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Abstract

The objective of this paper is to investigate the Lorentzian Kähler space-time manifold that is  Bochner 
flat. We have demonstrated that a Lorentzian Kähler space-time manifold with Bochner flatness 
is also an Einstein manifold. Furthermore, we have established that the energy- momentum tensor 
is covariantly constant when the manifold satisfies the Einstein field equation with a  cosmological 
 constant. Additionally, we have determined that the energy-momentum tensor of a perfect fluid 
Lorentzian Kähler space-time manifold exhibits hybrid characteristics. In the final section, we  analyse 
the behaviour of a dust fluid Lorentzian Kähler space-time manifold where the Bochner curvature 
vanishes.
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1. Introduction

A space-time is defined as a connected four-dimensional semi-Riemannian manifold denoted by (M4, 
g), where g represents the Lorentzian metric with a signature of (–, +, +, +). This metric characterizes 
the geometry of space-time. The study of space-time manifold provides the opportunity to extend the 
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theory with the help of differential equations, partial differential equations, nonlinear equations, 
 cosmology, and the theory of relativity. B. O’ Neill in 1983 [1] started the investigation of astro-
physics, cosmology, and general relativity. Furthermore, a number of authors explored space-time 
in a variety of ways. In 2015, De and Velimirovic [2] investigated Spacetimes with a semisymmetric 
 energy-momentum tensor. In 2009, Ahsan and Siddiqui [3] conducted research exploring the relation-
ship between the concircular curvature tensor and fluid spacetimes. Güler and Demirbag in 2016 [4] 
developed generalised quasi-Einstein spacetimes. In 2014, Arslan et al. [5] conducted research that 
specifically examined generalized Robertson-Walker spacetimes. Recently, in 2023 B. B. Chaturvedi 
et al. [6] studied Novel theorems for a Bochner Flat Lorentzian Kähler Space-time Manifold with 
 η-Ricci-Yamabe Solitons. M-projectively flat spacetimes were discussed by Zengin in 2012 [7]. 
Pseudo-Z symmetric spacetime was researched by Mantica and Suh in 2014 [8]. Spacetime admitting 
W2- curvature tensor, pseudo-projective curvature tensor, quasi-conformal curvature tensor, were all 
explored by Mallick et al. (see ref. [9]–[11]). Young Jin Suh in 2021 [12] investigated Spacetimes 
admitting pseudo-quasi-conformal curvature tensor. For the further studies on space time and solu-
tions, we refer to ([21–26]).

A semi-Riemannian manifold (Mn, g) with an even dimension, where the metric g is Lorentzian is 
known as a Lorentzian Kähler manifold if it satisfies the conditions:

J2(ω1) = – ω1, g(Jω1, Jω2) = g(ω1, ω2), and (∇ω1 J)ω2 = 0, (1.1)

where ω1 and ω2 are vector fields, J is a tensor field of type (1,1) with the property J(ω1) =  ω1, and  
∇ is a Levi-Civita connection. The following relations hold in a Lorentzian Kähler manifold:

g(Jω1, ω2) = –g(ω1, Jω2),
S(Jω1, ω2) = –S(ω1, Jω2),
S(Jω1, Jω2) = S(ω1, ω2).

(1.2)
(1.3)
(1.4)

In this paper, we adopt the assumption that a four-dimensional Lorentzian Kähler manifold can be 
referred to as a Lorentzian Kähler space-time manifold. This assumption serves as the basis for our 
study throughout the paper.

S. Bochner [13] established the notion of the Bochner curvature tensor in 1949. The Bochner cur-
vature tensor, denoted as B, is defined by the following equation:

B(ω1,ω2,ω3,ω4) = R(ω1,ω2,ω3,ω4)−
1

2(n+2){S(ω1,ω4)g(ω2,ω3) − S(ω1,ω3)g(ω2,ω4)  

+ g(ω1,ω4)S(ω2,ω3) − g(ω1,ω3)S(ω2,ω4) + S(Jω1,ω4)g(Jω2,ω3) 
− S(Jω1,ω3)g(Jω2,ω4) + S(Jω2,ω3)g(Jω1,ω4) − g(Jω1,ω3)S(Jω2,ω4)  

− 2S(Jω1,ω2)g(Jω3,ω4) − 2g(Jω1,ω2)S(Jω3,ω4)} 

+ r
(2n+2)(2n+4)

 {g(ω2,ω3)g(ω1,ω4)−g(ω1,ω3)g(ω2,ω4) 

+ g(Jω2,ω3)g(Jω1,ω4)−g(Jω1,ω3)g(Jω2,ω4)−2g(Jω1,ω2)g(Jω3,ω4)},

(1.5)

where, B(ω1,ω2,ω3,ω4) = g(B(ω1,ω2)ω3,ω4), R(ω1,ω2,ω3,ω4) = g(R(ω1,ω2)ω3,ω4), S represents the Ricci 
tensor, and r denotes the scalar curvature of the manifold. 

