figure 12: The surface graph of the approximate solution v(/,{) of (5.19) wheny =0.4.
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Figure 13: The surface graph of the approximate solution v(/,{) of (5.19) when y =0.6

Figure 14: The surface graph of the approximate solutionv(/,{) of (5.19) wheny =0.8

Wl £l

2 02 o4 06 o8 1w’

Figure 15: The approximate and exact solutions of v(/,{) of (5.19) for different values of y.
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