Several authors have studied the Bochner curvature tensor in different manifolds through differ-
ent approaches. B. B. Chaturvedi and B. K. Gupta [14–17] explored Bochner Ricci semi-symmetric 
Hermitian manifold, C-Bochner curvature tensor on almost C(λ) manifolds, Bochner Ricci pseudo- 
symmetric Hermitian manifolds and Bochner curvature tensor on Kaehler-Norden manifolds. 
O. Kassabov [18] investigated Bochner flat almost Kähler manifolds. Abood (2010) [19] studied 
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Almost Hermitian manifolds with flat Bochner tensor. T. S. Chauhan et al. [19] researched Einstein-
Kaehlerian space with recurrent Bochner curvature tensor.
This paper is organized as follows: The paper begins with an introduction in the first section, followed 
by an overview of a Lorentzian Kähler space-time manifold that has a Bochner curvature tensor equal 
to zero. We then proceed to explore various geometric characteristics of this manifold. Moving on to 
the third section, we explore cosmological models that exhibit a vanishing Bochner curvature tensor. 
Finally, in the last section, we examine a Lorentzian Kähler space-time manifold with a dust fluid, 
emphasizing its properties when the Bochner curvature tensor is zero.

2. Lorentzian Kähler Space-time manifold with Vanishing Bochner Curvature Tensor

If we take into account the space-time framework of general relativity, we can express equation (1.5) 
as follows:

B(ω1,ω2,ω3,ω4) = R(ω1,ω2,ω3,ω4) − 1
12 {S(ω1,ω4)g(ω2,ω3) − S(ω1,ω3)g(ω2,ω4) 

+ g(ω1,ω4)S(ω2,ω3) − g(ω1,ω3)S(ω2,ω4) + S(Jω1,ω4)g(Jω2,ω3) 
− S(Jω1,ω3)g(Jω2,ω4) + S(Jω2,ω3)g(Jω1,ω4) − g(Jω1,ω3)S(Jω2,ω4)  

− 2S(Jω1,ω2)g(Jω3,ω4) − 2g(Jω1,ω2)S(Jω3,ω4)}  

+ r
(10)(12)

 {g(ω2,ω3)g(ω1,ω4) − g(ω1,ω3)g(ω2,ω4) 

+ g(Jω2,ω3)g(Jω1,ω4) − g(Jω1,ω3)g(Jω2,ω4) − 2g(Jω1,ω2)g(Jω3,ω4)},

(2.1)

If B(ω1,ω2,ω3,ω4) = 0, then equation (2.1) leads to

R(ω1,ω2,ω3,ω4) − 1
12 {S(ω1,ω4)g(ω2,ω3) − S(ω1,ω3)g(ω2,ω4)  

+ g(ω1,ω4)S(ω2,ω3) − g(ω1,ω3)S(ω2,ω4) + S(Jω1,ω4)g(Jω2,ω3)  
− S(Jω1,ω3)g(Jω2,ω4) + S(Jω2,ω3)g(Jω1,ω4) − g(Jω1,ω3)S(Jω2,ω4)  

− 2S(Jω1,ω2)g(Jω3,ω4) − 2g(Jω1,ω2)S(Jω3,ω4)} 

+ r
(10)(12)

 {g(ω2,ω3)g(ω1,ω4) − g(ω1,ω3)g(ω2,ω4) 

+ g(Jω2,ω3)g(Jω1,ω4) − g(Jω1,ω3)g(Jω2,ω4) − 2g(Jω1,ω2)g(Jω3,ω4)} = 0.

(2.2)

Taking a frame field over ω1 and ω4 in equation (2.2) and using equations (1.1), (1.2), (1.3) and (1.4), 
we obtain the following expression

S(ω2,ω3) = r
10 g(ω2,ω3), (2.3)

where S represents the Ricci tensor and r corresponds to the scalar curvature of the manifold.
Consequently, we assert the subsequent theorem:
Theorem 2.1: A Bochner flat Lorentzian Kähler space-time manifold is an Einstein space-time.
The Einstein’s field equation with cosmological constant [1], in terms  of Ricci tensor S, scalar curva-
ture r and energy momentum tensor T of type (0, 2) is given by

S(ω2,ω3) − r
2  g(ω2,ω3) + αg(ω2,ω3) = KT(ω2,ω3), (2.4)

where α represents the cosmological constant, and K corresponds to the gravitational constant.
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By utilizing equations (2.3) and (2.4), We draw the following expression:

2 3 2 3
1 2

5
( ) ( )é ù= -ê úë û

T , r g , .
K

w w a w w (2.5)

Taking covariant derivative of equation (2.5), we get

2 3 5 2 35
( 2 ( ) ( )�
� �T , dr g , .)

K
)(� � � � ��5 (2.6)

Since, from equation (2.3) a Bochner flat Lorentzian Kähler space-time manifold is Einstein, therefore 
we can write the differential equations

dr(ω5) = 0, (2.7)

for all ω5.
Putting equation (2.7) into equation (2.6), we derive the following expression:

(∇ω5T)(ω2, ω3) = 0. (2.8)

Consequently, we assert the subsequent theorem:
Theorem 2.2: The energy momentum tensor is covariant constant in a Bochner flat Lorentzian Kähler 
space-time manifold satisfying Einstein’s field equation with cosmological constant.

3. Cosmological Models with Vanishing Bochner Curvature Tensor

In this section, we investigate a perfect fluid in a Lorentzian Kähler space-time manifold that has a 
vanishing Bochner curvature tensor and satisfies Einstein’s field equation without the inclusion of a 
cosmological constant.

The energy-momentum tensor T describing a perfect fluid can be expressed in the following manner, 
as stated in the reference: [1]

T(ω2,ω3) = (σ + p)A(ω2)A(ω3) + pg(ω2,ω3), (3.1)

where σ denotes the energy density and p denotes the isotropic pressure. A is a non-zero 1–form such 
that g(ω2, ρ) = A(ω2), for all ω2 and ρ is the velocity vector field of the flow, i.e., g(ρ, ρ) = –1.
The equation that describes Einstein’s field equation without the inclusion of a cosmological constant 
is stated as follows. [27]

2 3 2 3 2 3( ) ) (
2
( )rS , g , KT , ,� � � � � �� � (3.2)

where, r represents the scalar curvature of the manifold and K ≠ 0.
Using equations (2.3), (3.1) and (3.2), we have

2 3 2 3( ) (, ) ( )2
5

( )r Kp g K p A A .� � � � �� �� � � �� �
� �

(3.3)

By contracting over ω2 and ω3 in equation (3.3), we obtain the following

r = 5
8  K (σ − 3p). (3.4)
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Therefore, substituting equation (3.4) in equation (2.3), we can express the Ricci tensor S of a Bochner 
flat Lorentzian Kähler space-time manifold as follows:

S(ω2, ω3) = 1
16 K(σ − 3p)g(ω2, ω3). (3.5)

We know that the Ricci operator, denoted by Q, is defined in the following way

g(Qω2,ω3) = S(ω2,ω3) and S(Qω2,ω3) = S2(ω2,ω3). (3.6)

Then, we get
A(Qω2) = g(Qω2,ρ) = S(ω2,ρ)

Thus from equation (3.5) and (3.6), we obtain
2

2
2 3 2 3 2 3

3, , ,
16
( )( ) ( ) ( )K pS Q S g .�� � � � � ��� �� � � �� �

(3.7)

Taking contraction over ω2 and ω3 in equation (3.7), we obtain
2

2 3 )
8

(K pQ .� �� �� � �� �
� � (3.8)

Therefore, we can assert the following conclusion:

Theorem 3.1: In a Bochner flat perfect fluid Lorentzian Kähler space-time manifold satisfying Einstein’s 
field equation without a cosmological constant, the norm of Ricci operator is equal to 

8
( 3 )K p� �� �

� �� �
.

Now, if σ = 3p (i.e., the condition of a perfect fluid to be radiation fluid) in equation (3.8), then we can 
draw the following inference:

Theorem 3.2: If a Bochner flat perfect fluid Lorentzian Kähler space-time manifold obeys Einstein’s 
field equation without cosmological constant, then the length of the Ricci operator is zero if the perfect 
fluid is radiation fluid (i.e σ = 3p).
Now, putting ω2 = Jω2 and ω3 = Jω3 in equation (3.2), the Einstein’s field equation without cosmolog-
ical constant becomes

S(Jω2, Jω3) − r
2  g(Jω2, Jω3) = KT(Jω2, Jω3). (3.9)

Subtracting equation (3.9) from equation (3.2) and using equations (1.1) and (1.4), we get

T(ω2, ω3) = T(Jω2, Jω3). (3.10)

Consequently, we assert the subsequent theorem:

Theorem 3.3: In a perfect fluid Lorentzian Kähler space-time manifold obeying Einstein’s field equa-
tion without cosmological constant, the energy momentum tensor is hybrid.
Putting ω2 = ω3 = ρ in equation (3.3), we get 

r = 5
2  Kσ. (3.11)
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From equation (3.4) and (3.11), we get

σ + p = 0, (3.12)

Thus from equation (3.12) we get σ = –p, which is termed as inflation or dark matter [20].
Consequently, we assert the subsequent theorem:

Theorem 3.4: In a Bochner flat Lorentzian Kähler space-time manifold obeying Einstein’s field equa-
tion without cosmological constant, the space-time represent dark matter or inflation. 
By employing equation (2.3) along with equation (2.4), we obtain the following expression

2 3 2 3
2 , , ,
5

( ) ( )r g KT� � � � �� �� �� �
� �

(3.13)

using equation (3.1) in equation (3.13), we get

2 3 2 3( ) ( ) (2 ) (, )
5
r Kp g K p A A .� � � � � �� �� � � �� �

� �
(3.14)

Now, if we take Lorentzian Kähler space-time manifold with radiation  fluid i.e., σ = 3p, we get

2 3 2 3( )2 4, ) )
3

( (
5 3

Kr g KA A .�� � � � � �� �� � �� �
� �

(3.15)

Contracting ω2 and ω3 in equation (3.15), we obtain

r = 5
2  α. (3.16)

Multiplying both side of equation (3.14) by A(ω5) and then performing a contraction over ω2 and ω5, we 
obtain the following expression

r = 5
2  (α + Kσ). (3.17)

From equation (3.16) and (3.17), we get

σ = 0 i.e., p = 0, (3.18)

This contradicts the assumption we made earlier.
Therefore, we can assert the following conclusion:

Theorem 3.5: If the energy density of the perfect fluid in a Bochner flat Lorentzian Kähler space-time 
manifold, which satisfies Einstein’s field equation with a cosmological constant, is non-zero, then the 
space-time is isotropic and homogeneous.

4. Dust Fluid Lorentzian Kähler Space-time Manifold with Vanishing Bochner Curvature 
Tensor

The expression for the energy momentum tensor in the context of a dust model is stated as follows:

T(ω2, ω3) = σA(ω2)A(ω3), (4.1)
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where, σ represents the energy density and ρ represents the time-like unit flow vector field of the 
fluid, such that A(ω2) = g(ω2, ρ) for all ω2, and g(ρ, ρ) = –1.
Thus using equation (3.2) and (4.1), the Einstein’s field equation without cosmological constant can 
be expressed as

S(ω2, ω3) − r
2  g(ω2, ω3) = KσA(ω2)A(ω3), (4.2)

contracting ω2 and ω3 in equation (4.2), we get

r = Kσ. (4.3)

Therefore, using equation (4.3) in equation (2.3), the Ricci tensor of a Bochner flat Lorentzian Kähler 
space-time manifold becomes

S(ω2, ω3) = Kσ
10

 g(ω2, ω3). (4.4)

Thus, in virtue of equation (3.7) and (4.4), we get
2

2 3 2 3, ,
1

( ) ( )
0
KS Q g .�� � � �� �� � �� �

(4.5)

Contracting ω2 and ω3 in equation (4.5), we get
2

2

5
KQ .�� �� � �� �

� � (4.6)

Therefore, we can assert the following conclusion:

Theorem 8: If a Bochner flat Lorentzian Kähler space-time manifold with dust cosmological model 
obeys Einstein’s field equation without cosmological constant, then the norm of Ricci operator is equal 

to 
5
K�� �
� �� �

.

Now, using equation (2.3) and (4.2), we get

2
5

 rg(ω2, ω3) = −KσA(ω2)A(ω3). (4.7)

Taking contraction over ω2 and ω3 in equation (4.7), we get

r = 5
8  Kσ. (4.8)

By multiplying A(ω5)in equation (4.7) and then contracting over ω2 and ω5, we obtain

r = 5
2  Kσ. (4.9)

Now from equation (4.8) and (4.9), we get

σ = 0. (4.10)
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Therefore, from equation (4.1) and (4.10), we get

T(ω2, ω3) = 0. (4.11)

Therefore, we can assert the following conclusion:

Theorem 4.2: A Bochner flat dust fluid Lorentzian Kähler space-time manifold obeying Einstein’s 
field equation without cosmological constant is vacuum.

5. Conclusion

The results presented in this research paper have opened up a new direction in the study of Lorentzian 
Kähler space-time manifolds. The paper highlights the significance of a flat Bochner curvature tensor 
in such spaces. The results demonstrate how a Lorentzian Kähler space-time manifold with a flat 
Bochner curvature tensor can be transformed into an Einstein space-time. In the context of a cosmo-
logical model, when the Bochner curvature tensor vanishes in a Lorentzian Kähler space-time mani-
fold containing a perfect fluid and dust fluid (without a cosmological constant), the Ricci operator can 
be expressed in terms of the gravitational constant, energy density, and pressure. Furthermore, the 
results (theorem 3.4) shed light on how the properties of a fluid influence the characteristics of this 
flat manifold.
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